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A B S T R A C T   

Background: The world has been suffering from the COVID-19 pandemic since 2019. More than 5 million people 
have died. Pneumonia is caused by the COVID-19 virus, which can be diagnosed using chest X-ray and computed 
tomography (CT) scans. COVID-19 also causes clinical and subclinical cardiovascular injury that may be detected 
on electrocardiography (ECG), which is easily accessible. 
Method: For ECG-based COVID-19 detection, we developed a novel attention-based 3D convolutional neural 
network (CNN) model with residual connections (RC). In this paper, the deep learning (DL) approach was 
developed using 12-lead ECG printouts obtained from 250 normal subjects, 250 patients with COVID-19 and 250 
with abnormal heartbeat. For binary classification, the COVID-19 and normal classes were considered; and for 
multiclass classification, all classes. The ECGs were preprocessed into standard ECG lead segments that were 
channeled into 12-dimensional volumes as input to the network model. Our developed model comprised of 19 
layers with three 3D convolutional, three batch normalization, three rectified linear unit, two dropouts, two 
additional (for residual connections), one attention, and one fully connected layer. The RC were used to improve 
gradient flow through the developed network, and attention layer, to connect the second residual connection to 
the fully connected layer through the batch normalization layer. 
Results: A publicly available dataset was used in this work. We obtained average accuracies of 99.0% and 92.0% 
for binary and multiclass classifications, respectively, using ten-fold cross-validation. Our proposed model is 
ready to be tested with a huge ECG database.   

1. Introduction 

Since 2019, the world has been afflicted by the COVID-19 pandemic 
[1]. More than 5 million people have died as a result of the virus [2], 
which can cause complications in the lungs and other organs. COVID-19 
pneumonia may be diagnosed on chest X-rays and CT scans, while 
echocardiography and electrocardiography (ECG) may unveil clinical or 
subclinical cardiac involvement. Several studies using artificial intelli-
gence (AI) for COVID-19 detection via chest X-rays and CT scans have 
been published in the literature. Togaçar et al. [3] presented a DL 
approach for diagnosing COVID-19 in which chest X-ray images were 
preprocessed with fuzzy color, and features collected using MobileNet2 
and SqueezeNet were fed to support vector machine (SVM) for 

classification. The authors attained 99.72% accuracy. For COVID-19 
detection on chest X-ray images, Ismael et al. [4] compared machine 
learning (various texture features extracted from chest X-ray images 
were classified with SVM classifiers) and DL (end-to-end learning and 
transfer learning) approaches, finding that deep features and SVM 
classifier yielded 94.7%, and binarized statistical image features (BSIF) 
features and SVM classifier yielded 90.5% accuracy. Toraman et al. [5] 
used convolutional CapsNet to determine the COVID-19 on chest X-ray 
images. The method was fast and accurate, yielding 97.24% and 84.22% 
accuracy rates for binary and multiclass classifications, respectively. To 
diagnose COVID-19, Ozturk et al. [6] used chest X-ray images as input 
for a DL network. Using a real-time classifier in their DarkCovidNet 
model, 98.08% and 87.02% accuracy rates for binary and multiclass 
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classifications, respectively, were attained. Ismael et al. [7] decomposed 
chest X-ray images with various multiresolution approaches (Shearlet, 
Wavelet, and Contourlet transform) and utilized the entropy and 
normalized energy features for detection of COVID-19.99.29% accuracy 
was attained by feeding Shearlet features to the well-known extreme 

learning machines (ELM) classifier. Karakanis et al. [8] developed a 
model that constructed synthetic images for increasing the number of 
chest X-ray images for efficient COVID-19 detection. The obtained 
synthetic images were used to train the model. Two DL models light-
weight and ResNet8 models were used for binary and multiclass 

Fig. 1. Workflow of the proposed approach.  
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classification tasks, respectively, which attained 98.7% and 98.3% ac-
curacy rates, respectively. 

In addition to the respiratory system, COVID-19 infection may affect 
the cardiovascular system [9]. Several cardiovascular abnormalities can 

be seen in COVID-19 patients [10,11] that may manifest as cardiac 
arrhythmia, conduction problems, ECG abnormalities, myocarditis, and 
pericarditis [12]. ST changes on ECG offer clues to COVID-19 diagnosis 
that may denote subclinical or clinical cardiovascular injury [13]. 

