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Abstract

The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show
that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality
genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer
gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a
comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a
thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-
coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267
Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the
reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within
newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial
understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence
regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse
population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse
strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated
with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of
rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived
functions that are not.
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Introduction

The mouse (Mus musculus) occupies a singular position in

genetics and genomics. It is both the premier animal model for

human disease and development and the mammalian genome

against which human DNA, genes, and genomes are most

frequently compared. Despite approximately 90 million years of

independent evolution [1], the laboratory mouse remains an
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excellent model for many human phenotypes and thus is critical to

the study of human disease and mammalian development. Its

small size and rapid breeding cycle are of immense practical

utility, and the mature mouse genetics system, with hundreds of

inbred lines, allows phenotypic consequences of sequence variation

to be inferred [2].

Given the critical role of the mouse as a model organism, it is

particularly important to separate shared ancestral characteristics

that have been conserved in the mouse and human since their

divergence from derived characteristics that are unique to either

lineage. Mouse and human genes whose coding sequences have

scarcely changed since the last common ancestor and that have

remained unduplicated in each lineage are the most likely to have

retained their ancestral functions. In contrast, genes that have

duplicated along the rodent lineage may contribute to derived

traits that are less relevant to human biology, and are thus less

appropriate models of human physiology and disease.

Genomic duplication and divergence is a primary source of

functional innovation [3]. Recent gene duplicates are highly

sequence-similar and are expected to be embedded within

segmentally duplicated regions of the genome (defined as DNA

segments greater than 1 kb showing .90% sequence identity [4]).

Approximately 40% (50 Mb) of segmentally duplicated sequences

are known to be copy number variable among laboratory strains

[5], whereas the remainder appears to have been fixed, either by

genetic drift or by positive selection when the duplicated genes

provide a selective advantage [6,7]. Past episodes of positive

selection upon codon substitutions can be inferred from evolu-

tionary analyses of segmentally duplicated and lineage-specific

genes [8–10].

In late 2002, we published a draft mouse genome assembly,

referred to as the MGSCv3, of a single, inbred strain (C57BL/6J,

or ‘‘B6’’) [11]. This publication marked a watershed in

mammalian genetics and genomics, as it allowed the first genomic

comparisons between mouse and human. It also represented the

first publicly funded mammalian genome project using Whole

Genome Sequence and Assembly (WGSA). This approach, or

variations of it, has since been the primary method for producing

most mammalian genomes [12–16] (Figure 1).

Despite the great utility of the initial MGSCv3 assembly, the

draft genome contained over 176,000 gaps and included entire

regions whose positions and/or orientations in the assembly now

appear to have been in error. The most serious issue to the use of

the MGSCv3 is its almost complete lack of highly sequence-similar

and recently segmentally duplicated regions [17,18]. It was our

principal concern that missing segmental duplication-rich regions

of the draft assembly might harbour large numbers of rapidly

evolving genes whose identification might illuminate mouse-

specific biology. Only by accounting for these missing genes could

we obtain a comprehensive understanding of the biology that

distinguishes these two species. Given this, it has been a goal of the

international consortium to produce a mouse genome assembly of

coverage and quality comparable to that of the human genome

described in 2004 [19]. Although it was anticipated that the effort

and expense required for producing such an assembly via a clone-

based approach would be substantial, this would be justified by the

increased fidelity, and thus utility, of the higher quality genome

assembly to the biomedical research community.

Here we report the completion of this effort and present a high-

quality, largely finished clone-based genome assembly of the

C57BL/6J strain of mouse, here referred to as Build 36. This new

assembly includes 267 Mb of sequence (Protocol S1) that was

either missing or misassembled, much of which consists of

repetitive and segmentally duplicated sequence (4.94% of the

genome). Over 175,000 gaps in MGSCv3 have been closed, and

genome-wide continuity has improved accordingly, with scaffold

N50 lengths (the scaffold length in which at least half of the bases

of the assembly reside) increasing from 17 Mb to 40 Mb.

The availability of finished sequence for human, and now

mouse, enables more-complete surveys of protein-coding genes in

both species. We now estimate that mouse and human reference

genomes contain 20,210 and 19,042 protein-coding genes,

respectively. The number of mouse genes had been missing or

substantially disrupted in the previous MGSCv3 assembly is 2,185.

The majority of these arise from rodent lineage-specific duplica-

tions, often (61%) embedded within segmentally duplicated

regions that were recalcitrant to WGSA. Many of these mouse-

specific genes may contribute to rodent-specific functions and,

with their inclusion in the assembly, are now available for further

investigation.

Results

Build 36 Assembly
The mouse genome assembly (Build 36; Box 1) shows marked

improvements over the MGSCv3 (Table 1) (Tables S1, S2, S3, S4,

S5 and S6 in Protocol S1), with an increased amount of ordered

and oriented sequence placed on a chromosome (2.58 Gb in the

MGSCv3 versus 2.64 Gb in Build 36) and increased base level

accuracy due to the addition of clone-based finished sequence

(Figure 2) (Table S3a–S3c in Protocol S1). Scaffold continuity, as

measured by the N50, is also dramatically improved, with an N50

of 40.3 Mb in Build 36 compared to an N50 of 17.8 Mb in the

MGSCv3. In addition, the number of gaps in Build 36 is reduced

by over 140-fold when compared to the MGSCv3 (Table 1)

(Tables S4 and S5 in Protocol S1). Evidence (Box 1) indicates that

Build 36 is a high-quality assembly that covers .99% of the

C57BL/6J genome (assuming a 2.66-Gb genome size; see Protocol

S1). Although many of the problematic regions identified in these

analyses have been corrected in a subsequent Build 37 (the current

public build, see Box 1 and Protocol S1), a few regions remain

under review and will be addressed in forthcoming assemblies.

Improvements to the assembly are evident at a fine scale in the

spanning of previous gaps and inclusion of locally duplicated

sequences. However, at a larger scale, the genome structure

remains basically unchanged from MGSCv3, and conserved

syntenic relationships to human inferred from the two assemblies

have remained essentially unaltered (Figure 3).

We identified a total of 334 chromosomal breakpoint intervals

between human and mouse and refined the breakpoints to an

Author Summary

The availability of an accurate genome sequence provides
the bedrock upon which modern biomedical research is
based. Here we describe a high-quality assembly, Build 36,
of the mouse genome. This assembly was put together by
aligning overlapping individual clones representing parts
of the genome, and it provides a more complete picture
than previous assemblies, because it adds much rodent-
specific sequence that was previously unavailable. The
addition of these sequences provides insight into both the
genomic architecture and the gene complement of the
mouse. In particular, it highlights recent gene duplications
and the expansion of certain gene families during rodent
evolution. An improved understanding of the mouse
genome and thus mouse biology will enhance the utility
of the mouse as a model for human disease.

