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ABSTRACT: We propose an efficient algorithm for partitioning Pauli
strings into subgroups, which can be simultaneously measured in a
single quantum circuit. Our partitioning algorithm drastically reduces
the total number of measurements in a variational quantum eigensolver
for a quantum chemistry, one of the most promising applications of
quantum computing. The algorithm is based on the Ising model
optimization problem, which can be quickly solved using an Ising
machine. We develop an algorithm that is applicable to problems with
sizes larger than the maximum number of variables that an Ising
machine can handle (nbit) through its iterative use. The algorithm has
much better time complexity and solution optimality than other existing
algorithms. We investigate the performance of the algorithm using the
second-generation Digital Annealer, a high-performance Ising hardware, for up to 65535 Pauli strings using Hamiltonians of
molecules and the full tomography of quantum states. We demonstrate a time complexity of O(N) for N ≤ nbit and O(N2) for N >
nbit for the worst case, where N denotes the number of candidate Pauli strings and nbit = 8,192 in this study. The reduction factor,
which is the number of Pauli strings divided by the number of obtained partitions, can be 200 at maximum.

1. INTRODUCTION
Quantum computing has the potential to outperform classical
computing in computational time.1 In particular, among its
several practical targets, there has been a major advancement in
the areas of quantum chemistry.2 In the current noisy
intermediate-scale quantum computing,3 variational quantum
eigensolver (VQE) algorithms are extensively studied for
quantum chemistry to calculate ground- and excited-state
energies of chemicals,4,5 including small molecules,6,7 catalysts,
and battery materials.8,9

VQE algorithms are designed to solve the Schrödinger
equation,

H E= (1)

using variational methods. To solve it using a quantum
computer, the Hamiltonian H and wave function ψ are mapped
to Ĥ and ψ̂, respectively, through a second quantization:

H E= (2)

where ψ̂ can be obtained by a quantum computer. To calculate
the ground-state energy, a parametrized quantum state ψ̂(θ) is
created using a quantum computer. The parameters θ = {θ1,
θ2, ...} are iteratively optimized using a classical computer to
minimize the expectation value of the given Hamiltonian Ĥ:

E
H

min
( ) ( )

( ) ( )
= | |

| (3)

To estimate the expectation value ⟨ψ̂(θ)|Ĥ|ψ̂(θ)⟩ using a
quantum computer, the Hamiltonian is decomposed into some
Pauli strings:

H P
i

i i=
(4)

where Pi denotes the i-th Pauli string and i denotes the
corresponding weight of Pi.

For the VQE algorithms, the number of Pauli strings scales
as O(n4), where n denotes the number of qubits assigned to
spin orbitals of a target molecule by a one-to-one
correspondence, because the corresponding Hamiltonians
only contain two-body interactions. A quite large n value
(i.e., a large number of spin orbitals) leads to a large number of
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required measurements, which limits the ability of quantum
computation in general. In principle, to obtain multidimen-
sional information on a target quantum state, we have to
prepare its several copies and obtain each one-dimensional
information repeatedly through a basis-changing operation
prior to each measurement. Furthermore, we need to measure
a target quantum state multiple times for each one-dimensional
information to obtain the expectation value with some desired
precision because each measurement results in the projection
of the state onto a measurement basis and we need its average
value. This estimation process nature of the expectation value
makes the overall algorithm time-consuming; this condition is
especially true when the expectation values of Hamiltonians are
subject to classical optimization as in the case of VQEs.
Some methods have been proposed to suppress an increase

in the number of measurements.10−18 One of the main
methods is the partitioning method, where Pauli strings are
partitioned so that their expectation values can be measured
simultaneously.10−14 In this method, a group of Pauli strings is
divided into subgroups, and all the components of each
subgroup are measured simultaneously using only one circuit
(hereafter, such subgroups are called “partitions”). Notably,
the partitioning method is also useful for simulating the time
evolution of Hamiltonians in terms of reducing algorithmic
errors induced via Trotter decomposition19 and a quantum
phase-estimation algorithm with ancilla qubits.20 To maximize
the effectiveness of the simultaneous measurement, the
number of partitions should be minimized. However,
minimizing the number of partitions is a NP-hard problem.
To date, several algorithms have been proposed to address
such problems.10−14 They are mainly based on either the
maximum clique searching method11,14,21 or the graph coloring
method.11−14 For the maximum clique searching method, two
algorithms are mainly used: Boppana−Halldoŕsson algorithm22