Fig. 2. Typical standard 12-lead ECG signals of a normal subject.  

Fig. 3. ECG leads at regions of interest were manually segmented using non-overlapping blocks of different sizes.  

Fig. 4. Typical ECG images (100 × 100samples) of normal and COVID-19 classes.  
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Indeed, there has been a burgeoning interest in detecting COVID-19 on 
ECG with and without incorporating AI. Ozdemir et al. [14] applied 
hexaxial feature mapping to 12-lead ECG recordings, and attained 
96.2% accuracy for COVID-19 detection. Wang et al. [15] used uni-
variate and multivariate regression models to correlate serum indexes as 
well as ST-T changes and atrial fibrillation on ECG with COVID-19 
positive status, and found ECG ST-T changes to be significantly corre-
lated with COVID-19 (p < 0.001). Pavri et al. [16] studied the ECGs of 75 
admitted COVID-19 patients acquired before and during the index 
hospitalization. In 49.3%, they found paradoxical PR interval prolon-
gation or lack of physiological PR shortening with increased heart rate, 
which connoted impaired atrioventricular conduction. This was asso-
ciated with increased mortality with the need for mechanical ventila-
tion. Angeli et al. [17] studied the ECGs of 50 COVID-19 and reported 
that 30% had ST-T abnormalities and 30% left ventricular hypertrophy. 
In the course of the hospital stay, anomalies such as atrial fibrillation, 
tachybrady syndrome, and acute pericarditis were observed. Li et al. 
[18] analyzed the ECGs of 113 COVID-19 patients, 50 of whom had died. 
The presence of ventricular arrhythmia and sinus tachycardia were in-
dependent risk factors for dying from COVID-19. 

The ECG is cheap, widely accessible, and holds promise as a 
screening tool for COVID-19 diagnosis and prognostication. Of the 
works surveyed above, many still relied on expert interpretation and 
have not exploited AI for automated diagnosis. In this work, we have 
developed an AI ECG-based COVID-19 diagnostic model that employed 
a novel approach based on a shallow but efficient attention-based 3D 
CNN model with RC. Segmented 12-lead ECG images were channeled 
into 12-dimensional volumes and input to the model, which comprised 
19 layers and was trained in an end-to-end learning model. We also 
separately explored using various texture image analysis methods to 
extract features that we then fed to standard classifiers. The results of 

these various approaches were compared with our novel model. In our 
experiments, we used 12-lead ECG printouts collected from normal and 
COVID-19 cases that were preprocessed to trim non-informative parts of 

Fig. 5. The architecture of the proposed attention-based 3D CNN with RC model.  

Fig. 6. Illustration of the attention layer composed of sigmoid and Elementwise 
Multiplication layers. 

Table 1 
Detailed overview of the proposed deep network model.  