Lineage-Specific Biology of the Mouse
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average interval length of 335 kbp. We found that 50% (167/334)

of the breakpoints and that 28.7% by base pair (32.2/111.9 Mbp)

intersected with segmental duplications. This 6-fold enrichment is

significant (p,0.0001) by simulation (n = 10,000 replicates). Using

data from rat, mouse, and human, we further categorized the

breakpoint intervals as mouse-specific (n = 18), contiguous with rat

(n = 276), or ambiguous (n = 40). The latter category frequently

shared only one of the two breakpoints between mouse and rat,

suggestive of breakpoint reuse [20]. While all three categories are

significantly enriched in segmental duplications, we found the

majority of mouse-specific breakpoints (16/18 or 89%) and

ambiguous rat–mouse (37/40 or 93%) breakpoints harbored

Figure 1. Graphical representation of the two sequencing strategies used for mouse. A careful cost/benefit analysis must be performed
when approaching a genomic sequencing project. If lineage-specific biology is important, clone-based finishing of some form will be required.
doi:10.1371/journal.pbio.1000112.g001
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segmental duplications. These data strongly support the now

longstanding observation that chromosomal rearrangements

preferentially associate with regions enriched with duplicated

sequences [18,21–23].

Newly Assembled Genomic DNA Consists Mostly of
Lineage-Specific Sequence

The revised Build 36 assembly contains 139 Mb of sequence

that could not be aligned against, and thus appears to have been

absent from, the previous MGSCv3 draft assembly. 108 Mb (77%)

of this sequence consists of 119,000 repetitive elements (Table S7

in Protocol S1); this was expected because highly sequence-similar

repetitive sequences are particularly difficult to resolve using

WGSA [24,25]. One-third (45.2 Mb; 33%) of this newly

incorporated repetitive sequence is derived from the most

abundant mouse repeat, LINE1. These newly identified LINE1

copies have, on average, a markedly lower divergence from the

consensus (mean 4.5%, as reported by RepeatMasker) than those

that align completely to the previous MGSCv3 sequence (mean

9.4%). Hence they tend to have been inserted more recently in the

mouse lineage. Insertions of LINE1s are clearly ongoing because

they are known to be responsible for 10–15% of deleterious

mutations [26,27].

Eighty percent of sequence added or corrected in the mouse

genome assembly consists of segmentally duplicated regions or

interspersed repeats. Most of these have now been ordered and

oriented on a chromosome (Figure 4 and Protocol S1). The large

amount (126 Mb; 4.94%) of segmentally duplicated sequence in the

mouse genome was unexpected, because the initial MGSCv3

assembly contained virtually no (,0.1%) such sequence [4], and

what was there in MGSCv3 resided in a large pool of unplaced

sequences. When evaluating the segmental duplication content of

Build 36, we used an assembly-independent approach [17] to

validate 85–91% of long ($10 kb) and highly similar (94–99%)

duplications. Nevertheless, some virtually identical (.99%) duplica-

tions remained as artefacts in the assembly, because these exhibited

slightly lower rates of validation (82%), and further work will be

required to resolve them. Of critical importance, with the addition of

the new data in Build 36, segmental duplications in the mouse thus

are now seen to occupy a similar proportion of the genome as they

do in human. However, they are overwhelmingly intrachromosom-

al, with a high prevalence of tandem duplication, whereas human

segmental duplications are often interchromosomal [17].

This is partially addressed in [5], but we elaborate further.

When one compares the divergence of segmental duplications

between the mouse (Build 36) and human genome assemblies

(Build 36), there are some notable differences. For example, the

majority of human intrachromosomal segmental duplications

show high sequence identity (98.5–99.5% with a mode at 99%

sequence identity). In contrast, the pairwise sequence identity

distribution for mouse segmental duplications shows a much more

bell-shaped distribution with a clear mode around 95%. These

findings are consistent with a burst of intrachromosomal segmental

duplications in the human–great ape lineage as recently discussed

[28], and indicate that perhaps intrachromosomal segmental

duplications have a more ancient origin in the mouse. There are,

however, some important caveats. First, it is likely that high-

identity duplications in the human genome assembly have been

Box 1. Assembly Production and Quality Assurance

The mouse genome assembly (Build 36) was produced
largely as described previously [19] but with some variations
in methodology and standards (Protocol S1). The availability
of a high-quality WGS assembly was essential in providing a
framework for the clone-based assembly. Nevertheless, over
7% of the bases found in the finished clone sequences failed
to align to the MGSCv3. Unaligned sequence contributed
from approximately 4% for Chromosome 11 to 18% for the X
chromosome (Protocol S1: Alignments)). Tables S1, S2, S3, S4
and S5 in Protocol S1 provide assembly statistics, stratified
by chromosome, for both Build 36 and the subsequent Build
37, which was produced after the analysis performed here.
While this analysis led to improvements in Build 37, the
changes in this build are not expected to drastically alter the
conclusions of the analysis presented in this manuscript. The
main differences between Build 36 and Build 37 are the
incorporation of an additional 8.3 Mb of sequence onto the
assembled chromosomes and 44.7 Mb of sequence as
unplaced sequence. During the course of analyzing Build
36, a number of scaffolds that were unplaced in the MGSCv3
were found to contain sequences not represented in Build
36. In all cases, these sequences contained protein-coding
genes. While many of these can be associated with a
chromosome, the exact order and orientation is unknown.
However, because of the missing gene sequences, we
thought it was important to release Build 37 with these
sequences included. Work is ongoing to both place these
sequences in the correct location on the chromosome and to
identify clone-based sequences to represent them. Although
statistics are provided for the Y chromosome, analysis of this
chromosome will not be discussed here, because it remains a
separate project that will be described at a later date.