and Bron−Kerbosch algorithm.23,24 Their time complexity and
solution optimality, however, have a trade-off relation. For the
Boppana−Halldoŕsson algorithm, the time complexity along
the number of Pauli strings is a polynomial but the optimality
of solutions is not guaranteed. The Bron−Kerbosch algorithm
can guarantee the optimality but exhibits exponential time
complexity. Regarding the graph coloring method, Verteletskyi
et al.11,12 and Hamamura et al.13 tested the performance of the
largest-first method, which has been proven to afford the best
performance among various heuristic orderings. This method
takes polynomial time with the number of Pauli strings but
provides less optimal partitioning results than maximum clique
searching algorithms with the Bron−Kerbosch algorithm14

when the number of Pauli strings exceeds ∼500. An algorithm-
specific partitioning method proposes a partitioning scheme
using the nature of the qubit-mapping methods of Hamil-
tonians in quantum chemistry.14 This partitioning method may
not require long time, but the resultant reduction factor, which
is the number of Pauli strings divided by the number of
obtained partitions, is only 8 at maximum (when the Jordan−
Wigner qubit-mapping method is used).
Such classical algorithms with polynomial time scaling can

reduce the number of measurements for estimating the
expectation values of Hamiltonians to some extent. However,
we need to further reduce the number of measurements as far
as possible for the following reason. As mentioned above, the
estimation of expectation value of the given Hamiltonian is
subject to classical optimization (i.e., the expectation value has
to be measured per optimization step) and the number of the

optimization steps sharply increases with increasing number of
parameters. Therefore, the factor of how the number of
measurements is reduced using the partitioning method must
be evaluated. However, although considerable effort has been
made to improve the reduction factor, it cannot reach the
factor obtained using the Bron−Kerbosch algorithm (which
requires exponential time). Therefore, we believe that an
application-specific computer that operates on a different
calculation principle from a conventional computer would be
necessary for drastic improvement in both time complexity and
the resultant reduction factor.

Another method to reduce the total number of measure-
ments is the shadowing method, which is based on classical
shadowing.15,16 The advantage of this method is that in some
cases, a fewer number of required measurements can be
realized compared with the partitioning method by efficiently
determining the basis-changing operation per measurement.16

However, in the worst case, the method requires the same
number of quantum circuits as that of the measurements,
which may become an additional and non-negligible cost for
hardware experiment. Moreover, to determine per-measure-
ment basis-changing operations, the computational cost of
Ω(nmeas) is required, where nmeas denotes the total number of
measurements. Yen et al.17 discussed a combination of the
shadowing and partitioning methods to further reduce the total
number of measurements. From this point of view, it would
also be of great help if the computational time for determining
the necessary quantum circuits and the number of such circuits
for the partitioning method could be considerably reduced.

In this paper, we propose a fast, effective, and versatile
algorithm to address such partitioning problems with Ising
machines. The proposed algorithm is based on the maximum
clique searching method, and we transform maximum clique
searching problems into quadratic unconstrained binary
optimization (QUBO) problems, which are equivalent to the
Ising model optimization problems.25 This approach allows us
to use Ising machines to quickly solve the problems. Using
Fujitsu’s second-generation Digital Annealer, a hardware
architecture designed to efficiently solve QUBO problems,26

as an Ising machine, we demonstrate that the performance of
our algorithm is much better in terms of time complexity and
solution optimality by comparing it with existing algorithms
(Boppana−Halldoŕsson algorithm and Bron−Kerbosch algo-
rithm). In addition to the partitioning problem for VQE
Hamiltonians, we tested our algorithm on a full tomography of
one n-qubit quantum state (where the number of Pauli strings
to be measured is 4n − 1) to benchmark the results to the
theoretical ones.27 Our algorithm can be applied to the
problems larger than the capacity of an Ising machine by using
it repeatedly, as will be shown below.

This paper is organized as follows. Section 2 describes the
theoretical background and general procedure of performing
simultaneous measurements. Section 3 explains our new Ising
model−based partitioning algorithm and how the Digital
Annealer works. Section 4 describes the performance of the
new algorithm in estimating the expectation values of multiple
Pauli strings, comparing it with existing maximum clique
searching algorithms. Section 5 summarizes this study and
discusses future perspectives.

2. SIMULTANEOUS MEASUREMENTS
In this section, we explain the technical background of
simultaneous measurements and partitioning. In section 2.1,
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we describe the relation between the commutativity of Pauli
strings and simultaneous measurements. In section 2.2, we
present the general procedure of simultaneous measurements.
2.1. Theoretical Background. A simultaneous measure-

ment is based on the fact that the expectation values of two
Pauli strings P1 and P2 can be simultaneously estimated by
applying an appropriate basis-changing operation if and only if
they commute each other (i.e., P1P2 = P2P1).