Name Type Activations Learnable 

image_3D_input 3-D Image Input 100 × 100 × 12 
× 1 

– 

conv3d1 3D Convolution 98 × 98 × 10 ×
8 

Weights 5 × 5 × 5 
× 1 × 8 
Bias 1 × 1 × 1 × 1 
× 8 

batchnorm_1 Batch Normalization 98 × 98 × 10 ×
8 

Offset 5 × 5 × 5 ×
1 × 8 
Scale 1 × 1 × 1 × 1 
× 8 

relu1 ReLu 98 × 98 × 10 ×
8 

– 

drop1 Dropout 98 × 98 × 10 ×
8 

– 

conv3d2 3D Convolution 98 × 98 × 10 ×
8 

Weights 5 × 5 × 5 
× 1 × 8 
Bias 1 × 1 × 1 × 1 
× 8 

add11 Addition 98 × 98 × 10 ×
8 

– 

batchnorm_2 Batch Normalization 98 × 98 × 10 ×
8 

Offset 5 × 5 × 5 ×
1 × 8 
Scale 1 × 1 × 1 × 1 
× 8 

relu2 ReLu 98 × 98 × 10 ×
8 

– 

drop2 Dropout 98 × 98 × 10 ×
8 

– 

conv3d3 3D Convolution 98 × 98 × 10 ×
8 

Weights 5 × 5 × 5 
× 1 × 8 
Bias 1 × 1 × 1 × 1 
× 8 

add12 Addition 98 × 98 × 10 ×
8 

– 

sigmoid1_1 Sigmoid Layer 98 × 98 × 10 ×
8 

– 

elemMux_1 Elementwise 
Multiplication 

98 × 98 × 10 ×
8 

– 

batchnorm_3 Batch Normalization 98 × 98 × 10 ×
8 

Offset 5 × 5 × 5 ×
1 × 8 
Scale 1 × 1 × 1 × 1 
× 8 

relu3 ReLu 98 × 98 × 10 ×
8 

– 

fc1 Fully Connected 1 × 1 × 1 × 2 Weights 2 ×
768320 
Bias 2 × 1 

softmax Softmax 1 × 1 × 1 × 2 – 
classoutput Classification Output 1 × 1 × 1 × 2 –  
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the images and section the image into the standard I, II, III, V1, V2, V3, 
V4, V5, V6, aVL, aVR, and aVF segments. Each segment represented an 
image of one of the 12 standard ECG leads in the subject, and all 12 
segments were analyzed as a unit. The performance metrics for diagnosis 
of COVID-19 were reported as accuracy, sensitivity, specificity, and F1 

scores. It is important to note that while we have retained the ability to 
discern the discriminative utility of individual ECG leads for COVID-19 
diagnosis, the spatial relationships among the ECG lead positions were 
not preserved in the model. 

The rest of the paper is organized as follows. In Section 2, the pro-
posed approach is introduced, which includes subsections on the data-
set, preprocessing, and attention mechanism. Experimental works and 
results are detailed in Section 3; discussions in Section 4; and conclu-
sions in Section 5. 

2. Proposed approach 

The work is divided into three stages: dataset collection; data pre-
processing and data segmentation; and proposed model (Fig. 1). Details 
are given in the following subsections. 

2.1. Dataset 

In this study, a publicly available dataset was used [19] that 
comprised ECG images from 1937 unique subjects: 250 COVID-19, 859 
normal, 77 myocardial infarction, 203 prior myocardial infarction, 548 
abnormal heartbeat. For our primary aim to detect COVID-19 from 
normal, we studied the 250 COVID-19 and only 250 out of 859 normal 
ECG images to avoid dataset imbalance. For the secondary aim of mul-
ticlass classification, we used the above plus 250 ECG images from the 
abnormal heartbeat group, which was the only group among the 
remaining three with more than 250 patients within the class. The ECG 
data had been acquired using an EDAN SE-3 series 3-channel ECG with 

Fig. 7. Training and test progress of the developed deep network model.  

Table 2 
Performance metrics of the proposed method with 10-fold cross-validation.   

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average ± SD 

Accuracy(%) 100 98 98 98 98 100 100 98 100 100 99.0 ± 1.05 
Sensitivity(%) 100 100 96 100 100 100 100 100 100 100 99.6 ± 1.26 
Specificity(%) 100 96 100 96 96 100 100 96 100 100 98.4 ± 2.06 
F1-score(%) 100 98.04 97.96 98.04 98.04 100 100 98.04 100 100 99.01 ± 1.04  

Fig. 8. The obtained cumulative confusion matrix for the proposed method.  
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the sampling frequency of 500 Hz, and processed using either 0.67–25 
Hz band-pass filter (BPF) or 0.5–100 Hz BPF with a 50 Hz notch filter. 
ECG printouts of the 12 standard ECG leads (Fig. 2) were processed for 
analysis. These images were fed as input to the developed model. For 
binary classification, ECG images from the COVID-19 and normal groups 
were used; and for multiclass classification, ECG images from the 
abnormal heartbeat, COVID-19, and normal groups. 

2.2. Preprocessing 

The ECG printouts were filtered to eliminate noise and segmented to 
isolate individual regions of the 12-lead ECG image, so that each 
segment could be depicted as a black curve contrasted on a white 
background. Background gridlines and binary noises on the ECG print-
outs were removed by applying thresholding operations based on the 
green (G) channel of the ECG images [14] and morphological operations 
[14], respectively. 