However, the authors have generously provided the
scientific community with data prior to publication (J. Alfoldi,
personal communication).
To assess the accuracy of Build 36, the genome assembly was
compared to several independent sources of data including
a linkage map [81], a radiation hybrid map [82], and
sequences (genomic and transcript based) not used to
generate the assembly [83]. In all cases, the discrepancy rate
was very low, indicating that Build 36 is a high-quality and
high-coverage genome assembly (Protocol S1). This project
was the first to use an optical map to assess the assembly
and to disambiguate problematic regions. We assembled a
genome-wide SwaI restriction map of the C57BL/6J mouse
genome using single-molecule ordered restriction maps
obtained from the optical mapping system [84–86]. This
optical map showed 99% concordance with the restriction
endonuclease digest pattern predicted by the genome
assembly. We identified 423 discordant sites which were
manually evaluated; in 95 cases, the optical map was judged
to be correct, in 220 cases the sequence as determined to be
correct and the remaining 108 cases were ambiguous
(Protocol S1). The optical map provided critical data for
clone placement in several repetitive regions, such as the
beta-defensin region on mouse chromosome 8 (Figure S66
in Protocol S1), as well as providing evidence for clone order
in regions where there was little other information, such as
some pericentromeric regions. In addition, the optical map
covers roughly two-thirds of the 103 unspanned gaps in
Build 36 (Protocol S1: Comparison of Optical Map to Build 36
(pdf)) and will be used in future builds to provide more
accurate gap estimates.

Lineage-Specific Biology of the Mouse
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better resolved because of the larger and longer effort in its

finishing—as such, we posit that we are underestimating the

highest-identity segmental duplications in the mouse genome.

Second, the substitution rate for rodents is significantly higher than

primates, so if divergence is used as surrogate for evolutionary age,

this adjustment must be taken to account. Finally, this pattern is

true for C57BL6, but the pattern in wild-type mice under strong

natural selection may differ significantly. Estimating differences in

timing of segmental duplications is particularly tricky in the

absence of comparative sequence data of more closely related

rodent genomes.

Mouse and Human Protein-Coding Gene Repertoires
The Build 36 assembly contains many genes that were absent,

truncated, incomplete, or misassembled in the initial draft MGSCv3

genome sequence. As we describe below, the vast majority of these

genes reside in segmentally duplicated regions. Using gene

predictions for human and mouse from both NCBI [29] and

Ensembl [30], we retained only those that were conserved either

within or between the two species. Gene models were assessed for

their reliability by: (i) comparing the exon boundaries in alignments

of predicted orthologous and paralogous genes, (ii) considering

whether mouse and human homologues lay within regions of

conserved synteny, and (iii) automatically inspecting genes for

reading frame disrupting mutations [31]. Homologues generated by

retrotranspositions since the human–mouse divergence lack con-

served exon boundaries and mostly lie outside of syntenic regions,

and thus could be assigned as likely pseudogenes.

This process identified 20,210 high-quality protein-coding gene

models in mouse and 19,042 such models in the human genome

(Protocol S1, section: Protein Coding Genes and Gene Families).

This number of reliable human genes is very much lower than

initial reports [11,19], yet it compares well with three more recent

estimates [32–34]. The marked discrepancy between mouse and

human gene counts results mainly from contrasting rates at which

these lineages have acquired gene duplicates, as we shall discuss

below. The revised proportions of protein-coding sequence in the

euchromatic sequence of the mouse and human genome

assemblies are now found to be 1.27% (33.5 Mb out of 2.64 Gb)

and 1.06% (32.6 Mb out of 3.08 Gb), respectively, rather than the

approximately 1.5% often quoted.

1:1 Orthologs
Simple 1:1 orthologs correspond to genes that have remained

intact and unduplicated since the last common ancestor of mouse

and human. Using a recently developed phylogenetic approach

Figure 2. Graphical representation of sequence composition. Chromosomes are drawn to scale, with MGSCv3 to the left (green) and Build 36
to the right (purple). A female mouse provided the DNA for the MGSCv3, so no Y chromosome was available for this assembly.
doi:10.1371/journal.pbio.1000112.g002

Lineage-Specific Biology of the Mouse
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[32], we could identify 15,187 human and mouse genes in simple

1:1 orthologous relationships, representing 75% of mouse and

80% of human genes. By comparison, the original survey of genes

from the draft MGSCv3 assembly was only able to clearly identify

58% (12,845 out of 22,011) of mouse genes as having 1:1 orthologs

in the human genome [11]. Simple 1:1 orthologs exhibited median

nucleotide and amino acid identities of 85.3% and 88.2%,

respectively. These mouse and human genes differed by a median

of 0.58 synonymous substitutions at synonymous sites (dS), and had

a median ratio of nonsynonymous to synonymous substitutions

(dN/dS) of 0.095 (Table 2).

Only eight mouse genes with 1:1 orthologs in human were

entirely absent from the initial MGSCv3 assembly (see Table S8 in

Protocol S1); a further 13 single-copy gene models in mouse that

have been duplicated on the human lineage were also missing

from MGSCv3. Nevertheless, 825 1:1 orthologs were substantially

disrupted in MGSCv3: at least 25% of their exonic sequence was

absent from or misplaced in the draft MGSCv3 assembly (see

Materials and Methods and Protocol S1). The exonic sequences of

another 3,439 1:1 orthologs were also affected by missing or

misassembled sequence, albeit less drastically (see Material and

Methods and Protocol S1). In total, 30% of all gene models in

Build 36 would have been disrupted to some extent by errors in

the MGSCv3 assembly.

Mouse (C57BL/6J)-Specific Genes
It is thus clear that while MGSCv3 had provided a largely

faithful representation of unduplicated 1:1 orthologs, Build 36

Figure 3. A graphical representation of conserved synteny relationships. The chromosomes of human Build 36 are painted with segments
of conserved synteny $300 kb long with mouse MGSCv3 (left) and Build 36 (right). Colors indicate mouse chromosomes (see legend bottom right),
while lines indicate orientation (top left to bottom right is direct, top right to bottom left is inverted). White regions are not covered by alignments
forming a segment $300 kb. Red triangles are human centromeres. Note that all undirected blocks (regions of identical color) are identical between
the two mouse builds except a region at the centromere of human Chromosome 9, which is itself an artifact in the MGSCv3 map. However, several
areas of orientation change, some quite small, can be seen.
doi:10.1371/journal.pbio.1000112.g003

Table 1. Changes from MGSCv3 to Build 36 assemblies.