10 Generally, given
a quantum state ρ, the expectation value of an observable M is
Tr(Mρ). When the matrix B can diagonalize the matrix M so
that Z{i dj} = BMB−1, this condition leads to

M Z B BTr( ) Tr ( )i
1

j
= [ ]{ } (5)

where Z{i dj} denotes the tensor matrix of Z and I:

Z Zi
j

n
i

1j
j={ }

= (6)

Z I
1 0
0 1

,
1 0
0 1
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ÅÅÅÅÅÅÅÅ
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ÅÅÅÅÅÅÅÅ
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Ö
ÑÑÑÑÑÑÑÑ= =

(7)

where j denotes the qubit index beginning from 1 and ij ∈ {0,
1} for each j. Thus, we can estimate Tr(Mρ) by applying B to ρ
as a basis-changing operation and performing a projective
measurement of the qubits labeled with the sequence {j|ij = 1}
along the computational basis (Z-basis).
Here, we suppose that ρ is an n-qubit state and B is a basis-

changing operation. For any of 2n − 1 possible {ij} (excluding ij
= 0 for all the j values), M{i dj} exists, which satisfies

Z BM Bi i
1

j j
={ } { } (8)

As shown in eq 5, eq 8 satisfies

M Z B BTr( ) Tr ( )i i
1

j j
= [ ]{ } { } (9)

From eq 8, the commutation relation between M{i dj} and M{idj},
can be derived as

M M B Z Z B B Z Z B M Mi i i i i i i i
1 1

j j j j j j j j
= = ={ } { } { } { } { } { } { } { }

(10)

for any {ij},{ij}′. Therefore, for M{i dj} and M{i dj}, commute for any
{ij},{ij}′ is the requirement for simultaneous measurements.
Moreover, for any partition {M{i dj}}, the existence of a basis-
changing gate B that satisfies eq 9 has been proven in a
previous study.10

The commutativity of Pauli strings has two settings.14 One is
qubit-wise commutativity (QWC), which means that, for every
qubit, corresponding Pauli operators commute each other. The
other is general commutativity (GC), which means that Pauli
strings commute as a whole, while each Pauli operator does not
necessarily commute. In the GC setting, for some qubits,
corresponding Pauli operators can be anticommuting. Two
Pauli strings commute when the number of the anticommuting
pairs of Pauli operators is even. When we apply QWC, the
basis-changing gate B can be described as a tensor product of a
single-qubit gate. Meanwhile, the resultant number of
partitions is 3n for an n-qubit full tomography (each of the
partitions contains one Pauli string described as a tensor
product of X, Y, and Z). For estimating the expectation values
of Hamiltonians for VQE, a previous study11 shows that the
number of partitions is only three times less than the number
of Pauli strings. By contrast, when we apply GC, B is described

as entangled gates and the number of partitions is expected to
be less than that for QWC. For n-qubit full tomography, when
GC is applied, 4n − 1 Pauli strings can be divided into 2n + 1
partitions, each of which contains 2n − 1 Pauli strings.27 In this
study, we used GC to investigate the maximum effect of
simultaneous measurements.
2.2. General Procedure and Its Time Complexity.

Figure 1 shows a scheme for measuring the expectation values

of multiple Pauli strings using simultaneous measurement and
partitioning. After enumerating the Pauli strings that are
required to estimate the expectation values (step (1)), the
commutativity of each pair of Pauli strings was checked (step
(2)). Then, we created partitions where all Pauli strings
commute (step (3)). Based on this, we determined the basis-
changing gate B for each partition (step (4)), and finally, all the
expectation values of the Pauli strings were estimated (step
(5)). Using steps (2) and (3) presented in Figure 1, the
number of circuits was reduced to the number of partitions.

To evaluate the overall performance of partitioning, the time
complexity and solution optimality should be examined. The
time complexity of step (2) is O(N2n), where N denotes the
number of Pauli strings and n denotes the number of qubits.
Conversely, the time complexity of step (3) strongly depends
on the algorithm used for the partitioning.

Two partitioning algorithms are generally used for solving
the maximum clique searching problem. The Boppana−
Halldoŕsson algorithm22 uses a greedy method for creating
each partition, which does not necessarily result in a
maximum-size partition. It has a roughly quadratic time

Figure 1. Schematic of measuring the expectation values of multiple
Pauli strings using simultaneous measurements.
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complexity with no guarantee of optimality, although its worst-
case time complexity is not well studied. Meanwhile, the
Bron−Kerbosch algorithm23,24 uses a rigorous method for
creating each partition to obtain a maximum-size partition. It
has an exponential time complexity of O(3n/3) for creating one
partition as the worst case,24 but yields an optimal solution.
More details of these algorithms are described in Appendix 1 in
the Supporting Information.