Due to the different spatial resolutions of ECG printouts among the 
subjects, rectangular non-overlapping windows of different sizes 
selected based on the dimensions of the region of interest of the indi-
vidual ECG lead on the printout were used in the segmentation: 112 ×
112, 189 × 189, and 315 × 315 for COVID-19 subjects; 112 × 112 for 
normal subjects [14]. These had to be manually located and placed on 
the 12-lead ECG printout image (Fig. 3). All ECG segments were resized 
to 100 × 100 for downstream input to the network. Fig. 4 shows 100 ×
100 samples of ECG images for I, II, II and V1 leads for normal and 
COVID-19 cases. 

2.3. Attention-based 3D CNN with RC model 

The attention-based 3D CNN with RC model is a shallow network 
comprising of 19 layers: image 3D input, three 3D convolution layers, 
three batch normalization layers, and three rectified linear unit (ReLu) 
layers, two dropout layers, two additional layers, one Sigmoid layer, and 
one Elementwise Multiplication layer, as well as the fully connected, 
softmax, and classification layers located after the last ReLu layer 
(Fig. 5). 

There were two RC. The first one connected ReLu1 layer output to 
the second batch normalization layer, i.e., outputs of the second 3D 
convolution and ReLu1 layers were added element-wise. Similarly, the 
second element-wise addition was applied to the outputs of the third 3D 
convolution and second ReLu layers to perform the second residual 
connection. The attention mechanism was used to reflect the input el-
ement’s relevance weight so that the relevant element could make a 
significant contribution to the merged output. Following the second 
residual connection came the attention layer, which included the Sig-
moid and element-wise multiplication layers. 

Table 3 
Performance metrics of the proposed method on the imbalanced dataset with 10-fold cross-validation strategy.   

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average ± SD 

Accuracy(%) 99.10 99.10 100 100 93.69 100 100 100 97.30 100 98.92 ± 0.0203 
Sensitivity(%) 96.55 96.55 100 100 100 100 100 100 100 100 99.31 ± 1.4546 
Specificity(%) 100 100 100 100 93.69 100 100 100 97.30 100 99.10 ± 2.0813 
F1-score(%) 98.25 98.25 100 100 96.74 100 100 100 98.63 100 99.19 ± 1.1557  

Table 4 
Performance metrics of the proposed method on the augmented dataset with 10-fold cross-validation strategy.   

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average ± SD 

Accuracy(%) 100 100 98.80 100 100 99.20 100 99.60 100 100 99.76 ± 0.43 
Sensitivity(%) 100 100 99.20 100 100 100 100 100 100 100 99.92 ± 0.25 
Specificity(%) 100 100 98.40 100 100 98.20 100 99.20 100 100 99.50 ± 0.72 
F1-score(%) 100 100 98.80 100 100 99.21 100 99.60 100 100 99.76 ± 0.43  

Fig. 9. Confusion matrix obtained using subject-based validation.  

Table 5 
Performance metrics obtained for the proposed method using an imbalanced dataset with a 10-fold cross-validation strategy.   

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average ± SD 

Accuracy(%) 94.67 90.67 94.67 90.67 89.33 93.33 86.67 96.00 93.33 90.67 92.00 ± 2.88 
Sensitivity(%) 94.67 90.67 94.67 90.67 89.33 93.33 86.67 96.00 93.33 90.67 92.00 ± 2.88 
Specificity(%) 97.33 95.33 97.33 95.33 94.67 96.67 93.33 98.00 96.67 95.33 95.99 ± 1.44 
F1-score(%) 94.69 90.73 94.68 90.73 89.38 93.33 86.71 96.00 93.33 90.73 92.03 ± 2.86  

Table 6 
Average accuracy obtained using various 3D CNN model combinations with a 
ten-fold cross-validation strategy.  