Parameter MGSCv3 Build 36

Assembled Genome 2.685 Gb 2.661 Gb

Non-N genome size 2.475 Gb 2.567 Gb

Unplaced sequence 103.9 Mb 17.1 Mb

N50 17.8 Mb 40.3 Mb

Number of gaps 176,507 1,218

% Segmental Duplicated sequence ,0.1% 0.0494

Interspersed repeats 1.046 Gb 1.118 Gb

LINE1 460.1 Mb 505.3 Mb

Number of Gene Models 22,011a 20,210

Number of Unplaced Gene Models n/a 191

Number of identified 1:1 orthologs with human genes 12,845a 15,187

% coding 1.25%a 1.27%

% utr 0.48%a 0.87%

aValues for MGSCv3 protein-coding genes are taken from the gene catalogue used in the draft mouse genome publication [3].
doi:10.1371/journal.pbio.1000112.t001
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provides across-the-board improvements to the quality of gene

predictions. This greatly improved assembly now permits a more-

complete understanding of rodent-specific genes. Of 2,185 Build

36 gene models that were substantially disrupted by missing or

misassembled sequence in MGSCv3 (see Materials and Methods),

1,259 (58%) are mouse lineage-specific duplicates (Figure 5).

Similarly, of 242 genes that fell entirely within gaps in the previous

MGSCv3 assembly, 221 (91%) are mouse-specific duplicates; 90%

of the 331 gene models that were in previously unplaced sequences

in MGSCv3, but correctly assembled in Build 36, are also mouse-

specific duplicates. Conversely, of the genes that were only

duplicated on the human but not the mouse lineage, only 101 were

disrupted in MGSCv3. The repetitive genomic regions in the

mouse (an example of which can be found in Figure 6) thus

presented a considerable challenge to sequencing, assembly, and

gene prediction.

Of the ten gene families that have seen the greatest expansions

over the mouse lineage, we find that all but two are associated with

reproductive functions (Table 3). Approximately half of these

genes overlap gaps in the previous MGSCv3 assembly (Figure 5).

These ten families include genes with spermatid- or oocyte-specific

expression, and large families of vomeronasal receptors (VRs).

This suggests that conspecific competition may have driven much

adaptive change in rodent gene repertoire and genome landscape.

Gene duplicates in the rodent lineage far out-number those in

the primate lineage (3,767 in mouse and 2,941 in human). In

general, despite particularly fast rates of protein evolution [11],

their low sequence divergence at synonymous sites implies that

they have been only relatively recent additions to the mouse

lineage (Figure 7). This increased number of genes in mouse

compared to human is, for most families, primarily attributable to

gains in the rodent lineage; however, the primate lineage has also

experienced substantial losses of genes encoding olfactory

receptors, VRs, VR-associated molecules, and putative phero-

mones [35–37] (Figure 7). Four of the gene families with the

largest rodent-specific expansions (Table 3) encode VRs, all of

which are concentrated within large segmentally duplicated

regions. The concentration of VRs and predicted pheromones

[38] on Chromosome 7 contributes to this chromosome’s 2.7-fold

enrichment in segmental duplications [5]. Approximately half of

all gene duplication events that we observe in mouse appear to

have occurred since the time of its divergence from the rat lineage

approximately 12–14 million years ago (Mya) (Figure 7) [39].

Gene duplications have caused large expansions of gene families

in primates as well, several of which were highlighted in the

manuscript describing the finishing of the human genome [19].

Differences in the human and mouse gene repertoires can also

arise from gene loss in the rodent lineage. Genes that are

associated with Mendelian disease in human can be presumed to

have critical functions, and examples of their loss in the mouse are,

therefore, rare and unexpected. One such case is the human gene

EYS (Entrez Gene (http://www.ncbi.nlm.nih.gov/gene/) GeneID

346007), whose disruption results in retinitis pigmentosa; never-

theless the mouse ortholog found in B6 is a pseudogene [40]. For

the few human genes whose mouse orthologs are entirely absent

from the current assembly, it is difficult to determine whether their

absence reflects past deletions of genomic sequence or else

indicates regions that continue to be problematic to sequence.

One gene that has remained elusive since the draft MGSCv3

assembly is the mouse ortholog of human KAL1 (GeneID 3730),

whose disruption leads to an absence or hypoplasia of olfactory

bulbs and tracts in human patients [41]. No transcript or genomic

evidence for the existence of a KAL1 mouse ortholog is apparent.

In fact, it has been suggested that the entire genomic region

surrounding the KAL1 gene, which is adjacent to the pseudo-

autosomal boundary in Xp22, in human is absent from the mouse

genome [42]. However, this genomic region is not stably

propagated in bacteria [43] and may, in fact, vary amongst

Figure 4. The distribution of segmental duplication in MGSCv3 (top) and Build 36 (bottom). Interchromosomal (red) and
intrachromosomal (blue) duplications (.95% identity and .10 kbp) in length are shown for both genome assemblies with the requirement that
pairwise alignments are shown for only those regions (Build 36) that are also confirmed by the WGS depth of coverage analysis (black vertical bars/
ticks). Positions of the centromeres (acrocentric) are shown (purple) for the MGSCv3 build. Initial estimates predicted the amount of segmental
duplication to be approximately 1.5–2% of the genome. Calculations performed using Build 36 suggested the amount is much higher, approximately
4.5–5%. In addition, .60% of duplicated sequences were unplaced in the MGSCv3. In Build 36, almost all are assigned to a chromosome
doi:10.1371/journal.pbio.1000112.g004

Table 2. Characteristics of one-to-one orthologs predicted
for human and mouse genes.

Counts of 1:1 orthologs 151878

dN 0.057 (0.024–0.11)

dS 0.58 (0.46–0.75)

dN/dS 0.095 (0.043–0.18)

Amino acid sequence identity 88.2% (79.4%–94.7%)

cDNA sequence identity 85.3% (80.6%–88.8%)

Human sequence length (codons) 443 (283–706)

Mouse sequence length (codons) 443 (283–706)

Aligned sequence length (codons) 434 (276–693)

Pairwise alignment coverage of
the longer sequence

97.4% (99.4%–100%)

Shown are median values and, in parentheses, lower and upper quartiles.
doi:10.1371/journal.pbio.1000112.t002

Figure 5. The proportion of exonic sequence disrupted in the
MGSCv3. Mouse lineage-specific gene duplicates are shown in red,
and all other genes are shown in blue. The large number of mouse-
specific genes that are entirely missing, truncated, or otherwise
disrupted in MGSCv3 underscores the value of the finished Build 36
assembly in understanding rodent-specific biology.
doi:10.1371/journal.pbio.1000112.g005
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strains [44]. Evidence of mouse orthologs for some genes in this

genomic region does exist within transcript sequences that are

derived from strains other than C57BL/6J [45–46].Completing

the catalogue of mouse genes and pseudogenes and understanding

their homology relationship with human genes requires additional

sequence from more than a single strain.