3. METHODS
In this section, we describe our proposed Pauli string
partitioning methods. Section 3.1 introduces the proposed
Ising model-based partitioning algorithm. Sections 3.2 and 3.3
describe the specific partitioning problems we address in this
study and the settings of the Digital Annealer, respectively.
3.1. Ising Model-Based Partitioning Algorithm. The

proposed algorithm is based on maximum clique searching.21 A
partition with the maximum number of elements is created
from the Pauli strings, and the process is repeated with the
remaining Pauli strings until no other string remains, as shown
in Figure 2. In this algorithm, we break down each partition-

creating problem into a QUBO problem, which is equivalent to
an Ising model problem25 and can be solved efficiently using
an Ising machine. In this QUBO problem, each Pauli string is
assigned a binary variable, and the value of the variables
distinguishes whether the corresponding Pauli strings are
included in a target partition.
Suppose that we create one maximum-size partition from the

candidate Pauli string group {P1, ..., PN}. To map this problem
to a QUBO problem, the cost function should be determined
so that it is minimized when the number of Pauli strings in the
target partition is maximized. The cost function can be defined
as follows:

f x x b x mc x x( , ..., )
1
2N

i N
i i

i N
j N

i j i j1
1 1

1

,= +

(11)

where x1, ..., xN ∈ {0,1} denotes the binary variables mapped to
Pauli strings. xk = 1 means that the Pauli string Pk is included in

a target partition; xk = 0 means otherwise. b1, ..., bN denote
positive constants, and we set bi = 1 for all i. c1,1, ..., c1,N, c2,1, ...,
cN,N denote nonnegative constants, satisfying ci,j = 0 if PiPj =
PjPi; otherwise, ci,j = 1. m denotes a positive constant. In the
right-hand of eq 11, the first term means that the cost function
decreases as the number of Pauli strings in the target clique
increases. The second term means that if pairs of Pauli strings
that do not commute exist in a partition, then the cost function
increases. The value of m must be selected to satisfy the
condition that the contribution of the second term is zero
when the global minimum of eq 11 is realized. m > 1 satisfies
this condition for any case (for details, see Appendix 2 in the
Supporting Information), and we set m = 2 in this study. When
the cost function reaches the global minimum, the obtained
subgroup of Pauli strings {Pi|xi = 1} can be considered the
partition that has the largest number of elements in a Pauli
string set of interest. The pedagogical example of this Ising
model mapping is presented in Figure 3.

When the number of variables {xi} is less than or equal to
the number of variables that an Ising machine can handle
(nbit), we can directly determine {xi}, which minimizes the
target cost function using an Ising machine.26,28,29 In that case,
the number of variables necessary for the Ising machine is the
number of Pauli strings. Ising machines are designed to solve
such Ising-type optimization problems by setting the initial
values of {xi} first, finding more optimal values that decrease
the target cost function and updating them iteratively.
Although the computational principle is different in each
problem, Ising machines are generally designed to solve these
problems faster than conventional computers.

When the number of Pauli strings exceeds nbit, additional
procedures are required. Given the Pauli string group

P P P, ..., , ...,n N1 bit
= { }, the partition is created using the

following procedures in our Ising model-based algorithm, as
shown in Figure 4. (1) A subgroup that comprises the first
nbit elements of is defined, and a partition P P, ...,d dp1

= { }
is created using by solving the corresponding QUBO (eq

Figure 2. Illustration of the partitioning process for two-qubit full
tomography. An edge between two nodes denotes that the
corresponding two Pauli strings commute. One partition is described
as the node groups, with thick edges colored in orange. In this
example, the 16 Pauli strings (including the identity Pauli string) can
be divided into five groups.

Figure 3. Illustration of the mapping of partitioning problems to the
Ising model (eq 11), where we set m = 2. Here, we are creating a
maximum-size partition from {Z0Z1,X0X1,Y0Y1,Z1,Z0}. The result of
this equation is minimized when {x1,x2,x3,x4,x5}={1, 1, 1, 0, 0},{1, 0,
0, 1, 1}, which reflect the maximum-size partitions.
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11) problem with an Ising machine. (2) o P( )j is defined for
each Pj , which denotes the number of Pauli strings
Pi that satisfy PiPj = PjPi, and Pj= { } is sorted in a
descending order of o P( )j . (3) A subgroup is
defined, such that comprises the first nbit elements of the
sorted {Pj}. (4) A partition P P, ...,c cq1

= { } is created using

by solving the corresponding QUBO (eq 11) problem with
the Ising machine. In this case, the Ising machine is used twice
(in creating and then ) for a single cycle of the
partitioning process. Procedures from (2) to (4) can be
repeated r times to create an optimal partition, with

being updated between procedures (2) and (4). In this study,
we set r = 1. The flowchart of this algorithm is presented in
Figure 5, and the overall partitioning algorithm is shown in
Chart 1.

We investigated the performance of this Ising model−based
algorithm in terms of time complexity and solution optimality
compared with those of the Boppana−Halldoŕsson and Bron−
Kerbosch algorithms, both of which are also based on
maximum clique searching. For the Boppana−Halldoŕsson
and Bron−Kerbosch algorithms, we used NetworkX30

implemented in Python because both algorithms are
implemented in it and it allows us to benchmark them easily.

