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Abstract
Artificial intelligence (AI) is increasingly used in medical image analysis and has accelerated scientific discoveries across fields of
medicine. In this review, we highlight how AI has been applied to neuroimaging in patients with epilepsy to enhance classification of
clinical diagnosis, prediction of treatment outcomes, and the understanding of cognitive comorbidities. We outline the strengths
and shortcomings of current AI research and the need for future studies using large datasets that test the reproducibility and
generalizability of current findings, as well as studies that test the clinical utility of AI approaches.
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Summary
· Big data neuroimaging studies in epilepsy using arti-
ficial intelligence (AI) and its sub-fields machine
learning (ML) and deep learning (DL) are increasing
substantially.

· AI applications are powerful tools for classification and
predictions using multimodal imaging data with
varying degrees of direct human interaction.

· ML and DL using different imaging modalities have
shown early promise for automatic classification of pa-
tients with focal and generalized epilepsies from healthy
controls, detecting lesions, and predicting seizure
outcomes.

· However, the reproducibility and generalizability of
these preliminary results and their clinical validity are
still to be determined. Further neuroimaging AI studies
are needed to predict cognitive outcomes following
epilepsy surgery and determine the risk for cognitive
decline over time.

Introduction

An incomplete but straightforward definition of artificial in-
telligence (AI) has combined computer science and data science
that enables big data problem-solving.1 AI includes the sub-
fields of machine learning (ML) and deep learning (DL), terms
that are often used interchangeably but have a different
meaning.1,2 While ML is more data-driven, involves statistical
models, and depends on human intervention, DL uses multiple
layers of neural networks, eliminating some human intervention
(Figure 1).2,3

Although conventional statistics and ML may be used for
both prediction and inference, ML methods are better suited
for predictions.4 These approaches can also be described
along a continuum of data analyses in two axes: in one axis,
they extend from an entirely human-dependent to a fully
human-independent interaction. The other axis extends from
data-training dependent to data-training independent.2,5 For
example, AI applications can now automatically segment and
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calculate the volume or shape of brain structures on MRI with
little or no human intervention.6

Advances in computer science and faster hardware enabling
big data analyses has transformed modern life in many ways,
including search engines, marketing, entertainment, and how
science is conducted.7 Many complex questions about diseases
and brain function can now be investigated using big data
sets.2,8,9 However, attention should be taken to avoid the overuse
of AI methods simply because they are new and powerful.10 As
with any new technique, AI, ML, and DL are sometimes used for
applications where they not entirely justified, overlooking
methodological limitations and overemphasizing results easily
obtained by straightforward statistical analyses.10,11 However,
when performed correctly, well-powered studies using ML have
led to important advances in medicine, which could be translated
to epilepsy in the near future.

Driven in part by the promise of ML, collaborative studies
using multicenter neuroimaging big data have increased sub-
stantially.12 One successful example is the Enhancing Neuro-
imaging Genetics through Meta-analysis (ENIGMA) brain
imaging consortium that has revealed associations between
brain imaging, genetic variations, and cognition in both healthy
subjects and different diseases, including epilepsy.13–16 Another
is the multicenter epilepsy lesion detection (MELD) project.17

These datasets include hundreds to thousands ofMRI and clinical
data in patients with epilepsy and are ripe for AI applications.

Artificial intelligence Applications for Epilepsy
Diagnosis and Management

In recent years, ML algorithms using multimodal MRI have
been shown to lateralize hippocampal pathology in patients with
temporal lobe epilepsy (TLE) and hippocampal sclerosis
(HS).18,19 A recent ENIGMA-Epilepsy study investigated the
performance of ML and DL algorithms using structural MRI

and diffusion MRI (dMRI) to classify controls vs patients with
TLEwith HS andMRI-negative TLE.13 This study revealed that
structural MRI and dMRI-based models had similar accuracy
and that models for TLE-HS were more accurate than for MRI-
negative TLE.13 While the ability of automatic quantification
methods may not currently exceed visual inspection of MRIs by
imaging experts in all situations, AI algorithms and tools provide
important support tools and may become of great importance
when such expertise is not available. Some AI tools have already
been integrated into clinical care for epilepsy,20 but it will remain
important for clinicians and AI-experts to remain in close dialog
for newer ML and DL approaches to be adapted for clinical use.2

Focal cortical dysplasia (FCD) is one of the most common
causes of pharmacoresistant focal epilepsy. However, FCDs are
often undetected on conventional MRI and the pre-surgical
diagnosis depends heavily on the expertise of the examiner.21