Figure 6. Improvement of a region in Build 36, rich in Pramel genes, which is virtually absent in MGSCv3. (A) The upper left hand corner
shows a dot-matrix view of the Build 36 Chromosome 5 (horizontal axis) aligned to the MGSCv3 Chromosome 5 (vertical axis). The triangle marks the
portion of the chromosome shown in the zoomed in view. The axes are in the same orientation. 1.5 Mb of sequence that was absent from MGSCv3
has been included in Build 36. This region contains 30 Pramel genes (shown in red) and approximately an additional 20 Pramel pseudogenes (in blue).
This region consists almost entirely of segmental duplications (represented by blue lines below the dot matrix), which previously confounded the
WGA algorithm. Gene models for Build 36 are displayed below the dot matrix view. SD, segmental duplication; CDS, coding regions; pseudo,
pseudogenes. (B) Although the orthologous PRAME and Pramel gene families have expanded independently in the primate and rodent lineages,
positive selection has been most intense on equivalent regions of their structures. Positive selection on amino acid substitution has been most
intense on one exterior surface (left) and has been virtually absent from the alternate face (right). Amino acids predicted to have been positively
selected among human HSA1 PRAME genes (shown in red), mouse MMU4 Pramel (blue), or rat RNO5 Pramel (purple) genes have been mapped onto
an homologous structure (Protein Databank code 2BNH). Amino acids that are positively selected in two or more species are shown in yellow. Three
positively-selected sites among mouse Pramel genes are not highlighted, as they occur within insertions relative to the 2BNH sequence.
doi:10.1371/journal.pbio.1000112.g006
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More rarely, a mouse gene may lack an apparent human

ortholog simply because rapid evolution renders any similarity in

their sequences undetectable. This is the case with human

AU022751 (Mouse Genome Informatics (MGI; http://www.

informatics.jax.org/) ID: 2147968; GeneID 102991) and mouse

EG624310 (MGI: 3644796 ; GeneID 624310) that lie in conserved

synteny on their X chromosomes: they are orthologous, yet show

only residual and nonsignificant sequence similarity in database

searches. The mouse genome contains a further ten mouse

paralogs of EG624310 (MGI: 3644796 ; GeneID 624310) on a

separate region of chromosome X that was largely absent from

MGSCv3. AU022751 (MGI: 2147968; GeneID 102991) is of

unknown function, but its mouse orthologs appear, from the

expression profile of expressed sequence tags (ESTs), to be

expressed frequently in oocytes and exhibit evidence for positive

selection on amino acid substitutions (unpublished data). This

demonstrates how apparently lineage-specific gene families can

emerge by unusually rapid sequence divergence, driven in part by

positive selection, over only tens of millions of years, and is a

prominent example of the novel biology that can be discovered

using a high quality mouse genome assembly.

Mouse Gene Family Expansions and Reproduction
The largest rodent-specific expansions have occurred among

sperm-associated glutamate (E)-rich (Speer) genes on Chromosomes

5 and 14. Most Speer genes appear to have roles in spermatogenesis

[47,48] but some Speer-homologous genes, termed a-takusans, are

expressed in the mouse brain and regulate synaptic activity [49].

Speer/a-takusan genes are absent from nonrodent genomes

because they arose via a partial gene duplication of Dlg5

(MGI: 1918478; GeneID 71228) [47], followed by multiple

duplications and sequence diversification, early in the rodent

lineage. Many (24) of these Speer homologues were absent from

or disrupted in the MGSCv3 because of earlier assembly

problems associated with their repetitive nature. Assembly gaps

remain within Build 36 Chromosome 14, hinting at yet more

undiscovered Speer genes.

Members of the preferentially expressed antigen of melanoma

(PRAME) gene family made up the third largest gene family with

mouse specific expansions. All 90 mouse Prame-like (Pramel) genes

were the result of duplications after the divergence of the rodent

and primate lineages [8], and the majority of these were also

incomplete in MGSCv3 (Figure 6). In primates, this family has also

seen much independent expansion, and it is highly divergent in

copy number both between species and within the human

population [8,16]. In rodents, Pramel gene duplications occurred

not only locally, in cis, but also by translocation of a single Pramel

gene from the ancestral Chromosome 4 to Chromosome 5, with

additional cis-duplications there subsequently. A further segmental

Table 3. Gene families that have experienced the largest rodent-specific expansions categorized by likely function.

Gene Families Mouse Chromosomes Functional Category Gene Counts
Genes Overlapping
MGSCv3 Gaps

Genes Absent
from MGSCv3

Mouse Humana

Spetex/Speer 5, 14 Reproduction 111 — 42 14

V1R 7 Reproduction 90 — 52 23

Pramel 4, 5 Reproduction 90 22 55 1

KRAB zinc finger 2,5,7,8,10,11,12,13,16,17,19 Transcription regulation 80 5 51 9

Slx, Sycp3-like, X-linked
proteins

X Reproduction 58 — 29 4

IgG kappa 12 Immunity 55 13 5 2

V2R 5, 7, 10, 13, 14, 17 Reproduction 47 — 20 5

Ssty Y Reproduction 55 — 55 55

V1R 6 Reproduction 37 — 1 0

V1R 13 Reproduction 35 — 3 0

Total — — 671 (100%) 36 313 (47%) 113 (17%)

aHuman orthologs for many of the most rapidly expanding mouse gene families cannot be readily identified, either because of gene loss or rapid sequence divergence.
doi:10.1371/journal.pbio.1000112.t003

Figure 7. Cumulative numbers of protein-coding gene dupli-
cation events on the human and mouse lineages since their
divergence (grey). Evolutionary time is estimated using dS (the
number of synonymous substitutions per synonymous site) and a
divergence time of 91 million years. The greater number of genes in the
mouse compared with the human genome is largely accounted for by
the lower rate of olfactory and vomeronasal receptor gene duplications
(red) in the primate lineage.
doi:10.1371/journal.pbio.1000112.g007
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duplication, absent in the rat, seeded continued expansion of this

gene family within chromosome 5 (Figure S1 in Protocol S1).

There is abundant evidence for past episodes of positive selection

within rodent Pramel and primate PRAME genes (Figure 6) [8].

Little is known of the functions of mouse Pramel genes, except that

they are often expressed in oocytes, in early embryos, and in

spermatogonia [50].This expression profile suggests that they

might perform important mitotic roles in rapidly dividing cells.