Figure 4. Illustration of the partitioning procedure when N > nbit (N = 20 and nbit = 8). (a) Determine
1
as the first nbit elements of 1 and

calculate 1 using the Digital Annealer. (b) Calculate o P( )j1
for each Pj 1 and then sort 1 in a descending order of o P( )j1

. (c) Determine
1

as the first nbit elements of the sorted 1 and calculate 1 using the Digital Annealer. (d) Determine 2 1 1= and sort it in an ascending order
of index j. Then, continue partitioning until Øk = .

Figure 5. Flowchart of partitioning with the Ising model-based algorithm. Ising machines are employed in the green-colored steps.
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3.2. Overview of the Digital Annealer and Its
Settings. In this study, we used the Digital Annealer as an
Ising machine for the following reasons. First, all the variables
in the Digital Annealer are fully connected, which is preferable
for the problems under consideration because for any variable
xi, roughly N/2 variables xj exist that satisfy ci,j ≠ 0. Second, the
Digital Annealer can rapidly search the 2nbit space (where nbit
denotes the number of variables in the Digital Annealer) to
obtain a (globally) minimum value of QUBO problems, such
as eq 11. It is because of an efficient parallel trial scheme for a
Markov chain Monte Carlo method combined with massive
parallelization and a dynamic escaping function from local
minima.31 The Digital Annealer can generally solve such
QUBO problems much faster than simulated annealing
conducted on a classical computer.31

All calculations using Digital Annealer were conducted
under a computational environment prepared for research use.
The second-generation Digital Annealer26 that we used herein
allows us to tune the available number of variables up to 8,192.
In this study, without further notice, all calculations using the
Digital Annealer were conducted with nbit = 8,192. For each
calculation, the number of Monte Carlo steps was fixed to 108.
3.3. Partitioning Problems. In this study, we set the

partitioning problems of n-qubit full tomography (n = 1, ..., 8)

and estimating the expectation values of Hamiltonians for
VQE. For the VQE problems, we set the target molecules as
H2, LiH, H2O, and CH4 in the STO-3G basis set and BeH2,
H2O, N2, and NH3 in the 6-31G basis set. To create
corresponding Hamiltonians, we set their molecular config-
urations by referring to ref 11 and used the Jordan−Wigner
qubit-mapping method. For each molecule in the STO-3G
basis set, we assumed a variable number of spatial orbitals in an
active space, as summarized in Table 1. For each partitioning
problem, we excluded the identity Pauli string ⊗j=1

n I because it
commutes with all other Pauli strings and its expectation value
is always 1.

For the full-tomography Pauli string set, we performed
indexing of Pauli strings in the ascending order of
∑i=1

n p(i)4n+1−i, where p(i) = 0 if the Pauli operator of ith qubit
is I and, similarly, 1 if X, 2 if Y, and 3 if Z. For estimating the
expectation values of Hamiltonians for VQE, we performed
indexing of Pauli strings along with the OpenFermion
ordering.11,32

4. RESULTS AND DISCUSSIONS
4.1. Time Complexity and Solution Optimality when

N ≤ nbit. In this section, we discuss the time complexity and

Chart 1. Ising Model-Based Algorithm
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solution optimality for Pauli string partitioning problems when
the number of Pauli strings N subject to partitioning does not
exceed nbit. Figure 6 shows the plots of algorithm runtime t
against the number of Pauli strings N using the three
algorithms, with their regression curves in the form of t =
aNb. The time complexity on N for the Ising model−based
algorithm within the range of N ≤ nbit = 8192 was estimated as
N0.52. This condition contrasts with N2.57 for the Boppana−
Halldoŕsson algorithm and N5.41 for the Bron−Kerbosch
algorithm. These results suggest that the Ising model−based
algorithm is the most scalable algorithm among the three in
terms of time complexity. As shown in Figure 6, with the
processing ability of our laptop resources, the Ising model−
based algorithm showed better performance than the Bron−

Kerbosch algorithm when N ≥ 300 and the Boppana−
Halldoŕsson algorithm when N ≥ 2000. Although the runtime
performances of the Boppana−Halldo ́rsson and Bron−
Kerbosch algorithms depend on how much computer
resources one can utilize, the threshold number of Pauli
strings Nth exists, such that the Ising model-based algorithm
shows the best performance when N > Nth.