Several MRI post-processing techniques have been used to
improve the detection of subtle FCDs.22–25 A recent multicenter-
validated study showed that DL using multimodal MRI data
could reliably identify previous MRI-negative FCD lesions,
suggesting that DL shows promise for assisting non-expert cli-
nicians in this challenging diagnosis.26

AI methods can also combine imaging and clinical data to
build models for predicting clinical outcomes in patients with
epilepsy.27 For example, automated volumetric MRI mea-
surements incorporated into statistical models help to predict
postoperative seizure outcomes in TLE and frontal lobe epilepsy
(FLE), revealing that subtle cortical atrophy beyond the surgical
resection influences seizure outcome.28,29 DL applied to whole-
brain connectomes can also help to predict postoperative seizure
control in patients with TLE.30,31

Another application of AI has been implemented by the
MELD project—a retrospective multicenter cohort of 580 pa-
tients with FCD.17 Here, AI was not used for lesion detection.
Rather, the MELD team trained logistic regression models to

Figure 1. Machine learning (ML) and deep learning (DL) are sub-fields of artificial intelligence (AI) that seek algorithms to create expert systems
that make predictions or classifications based on input data. Basic concepts about artificial intelligence, machine learning, and deep learning.
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test for associations between clinical data and the location of
FCD lesions that were delineated on T1-weighted MRI scans by
imaging experts. Their data-driven atlas validated smaller in-
dependent studies which showed a non-uniform distribution of
FCDs with higher concentrations in the superior frontal sulcus,
frontal pole, temporal pole, and superior temporal gyrus. Le-
sions in primary sensory areas were associated with earlier age
of epilepsy onset whereas lesions in association cortices were
associated with a later epilepsy onset. The likelihood of seizure
freedom decreased with a longer duration of epilepsy.17

Finally, AI, including ML and DL, has been applied to
neuroimaging data for predicting clinical diagnosis, that is,
clinical phenotyping from imaging,32,33 and predicting response
to antiseizure medications.34 For example, dMRI measures and
connectome profiles may identify patients with juvenile myo-
clonic epilepsy32 and distinguish patients with focal epilepsy vs
healthy controls.33 However, these studies are few in number
and larger studies that are validated in external datasets are
needed to determine the reproducibility and generalizability of
current findings.

Artificial intelligence Applications for
Understanding Cognitive Comorbidities

The application of AI to neuroimaging data for understanding
cognitive comorbidities in epilepsy is in its infancy, with only a
handful of studies published to date. Most studies have focused
on classifying cognitive impairment based on whole-brain dMRI
or resting-state functional MRI (rsfMRI), with only one study
incorporating features from multimodal imaging. Four studies
have employed machine learning to classify or predict language
impairments,35–38 three to predict IQ,39–41 two to predict
memory,42,43 and one to predict embodied cognition (i.e., action-
concept deficits) in epilepsy.44 Although most have focused on
adults with TLE, studies are also emerging in children with
epilepsy and patients with other epilepsy syndromes. These
studies are briefly summarized, along with the challenges and
opportunities that lie ahead for AI in the future.

Language: Language is among the most frequently impaired
cognitive domains in epilepsy, with the richness and distributed
nature of the language network making it both vulnerable to
injury and attractive for AI applications. In a study designed to
determine the degree to which white matter networks contribute
to language impairment, Kaestner et al. (2020)36 applied gradient
boosted decision trees (XGBoost) to individualized structural
links, the structural connectome, based on dMRI. Using
XGBoost, the structural connectome correctly classified 79% of
patients as language-impaired vs non-impaired, outperforming a
model that included pre-selected long-range association tracts.
The higher classification accuracy of the structural connectome
relative to the tract-based model may reflect its ability to capture
the vast extent of the language network, which included tradi-
tional language association tracts (e.g., arcuate fasciculus) as well
as interhemispheric connections important for language. Recent
studies have also usedAI for both feature selection and prediction

of language impairment in epilepsy. Munsell et al.35 used a multi-
task machine learning approach for dMRI connectome feature
selection, followed by support vector regression (SVR) to predict
language impairment in TLE. Similar to the previous study, SVR
identified a distributed, bilateral white matter network that
contributed to naming performance. A measure of regional
network integration (nodal centrality) predicted 60% of the
variance in naming scores, and nodes with the highest importance
were bilaterally distributed, involving both medial and lateral
temporal lobe connections. Random forest regression has been
used to identify white matter tracts that predict language im-
pairment in children with malformations of cortical develop-
ment.37 This method has also been applied to demonstrate
functional networks that contribute to verbal fluency impairments
in adults with TLE.38 Collectively, these data-driven approaches
have identified a broad and dynamic network of regions that
contribute to language impairment in epilepsy, with features
extending far beyond the traditional peri-sylvian network that
remains the focus in hypothesis-driven studies.