Method Average accuracy (%) 

3D CNN 94.0 
Attentions based 3D CNN 96.0 
3D CNN with RC 98.0 
Attention-based 3D CNN with RC 99.0  
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In Fig. 6, the attention mechanism is depicted. The ith layer’s output 
feature map is xi, and the focus region for each pixel is determined by gi, 
a gating vector obtained from a coarser scale [20]. The output was ob-
tained via Elementwise Multiplication, as given in equation (1); 

output=αi × xi (1) 

The αi was obtained from Eq. (2); 

αi = σ1

(
ΨT

(
ΨT

x xi +ΨT
g gi + bg

)
+ bΨ

)
(2)  

where bΨ and bg symbols the bias terms and Wg and Ψ are the linear 
transformations obtained by using the 1 × 1 × 1 dimensional convolu-
tion. The weights of the attention module were chosen at random and 
fine-tuned during the deep architecture’s end-to-end training. The main 
branch’s convolutional units were bypassed by the RC. The remaining 
connections and convolutional units’ outputs were added element by 
element. The remaining connections should also have 1-by-1 convolu-
tional layers as the size of the activations varied. Parameter gradients 
could freely flow from the output layer to the network’s prior layers with 
RC, enabling the training of deeper networks. The stochastic gradient 
descent with momentum (SGDM) optimizer was used to train the end-to- 
end CNN model. Table 1 shows detailed descriptions of the proposed 
attention-based 3D CNN model with RC architecture’s layers, activa-
tions, and learnable weights. 

Fig. 10. Various 3D CNN models used in this work: (a) Simple 3D CNN model, (b) Attention-based 3D CNN, and (c) 3D CNN with RC.  

Fig. 11. Summary of accuracies obtained (Table 6) using 3D CNN models in 
this work. 
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3. Experimental works and results 

The proposed attention-based 3D CNN model with RC was imple-
mented in a MATLAB environment. ’MiniBatch’ size and several ’Max-
Epoches’ were selected as 12 and 50, respectively. During training, the 
initial learning rate was set to 0.001 and SGDM optimization was used. 
The experiments were conducted based on 10-fold cross-validation 
criteria. As we had used the limited number of samples in the dataset, 
no separate validation dataset was considered. The proposed method 
was evaluated using standard performance metrics: accuracy, sensi-
tivity, specificity, and F1 score [21,22]. The training progress of the 
developed deep network is shown in Fig. 7. Training and the test ac-
curacy scores were around 60% at the beginning of the training. After 
the 10th iteration, accuracy scores for both training and test datasets 
increased to 100%, which were maintained till the end of the training 
process. The loss value for the training dataset was initially increased at 
over 7 but subsequently decreased to around 1 and kept decreasing after 
the 10th iteration. The loss value for the test dataset dropped to around 
0 value by the 10th iteration, which persisted till the end of the training 
process. 

Table 2 summarizes the performance metrics at each fold of 10-fold 
cross-validation. 100% performance metrics were obtained for Fold1, 

Fold6, Fold7, Fold9, and Fold10. Average accuracy of 99.0%, the 
sensitivity of 99.6%, specificity of 98.4%, and F1 score of 99.01% were 
obtained using a 10-fold cross-validation strategy. 

The cumulative confusion matrix is given in Fig. 8, which shows only 
one COVID-19 and four normal samples were misclassified. 

To overcome reservations regarding training a deep model on rela-
tively small datasets, we employed two strategies to increase the size of 
training dataset: use of imbalanced dataset and data augmentation. In 
the first set of experiments, we applied the proposed method on an 
imbalanced dataset comprising 250 COVID-19 and all 859 normal ECG 
images. With 10-fold cross-validation, average accuracy, sensitivity, 
specificity, and F1-scores were 98.92%, 99.31%, 99.10%, and 99.19%, 
respectively (Table 3). 

In the second set of experiments, we used variational autoencoder 
(VAE) [25] to augment the number of ECG images. VAE was chosen 
instead of generative adversarial network (GAN) [26] due to the low 
number of training samples. For each ECG sample image (250 COVID-19 
and 250 normal), four new images were generated (1000 COVID-19 and 
1000 normal). The experiments were conducted on 1250 COVID-19 and 
1250 normal ECG images using 10- fold cross-validation, which yielded 
excellent performance (Table 4). 

We performed an additional sensitivity analysis using a subject- 

Fig. 12. Confusion matrices obtained for various models: (a) Simple 3D CNN model, (b) Attention-based 3D CNN, (c) 3D CNN with RC, and (d) Attention-based 3D 
CNN with RC. 
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based approach, i.e., the ECG image of one subject was first used for 
testing and the rest for training. As the dataset contained 500 samples 
(250 normal and 250 COVID-19 cases), the code was run 500 times to 
derive the average performance metrics. The average accuracy, sensi-
tivity, and specificity were 97.4%, 98.0%, and 96.8%, respectively. 
Fig. 9 shows the confusion matrix for this subject-based analysis, which 
shows only 8 and 5 samples from the normal and COVID-19 classes, 
respectively, were misclassified. These results support the robustness of 
our salutary results obtained using standard 10-fold cross-validation. 