We investigated the performance guarantee for the time
complexity for the Ising model-based algorithm. Each Monte
Carlo step in a Digital−Annealer calculation takes the same
amount of time.31 Thus, the time for creating one partition is
constant in our setting, where the number of Monte Carlo
steps per Digital−Annealer calculation is constant. Figure 7

shows that the overall runtime t of Algorithm 1 in Chart 1
depends almost linearly on the resultant number of partitions.
Here, creating one partition takes 4 to 5 s. With the
introduction of τ, which denotes the average runtime for one

Table 1. Pauli String Set for VQE (Excluding Identity)

molecules basis set qubit mapping
# of spatial
orbitals

# of
qubits

# of
Pauli
strings

H2 STO-3G Jordan−Wigner 1 2 3
H2 STO-3G Jordan−Wigner 2 4 14
LiH STO-3G Jordan−Wigner 3 6 117
LiH STO-3G Jordan−Wigner 4 8 192
LiH STO-3G Jordan−Wigner 5 10 275
LiH SLO-3G Jordan−Wigner 6 12 630
H2O STO-3G Jordan−Wigner 4 8 220
H2O SLO-3G Jordan−Wigner 5 10 311
H2O STO-3G Jordan−Wigner 6 12 740
H2O STO-3G Jordan−Wigner 7 14 1389
CH4 STO-3G Jordan−Wigner 4 8 240
CH4 STO-3G Jordan−Wigner 5 10 591
CH4 STO-3G Jordan−Wigner 6 12 1518
CH4 STO-3G Jordan−Wigner 7 14 3005
CH4 STO-3G Jordan−Wigner 8 16 5236
CH4 STO-3G Jordan−Wigner 9 18 8479
BeH2 6-31G Jordan−Wigner 13 26 9203
H2O 6-31G Jordan−Wigner 13 26 12731
N2 6-31G Jordan−Wigner 18 36 34622
NH3 6-31G Jordan−Wigner 15 30 52805

Figure 6. Plot of the runtime along the number of observables obtained using the Ising model-based algorithm (orange), Boppana−Halldoŕsson
algorithm (blue), and Bron−Kerbosch algorithm (green). (a) Plotted in the linear axis, (b) plotted in the logarithmic axis. The regression curve for
each algorithm is in the t = aNb form. The regression curve for the Ising model−based algorithm is determined based on the data plots for N <
8192.

Figure 7. Plot of the partitioning runtime along the resultant number
of partitions using the Ising model-based algorithm.
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Digital−Annealer calculation, the Ising model-based algorithm
runtime is written as

t
N
F

=
(12)

where F denotes the reduction factor,14 which is the value
defined as the number of Pauli strings N divided by the
resultant number of partitions. The observed dependence t ∝
N0.52 reflects that the dependence of F on N is F ∝ N0.48.
However, it also reflects the specific characteristic of
partitioning problems, i.e., the Pauli strings for VQE
observables and full tomography. This dependence of F cannot
apply to all types of partitioning problems. The performance
guarantee can be investigated by assuming that F = 1 as the
worst case. With its application to eq 12, the worst-case time
complexity can be confirmed as O(N), which still has a lower
dimension than those of the Bron−Kerbosch and Boppana−
Halldoŕsson algorithms.
Next, we discuss the solution optimality of each algorithm.

We evaluated it using the reduction factor F; a large reduction
factor means a high solution optimality. Figure 8 shows the
reduction factor for each partitioning problem. When the
number of Pauli strings is small (<20), the reduction factors
are similar among the algorithms. By contrast, when the
number of Pauli strings increases, the resultant reduction
factors of the Ising model-based algorithm and Bron−
Kerbosch algorithm become larger than that of the
Boppana−Halldo ́rsson algorithm. This result is obtained
because of the characteristics of the three algorithms. The
Ising model-based algorithm and Bron−Kerbosch algorithm

maximize the number of elements of a partition-per-partition
creation process, whereas the Boppana−Halldoŕsson algorithm
does not always maximize the number of elements of one
partition because it incorporates the greedy approach. This
point can be observed in Figure 9; for the Boppana−
Halldoŕsson algorithm, the number of elements of each

Figure 8. Bar plot of the reduction factor F (defined in the main text) using the Ising model-based algorithm (orange), Boppana−Halldoŕsson
algorithm (blue), and Bron−Kerbosch algorithm (green). For the Ising model-based algorithm, we set nbit = 8192. For the Boppana−Halldoŕsson
and Bron−Kerbosch algorithms, some results are not shown because they are assumed to take more than 10 h.