Extensive duplications within two further gene families have

been restricted to X and Y chromosomes (Table 3). These families

derived originally from ancestral autosomal paralogs: Sycp3 (MGI:

109542; GeneID 20962) on Chromosome 10 [51], and Spin1

(MGI: 109242; GeneID 20729) on Chromosome 13 [52]. Sycp3

(MGI: 109542; GeneID 20962 ) gave rise to Slx (MGI: 99543;

GeneID 664829) and Sly (MGI: 382301; GeneID 382301) genes

on the X and Y chromosomes, respectively. The Spin1 homologues

on the sex chromosomes, including EG546176 (MGI: 3645924;

GeneID 546176) and Ssty1 (MGI: 1314663; GeneID 20611),

appear to have arisen through retro-transposition and subsequent

duplication. Nevertheless, the maintenance of open reading frames

over the long evolutionary distances separating the divergent X

and Y copies suggest that protein coding potential has been

maintained for many of these genes. The expression of both gene

families is specific to spermatids [53,54]. Translocation to the sex

chromosomes and subsequent widespread duplications may reflect

advantages when these genes are hemizygous in males [55] or

when gender conflict affects the sex ratio of mouse progeny [56].

Multiple copies of these genes may act to avoid X inactivation [57]

or help to compensate for lack of recombination on the Y

chromosome [58].

We found that many genes in the four families described

above—namely Speer, Pramel, Slx/Sly, and EG546176/Ssty1—have

experienced extensive positive selection upon amino acid substi-

tutions (unpublished data), suggesting that duplication events were

themselves fixed preferentially in ancestral mouse populations.

The preponderance among rodent-lineage specific genes of those

with reproductive function provides an indication of the

prominent role of conspecific competition in shaping the mouse

gene repertoire and hence its biology [59]. Despite their large

number and the important roles that they have played in the

emergence of the laboratory mouse, these genes are poorly

represented among current gene catalogues. This is because they

are generally found as multiple tandem copies in segmentally

duplicated genomic regions, accompanied by significant numbers

of gene fragments and pseudogenes. Only now, with the

availability of a high-quality finished mouse genome, can the

crucial roles of these rapidly evolving genomic regions in

determining lineage-specific biology be fully appreciated.

Mouse Non–Protein-Coding RNA Genes
The transcribed and functional portion of the mouse genome

consists of noncoding as well as protein-coding genes. Hundreds of

microRNA loci, for example, have been detected within recent

mouse genome assemblies [60]. In addition, thousands of long

noncoding RNAs (ncRNAs) have been detected from full-length

mouse cDNA libraries [61,62]. The contribution of these long

ncRNAs to mouse biology, however, remains a matter of extensive

debate. Evolutionary studies have yet to contribute to this debate

by distinguishing long ncRNAs that have single human orthologs

from others that have duplicated, or else emerged de novo, on the

mouse lineage.

Evidence for conserved transcription is apparent for only a small

proportion of long mouse ncRNA sequences, in contrast to

protein-coding genes. Of 3,051 well-documented mouse long

ncRNA sequences [63], only half (1,538 of 3,051; 50.4%) can be

mapped to the human genome assembly using cross-species

genomic alignments. This proportion is slightly higher than the

fraction (39%) of all mouse nucleotides that have been aligned to

the human genome assembly. Of these 1,538 mapped sequences,

only 439 (14% of 3,051) have EST or cDNA evidence for

orthologous transcription in human. Although most mouse long

ncRNAs lack evidence of human expression, the minority with

conserved expression represents a statistically significant (p,1023)

9.5-fold enrichment over what is expected from random genome

sampling. These 439 ncRNAs have a median length of 1,920 bp

and are significantly less likely to contain annotated repetitive

sequence (13% of nucleotides overlap mouse repeats) than either

random intergenic regions ( 45%, p-value,0.001) or their

nonconserved counterparts (25%, p-value,0.001). These mouse

ncRNAs should now be prioritized for further experimental

scrutiny. The remaining mouse long ncRNAs that appear to lack

human orthologs may represent rodent-specific biology, transcrip-

tional noise, or transcribed noncoding sequence that remains, as

yet, unidentified in humans.

Mouse Strain-Specific Genomic Sequence
Rodent lineage-specific sequence includes regions that are copy

number variable among laboratory mouse strains. Indeed, many of

the largest rodent-specific gene families are known to be copy

number variable among mouse strains [5] including Slx, V1R, and

V2R family genes. We used read pair data to identify larger scale

structural events in Build 36. Read pairs from nine non-B6 strains

identified 2,573 sequence differences where B6 contains an insertion

relative to the other strains, at least 263 of which appear to be at

least 10 Kb in size. Notably, 604 events were identified that define

potential deletions in B6 relative to other strains, including deletions

to the pseudo-autosomal region of the X chromosome. These

deletions would represent sequence present in the mouse population

but absent from the reference genome. In contrast, using C57BL/6J

read pairs as a negative control, we observed only 96 possible

insertion events, 42 possible deletion events, and 67 possible

inversion events (Table S9a and S9b in Protocol S1). Clearly, to

move towards a comprehensive catalogue of CNVs, and indeed all

variation including quiet mutations [64], in Mus musculus, sequenc-

ing of additional mouse strains will be required.

Discussion

The mouse genome assembly (Build 36) is now of high fidelity

and completeness, and its quality is comparable to, or perhaps

better than, that of the reference human genome assembly. The

finished mouse genome adds over 6% additional euchromatic

sequence, much of it repetitive, but includes 1,259 mouse-specific

genes that were missing or grossly misassembled in the draft.

Improvements to the assembly should enhance many coordinated

initiatives that are exploiting the utility of the laboratory mouse for

understanding human biology and disease processes. For example,

an international effort to establish baseline phenotypic measure-

ments on the 40 most commonly used strains has provided a much

needed platform upon which more complex phenotypes can be

assessed [65]. Several large-scale studies have produced hundreds

of models of human disease using chemical mutagenesis or

random insertional mutagenesis [66]. Other projects are underway

with the goal of producing a targeted mutation in every gene in the

mouse genome [67]. As the primary organizational framework for

all of these projects, it is essential that the annotated mouse

genome reference sequence is as complete and accurate as

possible.

Lineage-Specific Biology of the Mouse

PLoS Biology | www.plosbiology.org 11 May 2009 | Volume 7 | Issue 5 | e1000112



Sequencing Strategies
The original MGSCv3 mouse draft assembly proved compar-

atively cheap and easy to produce. A large number of other

vertebrate genomes have been sequenced to similarly deep

coverage, either as aids to model organism biology or to improve

our understanding of the human genome. The cost to take a

genome to an equivalent finished state is typically at least four

times the cost of generating the draft assemblies using traditional

Sanger sequencing. Nonetheless, it is clear from our analysis of the

finished mouse genome assembly that draft WGSAs will always

poorly reflect lineage-specific biology. This conclusion is also

supported by analysis of both the dog [14,68] and rhesus macaque

genomes [16,28]. Whereas they provide a sufficient framework for

understanding the majority of the genome that lies outside of

lineage-specific regions, recent, rapidly evolving parts of the

genome are greatly underrepresented due to the collapse of

segmental duplications and evolutionarily young repeat sequences.