A multiclass scenario was also considered in this study, where 250 
ECG images from each of the normal, COVID-19, and abnormal heart-
beat groups were used in the experiments with 10-fold cross-validation 
criteria. In the multiclass scenario, the number of samples for each class 
was set at 250 to eliminate class imbalance problem. Average accuracy, 
sensitivity, specificity, and F1-score values were 92.00%, 82.00%, 
95.99%, and 92.03%, respectively (Table 5). 

4. Discussions 

In this paper, we proposed a novel attention-based 3D CNN model 
with RC for ECG-based COVID-19 diagnosis. While we could have used 
1D 12-lead ECG signals in our model, we chose to convert the 12-lead 
ECG image into 12 separate ECG segments based on standard ECG 
leads that were channeled into 12-dimensional volumes as input to the 
model for analysis. By so doing, we have retained the ability to discern 
the discriminative utility of individual ECG leads for COVID-19 diag-
nosis although spatial relationships among the ECG lead positions, 
which may be relevant for manual interpretation by experts, were not 
preserved in the model. 

In an end-to-end DL model architecture, feature extraction (and 
where applicable, concatenation and selection operations), as well as 
classification, need to be fully embedded within the model. Our multi-
channel ECG data may increase the complexity of the classification 
system. To circumvent this, we opted to construct 4D data, where 12- 
lead ECG image segments were located into the channels of the data, 
and feature extraction and classification are carried out via a compact 
attention-based 3D CNN architecture with RC. Regarding the compu-
tational demands of our model, the training and test time for one fold 
was 9 min and 11 s (Fig. 6) based on an input volume of 100 × 100 × 12 

× 1 and running the codes on a M4000 GPU 8 GB RAM computer. If the 
size of the ECG segments was increased to 128 × 128, the system would 
give an ‘out of memory error. Hence, we had resized all ECG lead seg-
ments to 100 × 100. The proposed 3D CNN architecture would require 
high-performance computers for high dimensional input volumes. 

As our model has a novel architecture, we compared the performance 
with combinations of its deconstructed elements, i.e., simple 3D CNN, 
attention-based 3D CNN, and 3D CNN with RC, respectively (Fig. 10). 

The performance of our model was compared with the aforemen-
tioned combinations using 10-fold cross-validation. The average accu-
racy rates obtained using different CNN 3D CNN models are summarized 
in Table 4 and Fig. 11. Fig. 11 shows the summary of accuracy scores 
obtained using 3D CNN models in this work. 

It can be noted from the table that, our attention-based 3D CNN 
model with RC has yielded the highest accuracy. Fig. 12 shows the 
confusion matrices obtained over 10-fold cross-validation for various 3D 
CNN models. 30, 20, 10, and 5 samples were misclassified using the 
simple 3D CNN, attention-based 3D CNN, 3D CNN with RC, and our 
proposed attention-based 3D CNN with RC, respectively. 

Also, in Table 7, we compared the performance of our proposed 
method with recently published hexaxial mapping method [14] and 
Attallah et al. [23]. In Ref. [14], authors have used hexaxial mapping 
and gray level co-occurrence matrix features to form color images from 
the ECG leads. These images coupled with the AlexNet model and their 
developed CNN model attained an average accuracy of 93.6% and 
96.2%, respectively with 5-fold cross-validation. In Ref. [23], the au-
thors used five different deep learning models of distinct structural 
design called ECG-BioNet. Two levels of feature extraction from the 
different layers of each deep learning model were carried out. The fea-
tures that were extracted in the higher layers of the deep models were 
fused using discrete wavelet transform (DWT), after which they were 
integrated with lower layers’ features for an effective representation of 
the inputs. Furthermore, [24] studied six deep learning algorithms for 
diagnosing COVID-19 in binary and multiclass problems. A comparison 
of our proposed method with state-of-the-art method using the same 
database for binary and multiclass classification is shown in Table 7. Of 
note, while we used ECG images from the abnormal heartbeat class as 
the third group for multiclass problem, the third group in in Refs. [23, 
24] were composed of patients from three group: abnormal heartbeat, 
myocardial infarct, and prior myocardial infarct (the exact proportions 
were not mentioned in the manuscripts). Hence, while our method’s 
92% accuracy may not be directly comparable with the slightly lower 
values in Refs. [23,24]. 