Figure 9. Number of Pauli strings of each partition as a result of
partitioning 275 Pauli strings (LiH as a basis set of STO-3G and five
spatial orbitals in the active space).
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partition is smaller than that for the other algorithms. Notably,
for n-qubit full tomography for n ≥ 4, the resultant reduction
factor F is less than 2n + 1, which is proven to be the maximum
value.27 The results show that the maximum reduction factor
has not yet been obtained even via our method. This is
probably because a partition that is chosen in the one partition-
creating process is not always the ideal one that realizes the
maximum effect. Each partition-creating process affects the
subsequent partition-creating processes, and the remaining
Pauli string groups may often have only partitions with less
than 2n − 1 Pauli strings.
4.2. Time Complexity and Solution Optimality when

N > nbit. Section 4.1 presents the excellent partitioning
performance of the Ising model-based algorithm for N ≤ nbit.
However, in quantum chemical calculations, N may exceed nbit.
In this section, we examine the performance of the Ising
model-based algorithm when N > nbit.
We discuss the solution optimality first. We have shown the

performance of the Ising model-based algorithm when nbit =
8192 and N > 8192 in Figures 6 and 8. The runtimes required
using the Ising model-based algorithm are within 1.5 h and
remain much shorter than those required in the Boppana−
Halldoŕsson algorithm even when N > 8,192 (Figure 6), and a
much better solution optimality (i.e., larger reduction factor F)
is realized. We demonstrated that F ≈ 200 when solving the
partitioning problem of N = 34,622 (Figure 8). This result
strongly suggests that the extension of the Ising model-based
algorithm to the cases of N > nbit is effective.
However, solution optimality and time complexity for the

case of N > nbit are anticipated to be quantitatively different
from those for the case of N ≤ nbit. In the following subsection,
we will discuss their differences in detail.
4.2.1. Solution Optimality. When N > nbit, a natural

assumption is that the performance of the Ising model-based
algorithm degrades as N increases with respect to nbit. To
confirm this, we compared the Ising model-based algorithm
performance in the cases of nbit = 8192 and nbit = 1024, as
shown in Table 2. The number of partitions is larger when nbit
= 1024, which leads to the decrease in the reduction factor F.
This finding suggests that the size of nbit indeed affects the
performance.
Figure 10 shows the number of elements of each partition k

(k = 1, ..., 100) for some of the partitioning results for N >
8192 with the conditions of nbit = 8192 and nbit = 1024. For nbit
= 1024, the resultant number of elements of each partition k
is substantially smaller than that for nbit = 8192, especially
when a partition with >200 elements. This condition can be a
direct cause of the increasing number of partitions. However,
executing two Digital−Annealer calculations (one to determine

k and another to determine k) is more effective than
executing one Digital−Annealer calculation to determine k
and then regarding it as k because the number of elements of

k is larger than that of k for each k (Figure 10).
Furthermore, the ratio of the number of elements of k to
that of k is greater in the case of nbit = 1024 than in the case
of nbit = 8192 (Figure 11). This finding suggests that the effect
of two Digital−Annealer calculations is greater when the size of
N with respect to nbit is larger.
To further investigate how the relation between N and nbit

influences its performance, a convenient step is to introduce a
parameter D, which denotes the relative dimension of the
partitioning problem against nbit. We define D as T
ab
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We first investigated the performance of the Ising model-
based algorithm for the partitioning problems of N > 8192
with various D (by varying nbit ∈ {8192, 4096, 2048, 1536,
1024, 768, 512, 384, 256, 192} on solving the same
partitioning problem). Figure 12 shows the logarithmic plots
of the resultant reduction factor FD along D. The reduction
factor FD slightly decreases with increasing D for all the N
values. Therefore, we can expect that the reduction factor is
maximum under the D = 1 (N ≤ nbit) condition.
Then, we investigated the performance of the Ising model-

based algorithm when N ≤ 8192, with D ≥ 1, including D = 1.
For these calculations, we set nbit ∈ {8192, 4096, 2048, 1536,
1024, 512, 256, 192, 128, 96, 64, 48}. The reduction factor FD
decreases as D increases, but its ratio to F1, that is,

p
F
FD

D

1 (14)

is not less than 0.9 until D ≈ 10. As d increases above ∼10, we
observed that pD substantially decreases. When D is sufficiently
large, the dependence of pD on d is denoted by O(D−1) (see
Appendix 3 in the Supporting Information).

These results show that although the Ising model-based
algorithm is effective even when N > nbit, the larger nbit
provides better optimality for partitioning the problems with
N > nbit.

4.2.2. Time Complexity. Next, we discuss the time
complexity. As described in Figure 6, the partitioning runtime
t for N > 8192 shows some deviations from the extrapolated
regression curve (t = aN0.52), which is determined from the
runtime data for N ≤ 8192. When N > nbit, the partitioning
runtimes would be longer owing to the following factors: (i) a
greater number of resultant partitions leads to more Digital−

Figure 10. Bar plots of the number of elements of k and the number of elements of k (as defined in Algorithm 1 in Chart 1) per partitioning
step k (in a range of 1 ≤ k ≤ 100) for partitioning problems of (a) CH4 in STO-3G basis set (8 spatial orbitals), (b) H2O in 6-31G basis set (13
spatial orbitals), (c) N2 in 6-31G basis set (18 spatial orbitals), (d) NH3 in 6-31G basis set (15 spatial orbitals), and (e) eight-qubit full
tomography.
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Annealer calculation step and (ii) two Digital−Annealer

calculations are required to create a single partition as long

as the number of remaining Pauli strings exceeds nbit. The

algorithm runtime tD for a relative dimension D is described as

t
s N

F
(1 )