Finished genome sequence has proved essential to understanding

the full range of biology for both the human [17] and the mouse

genome, and will no doubt prove similarly informative for other

vertebrate species.

Using next-generation sequencing technology, the cost of

generating several-fold coverage of a genome drops several orders

of magnitude; however, especially for large genomes; it is still not

possible to generate a de novo assembly from the collection of such

reads. While it is likely that de novo assembly of large genomes

using next generation sequencing technologies will be achieved

relatively soon, it is unlikely that these assemblies will represent

these complex, lineage-specific regions any better than WGSAs

generated using traditional Sanger technology. We have seen little

evidence from next-generation sequence assemblies of genome or

clones that segmental duplications can be adequately resolved with

methods other than capillary sequencing of clones. For example,

we recently completed an analysis with 96 clones, which contained

structural variants and segmental duplications and, not surpris-

ingly, those regions that remained unresolved (by 454 sequence

data) were enriched in segmental duplications and large common

repeats (Eichler EE, Kidd JM, Fulton RS, Chen L, Graves T, et al.

unpublished data). Cost-effectiveness should not be the primary

consideration for these regions. Studies of human disease and

phenotypes in other organisms show conclusively that the content,

copy, and structure are important. Short-read, next-generation

sequencing technology, while a significant advance, will not

comprehensively capture all of this complex sequence structure.

Obtaining large insert clones for these regions is the key, but we

need third-generation technology with longer-read lengths to

assemble these complex regions accurately. Long-read technology

developments [69] hold promise in this regard. A targeted clone-

based approach to sequencing may thus be especially well justified

for representative species on the lineage leading to human,

comprising our closest primate lineages as well as other simians.

This is because many of the critical changes that underlie

biological innovations in primate lineages are likely to reside in

precisely the rapidly evolving, segmentally duplicated regions that

have proved so illuminating for the mouse. Coding and noncoding

gene gains and losses in each lineage, and changes to their

regulatory sequence, may allow us to elucidate the pressures that

have shaped different regions of the human genome over recent

evolutionary history. Changes in the repertoire of immune genes,

for example, would help to explain the contrasting susceptibilities

of primates to different pathogens and auto-immune diseases [70],

while much of human reproductive biology and placental

development, so distinct from those of rodents, may be understood

in the context of changes in reproductive strategy among primates

[71]. Other laboratory models, such as the rat, or species that lie at

key branch points in the evolutionary tree leading to humans, or

representatives of important lineages outside the eutherian

mammals, such as marsupials, birds, and fish, may be similarly

justified in having a finished genome sequence.

Comprehensive Gene Lists
The greatest improvements to the mouse assembly have been to

regions that are replete with rodent lineage-specific duplicated

sequence. Segmental duplications that were previously found at

negligible levels now constitute almost 5% of the genome. Many of

these duplications harbour multiple rodent-specific genes that

show a strong bias towards reproductive function. This suggests a

role for either adaptive forces or clonal selection in shaping the

mouse genome. The availability of these mouse genes now allows

their experimental investigation.

The comparison of two finished mammalian genomes has

enabled the revision of comprehensive and reliable human and

mouse protein-coding gene catalogues. The 75% of mouse genes

that are in 1:1 orthologous relationships with human genes are the

most likely to have maintained ancestral function in both species,

and are, therefore, most appropriately targeted as disease models.

Phenotype data, mainly from knockouts, are already available for

over 5,000 of these 15,187 genes [72]. Other genes exist in

multiple copies in the B6 genome or are polymorphic among

mouse strains, and these will be more difficult to study on a gene-

by-gene basis. While variation among strains suggests that some of

these lineage-specific genes are not essential to development, many

of these differences may contribute to phenotypic variation seen

among laboratory strains. Understanding rodent-specific innova-

tions is, therefore, critical when investigating human physiology or

disease using the mouse as a model organism.

The shortcomings of the initial draft assembly are readily

apparent now that a more-complete genome assembly is available.

Undoubtedly these have led to incomplete or inaccurate

understanding of some aspects of mouse biology. The availability

of high quality genome sequence for the mouse will lead the way in

dismissing some commonly held misconceptions and, more

importantly, in revealing many previously hidden secrets of mouse

biology.

Supplemental material and data for this paper including

validated protein-coding and noncoding gene models can be

found at: http://www.ncbi.nlm.nih.gov/genome/guide/mouse/

Build36_Publication_Supplement).

Materials and Methods

Sequence Generation and Assembly Production
Clone-based sequence production. Ninety-six percent of

the clone-based sequence was derived from four centres, The

Genome Center at Washington University in St. Louis, The

Wellcome Trust Sanger Institute, The Broad Institute of Harvard

and MIT, and The Genome Center at the Baylor College of

Medicine (Figure S6 in Protocol S1). DNA for the BAC, fosmid,

and Whole Genome libraries was obtained from The Jackson

Laboratories. Information on BAC library construction (libraries

RP23, RP24, CH25, and CH36) can be found at BacPac

Resources [73]. Clone sequences were obtained as previously

described [19] with two exceptions. The availability of B6 WGS

reads allowed the centres to sequence clones to a moderate level of

coverage and then ‘‘steal’’ reads to increase the coverage.

Remaining gaps were then finished as described previously [19].

Additionally, the requirements for finishing simple sequence

repeats (SSRs) in full were changed to account for the increased
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levels of SSRs in the mouse genome. Additional information

concerning centre-specific protocols for clone assembly processes

can be found in the Protocol S1: Assembly Production.

Clone sequence quality assurance. To ensure that base

level quality of the assembled clones was high, we performed a

quality assurance exercise. Each sequencing centre provided the

assessing centre with the clone-based shotgun traces they had

produced. The assessing centre then used their internal protocols

to steal reads and assemble the final insert sequences. The two

sequences were then aligned, and all differences were manually

assessed by an independent third party. Differences found within

SSRs were not counted as true differences. The overall base level

error rate was determined to be 1 error per 50,000 bp, well below

the accepted finishing standard of 1 error in 10,000 bp (Table S6

in Protocol S1).