The main salient features of our developed model are given below:  

(1) A novel deep model based on 3D CNN, attention, and RC with the 
shallow network with two RC and one attention layer has been 
developed using 12-lead ECG images for COVID-19 detection.  

(2) Our proposed model obtained the highest classification accuracy 
of 99% with ten-fold cross-validation.  

(3) The method concatenated the 12-lead ECG image into a volume, 
thereby enabling the model to efficiently learn all features for the 
discrimination of COVID-19 versus normal samples. In other 
words, an ensemble mechanism was effective using the volume 
data. 

The limitation of our work is summarized below:  

(1) The complexity of the proposed model was increased with an 
increase in the size of the input images.  

(2) The limited number of samples in the dataset precluded tuning of 
the parameters of the proposed method based on the validation 
set. 

Table 7 
Comparison of our proposed method with the state-of-the-art method using the 
same database.  

Method Cross- 
validation 

Number of 
Samples 

Accuracy 
(%) 

Binary classification 
AlexNet architecture using 

hexaxial mapping [14] 
5-Fold cross- 
validation 

Normal = 250 
COVID-19 = 250 

93.6 

Hexaxial mapping with CNN 
[14] 

5-Fold cross- 
validation 

Normal = 250 
COVID-19 = 250 

96.2 

Attallah et al. [23] 10-Fold cross- 
validation 

Normal = 250 
COVID-19 = 250 

98.6 

Rahman et al. [24] 10-Fold cross- 
validation 

Normal = 250 
COVID-19 = 250 

98.6 

Proposed method 10-Fold cross- 
validation 

Normal = 250 
COVID-19 = 250 

99.0 

Proposed method Subject-based Normal = 250 
COVID-19 = 250 

97.4 

Multiclass classification 
Attallah et al. [23] 10-Fold cross- 

validation 
Normal = 250 
COVID-19 = 250 
Cardiac = 250 

91.7 

Rahman et al. [24] 10-Fold cross- 
validation 

Normal = 250 
COVID-19 = 250 
Cardiac = 250 

90.8 

Proposed 10-Fold cross- 
validation 

Normal = 250 
COVID-19 = 250 
Abnormal 
heartbeat = 250 

92.0  

N. Sobahi et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 143 (2022) 105335

10

5. Conclusions 

In this study, a new approach attention-based 3D CNN with RC was 
proposed for COVID-19 detection using ECG printouts. The proposed 
architecture is a shallow network that neither demands prolonged 
training duration nor large number of training samples. The model 
yielded superior average accuracy rates of 99.0% and 92.0% for binary 
and multiclass classifications, respectively, compared with published DL 
approaches (Table 7). The main limitation of this work is the manual 
placement of windows to isolate the region of interest, which requires 
technical experience and the use of a small database to develop the 
model. In the future, we plan to automate the placement of windows to 
isolate the region of interest and use the huge diverse database to 
develop the model. Besides, more deep learning approaches will be 
investigated to incorporate for the proposed COVID-19 detection task 
[27–29]. 

Declaration of competing interest 

None declared. 

Acknowledgment 

The authors extend their appreciation to the Deputyship for Research 
& Innovation, Ministry of Education in Saudi Arabia for funding this 
research work through the project number IFPIP: 1136-135-1442 and 
King Abdulaziz University, DSR, Jeddah, Saudi Arabia. 

References 

[1] World Health Organization, Coronavirus Disease (COVID-19) Pandemic, 2020. 
Retrieved from, https://www.who.int/emergencies/diseases/novel-coronavir 
us-2019. 

[2] Worldmeter, COVID-19 Coronavirus Pandemic, 2021. Retrieved, https://www.wo 
rldometers.info/coronavirus. (Accessed 5 December 2021). 
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