D
D

D
= +

(15)

where s denotes the ratio of the number of partitions whose
creations require two Digital−Annealer calculations to that of
all partitions and τD denotes the average time for one Digital−

Figure 11. Bar plots of the number of elements of k divided by that of k (as defined in Algorithm 1 in Chart 1) per partitioning step k (in a
range of 1 ≤ k ≤ 50) for partitioning problems of (a) N2 in the 6-31G basis set (18 spatial orbitals), (b) NH3 in the 6-31G basis set (15 spatial
orbitals), and (c) eight-qubit full tomography.

Figure 12. Plots of the reduction factor F as a function of the relative problem dimension D for the partitioning problems of (a) N ≤ 8192 and (b)
N > 8192.
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Annealer calculation. From eqs 12, 14 and 15, tD can be
rewritten as

t s p t(1 )D
D

D
1

1
1= +

(16)

As described in eq 16, three contributions (τD/τ1, 1 + s, and
pD

−1) are made to the deviation of tD from t1. Among them,
within the range of our simulation (N ≤ 65535), the difference
between the actual and estimated runtimes from the
extrapolated regression curve (in the case of nbit = 8192) is
mainly contributed by 1 + s, that is, up to 1.6. pD

−1, which is
expected to be ≤1.1 because D ≤ 8 and τD/τ1 is ∼1. However,
when a partitioning problem with an even larger number of
Pauli strings N is assumed to be solved, the contribution of 1 +
s is O(1) because s ≤ 1 by definition. Similarly, τD/τ1 = O(1).
The contribution of pD

−1 becomes the main factor of time
complexity, which evolves as O(N) (Figure 13 and Appendix
3). Therefore, with the assumption of tD=1 ∝ N0.52, even when
N > 8192, the time complexity for N > 8192 is estimated as
N1.52.

Next, we discuss the worst-case time complexity. Even when
assuming t1 = O(N) as the worst case, we can confirm that tD =
O(N2), which still has a lower complexity than the observed
time complexity of the Boppana−Halldo ́rsson algorithm.
Moreover, when the overall partitioning procedure depicted
in Figure 1 is considered, a notable detail is observed that if a
sufficiently large nbit is available for large N, then the
partitioning procedure (3) may not be the most rate-limiting
step in the overall procedure of measuring the expectation
values of multiple Pauli strings (Figure 1) because the
commutativity evaluation step (2) of Pauli strings (Figure 1)
has a higher dimension of the time complexity of O(N2n).
We can consider several additional strategies to improve the

partitioning method for future studies. For example, setting
different

k
by sorting k along different orders11 potentially

results in a more optimal
k
than along the OpenFermion

order, for obtaining k with more elements. Moreover,

repeating the partitioning steps from (2) to (4) r times can
increase the number of elements of k. However, the number
of elements in a partition cannot exceed nbit when using the
Ising model-based algorithm, which would be the theoretical
limit of the algorithm. In addition, enabling a larger nbit than
8192 with the future development of annealing machines
would ensure a shorter algorithm runtime by reducing the
contributions of 1 + s and pD

−1, whereas it potentially increases
t1 by increasing τ1.

5. CONCLUSIONS AND FUTURE PERSPECTIVE
Herein, we propose a method for the partitioning of Pauli
strings. We transfer the portioning to Ising optimization and
solve it using an Ising machine. Compared with conventional
algorithms (the Boppana−Halldoŕsson and Bron−Kerbosch
algorithms), our Ising model-based algorithm shows advan-
tages in terms of solution optimality and time complexity as
the number of Pauli strings increases. Therefore, we believe the
proposed method to be one of the most useful methods for
solving the partitioning problem, especially when large
quantum systems become available in the future. Moreover,
the proposed method is versatile for any sort of quantum
algorithms.

To effectively perform such simultaneous measurements, the
implementation of basis-changing gate sets B (as denoted in
step (4) in Figure 1) is necessary. When GC is applied for
partitioning, constituting B is known to be a nontrivial
problem.14 In addition, such gate sets B include two-qubit
entangling gates (e.g., CNOT), which is likely to be noisier
than single-qubit gates. In this context, the reduction of the
number of two-qubit gates in B is an important problem. A
universal method for constituting B is available in ref 14.
Another strategy is to tune the partitioning process to suppress
the number of entangling gates.13 To make this strategy
compatible with the Ising model-based algorithm, we may need
to tune the coefficients ci,j to circumvent too many entangling
gates, which will be the subject of future works.
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