Global cognitive ability: Three studies have used random
forest applied to whole-brain rs-fMRI data to understand in-
dividual network features that contribute to global cognitive
ability (i.e., IQ) in children with focal epilepsy.39–41 All three
studies derived graph theory metrics from functional connec-
tivity data and reported high prediction accuracy using measures
of global network topology. Clustering coefficient (a measure of
segregation) and path length (a measure of integration) emerged
as the most important features across studies, with higher
clustering coefficient and path length associated with higher IQ
in one study,39 but higher clustering coefficient and lower path
length associated with higher IQ in another.41 Thus, although
measures of a global network architecture may be robust pre-
dictors of global intellectual ability (up to 49% of variance
explained using random forest regression), what these measures
mean biologically and their clinical relevance in the context of
focal epilepsy remains to be established.

Memory: Two studies have used ML to classify or predict
memory impairments in epilepsy—one applied towhole-brain dMRI
and the other to rs-fMRI. Balachandra et al.42 applied XGBoost to a
structural connectome based on dMRI in TLE. A temporal sub-
network (i.e., temporal to extra-temporal connections) correctly
classified patients as memory-impaired vs not impaired with 76%
accuracy, achieving better classification accuracy than models that
included only clinical variables or hippocampal volume. The model
that achieved the best performance (81% accuracy) included both
long-range association tracts, as well as short-range fibers within the
bilateral temporal lobe that likely increase local cortico-cortical
connectivity. A second study using SVR applied to whole-brain
rsfMRI data demonstrated high prediction accuracies of global and
local network metrics (r’s = .62–.76) across verbal and nonverbal
memory scores in adults with TLE.43 Importantly, the authors noted
that measures of local network topology (degree centrality and
betweenness centrality) predicted the severity ofmemory impairment
in the cohort and that the contribution of local network measures did
not follow material-specific lateralization patterns (i.e., the as-
sumption that left temporal regions contribute to verbal memory

Cendes and McDonald 93



whereas right temporal regions contribute to visualmemory).Aswith
language, important features in both studies included bilateral and
extra-temporal regions not traditionally implicated in hypothesis-
driven studies of memory performance.

Action comprehension: In the only study incorporating mul-
timodal imaging data,Moguiner et al.44 applied XGBoost to dMRI
and rs-fMRI data to determine whether motor system dysfunction
selectively impairs action-concept deficits, or problems grasping
words and pictures denoting bodily movements, in patients with
FLE and posterior cortex epilepsy. XGBoost regressions revealed
that both structural (cortico-spinal tract, anterior thalamic radi-
ations, and uncinate fasciculus) and functional (M1-parietal/
supramarginal connectivity) motor system features emerged as
the most important predictors of action-concept impairments in
FLE, which may support the concept of embodied cognition, that
is, that action-semantic information may be grounded in motor
circuits.

In summary, studies using AI to characterize the neural
substrates of cognitive impairment in epilepsy have provided
new insights into the vast extent of network dysfunction
underlying cognitive comorbidities and align with research
challenging region-specific theories of cognitive dysfunc-
tion.45 These studies have leveraged the power of whole-brain
analyses, employing feature selection strategies to reduce the
dimensionality of imaging data and improve prediction ac-
curacy. However, no studies have used large, external datasets
to test the reproducibility and generalizability of the results. In
addition, no studies have used AI to predict cognitive out-
comes following epilepsy surgery or to determine the risk for
cognitive decline over time. Thus, the application of AI to
cognitive networks in epilepsy remains in the discovery phase,
with its clinical utility yet to be established.

Conclusion

The application of AI to medical image analyses has exponen-
tially increased over the past decade and has the potential to
reshape our approach to clinical diagnosis, prediction of treat-
ment outcomes, and management of cognitive comorbidities in
epilepsy.9,46–48 However, despite the promise of AI, the majority
of studies applying ML to epilepsy have been modest in sample
size, raising concerns for overfitting and limiting the application
of DL models that require thousands of patient samples (e.g.,
convolutional neural networks). Such barriers will hopefully be
lifted in the future as more powerful AI methods are developed
and imaging and cognitive data are aggregated across centers and
harmonized in the context of big data efforts.
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