Tiling path production. The genome assembly is driven by

a tiling path file (TPF). This provides information concerning

clone (component) order as well as the location and

characterization of gaps. Two methods were used to obtain

clone order: alignment of clone end sequences to the MGSCv3

and clone order as obtained by the mouse fingerprint map [74].

All TPFs were stored and evaluated in a single system. Alignments

between adjacent clones were produced using a script utilizing a

combination of BLAST and a banded Needleman-Wunsch

algorithm (Cherry J, unpublished data; Protocol S1: Tiling Path

Production). Alignments having greater than 99.6% identity, no

gap greater than 25 bp, and a complete dovetail alignment were

‘‘passed’’. While it is expected that all clones should have an

alignment of 100% identity with no gaps, in practice this rarely

happens due to the difficulty of finishing SSRs. Clones not passing

the above criteria were manually assessed. In some cases, manual

adjustment of the alignment could produce an acceptable overlap

and in other cases, a ‘‘certificate’’ was submitted to provide

additional external evidence that the join was acceptable. For

more information on join quality information Table S7 in Protocol

S1.

Production of Build 36. Using the alignments above, AGP

files were generated using a program called contig_build (Cherry J,

unpublished data). This algorithm takes a tiling path and a set of

alignments and generates a contig sequence. It checks for internal

consistency with respect to clone order on the TPF and the

provided alignments. The generated switch points were selected

based on the component overlaps. In a few cases, switch points

were manually edited to exclude contaminant sequence or

misassembled sequence in one of the components.

To ensure inclusion of as much sequence as possible, the above

assembled contigs were compared to the MGSCv3 and a

combined assembly was generated essentially as previously

described [75]. In this case, the MGSCv3 was used as a TPF for

reconciliation of alignment conflicts. All regions where WGS

sequence was incorporated were manually assessed and the most

conservative path that minimized gaps was chosen. While the vast

majority of sequence in Build 36 is finished (HTGS phase 3

sequence), there was a small amount of draft and WGS sequence

included (Table S3a and S3b in Protocol S1). Inclusion of this

sequence was necessary as some regions of the genome were

recalcitrant to propagation in BAC vectors (Figure S9 in Protocol

S1).

Genome Analysis
Production of conserved synteny map. This was produced

essentially as described previously [11].

Repeat analysis. Both Build 36 and the MGSCv3 were

analyzed using RepeatMasker version open-3.1.3 with the

following parameters: -w –s –no_is –cutoff 255 –frag 20000 –gff

–species mouse [76].

Segmental duplication analysis. This was produced as

described previously [5].

Variation. Mouse sequence reads were obtained from the

NCBI Trace Archive; quality clipped, and repeat masked using

WindowMasker [77]. Reads were then aligned to either assemble

using BLAST (version 2.2.18) (-W 28 –e 0.0001 –m8 –UT –Fm –

RT –nT) [78]. Only the highest scoring alignments were retained

and the highest scoring alignment had to be at least 10% larger

than the second-highest alignment score. After the top scoring

alignment region had been identified, the region was padded by 20

kb on either side and the read was realigned using cross-match (P.

Green, unpublished data). For an alignment difference to be

scored as a variation, we required a unique alignment in the

genome and confirmation by more than one trace that had been

sequenced in a different sequencing tray. Additional information

can be found in Protocol S1: Copy Number Variation.

In order to identify variation based on mate pair violations, the

BLAST alignments described above were sorted by best hit. The

top scoring hits for either end that were within 200 kb of each

other were retained for further analysis. If multiple locations for a

clone could be identified, the clone was not kept for the final

analysis. We defined a placed read pair as ‘‘satisfied’’ if the

calculated insert size was within three standard deviations of the

mean. Additional information can be found in Protocol S1: Copy

Number Variation.

Gene catalogue construction. Mouse and human gene

models identified using either the Ensembl pipeline (release 43) or

the NCBI pipeline (mouse Build36 v1 and human Build 36 v3)

were obtained. Comparison of genomic coordinates allowed for

the reconciliation of these two sets into a single gene catalogue

(Protocol S1: Protein-Coding Genes and Gene Families).

The reconciled gene lists were quality assessed based on their

predicted orthologous relationships as previously described [32]

and on the conservation of exonic boundaries in the case of multi-

exonic genes.

To determine genes that are missing from the MGSCv3, the

Build 36 and the MGSCv3 assemblies were aligned to each other

using BLAST [78]. The alignments were trimmed to maximize

alignment scores and to retain reciprocal best hits. An additional

step allowed alignments that are of high quality, but not

reciprocal, to be included in order to capture regions that are

duplicated in one assembly, but not in the other (Y. Kapustin,

unpublished data). CDS features on Build 36 were then

propagated through the alignments onto the MGSv3 (J. Cherry,

unpublished data) to obtain coordinates on the MGSCv3. Exonic

coordinates from the union of NCBI and Ensembl transcripts for

each gene were mapped through alignments from Build 36 onto

MGSCv3 (J. Cherry, unpublished data). Exonic regions that

abutted, or were wholly contained within, one another were

merged before mapping, as were MGSCv3 aligned regions that

overlapped.

We have chosen not to compare the current and initial draft

mouse gene catalogues, because gene annotations have benefitted

from the many improvements in the availability of transcriptional

evidence, gene prediction algorithms, and the heuristics used to

evaluate these data. Instead, we determined the extent to which

the initial MGSCv3 assembly could have supported the current

mouse gene catalogue. We were thus interested in identifying

disrupted Build 36 gene models whose corresponding MGSCv3

sequence was (i) not previously placed on chromosome scaffolds;

(ii) previously dispersed among two or more different chromo-

somes, and/or were placed on both strands of a single
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chromosome; (iii) interdigitated, on the same strand, with sequence

corresponding with an unrelated gene model; and (iv) entirely

absent from this early assembly. We describe any such gene model

as being ‘‘unmatched’’ in MGSCv3. These four unmatched

criteria were applied in order. The remaining ‘‘matched’’ Build 36

gene models are contiguous and their exons do not overlap with

other gene models on the same strand in both Build 36 and

MGSCv3 assemblies. With few (65) exceptions, these gene models

are placed on the same chromosome and strand in both

assemblies.

For each Build 36 gene model, we then tabulated its exonic

regions according to these four unmatched criteria. This allowed

us to estimate the proportion of Build 36 exonic nucleotides that

could have been predicted correctly in the early MGSCv3

assembly. Build 36 gene models were deemed to be ‘‘substantially

disrupted’’ (see Main Text: Mouse and Human Protein Coding

Gene Repetoires) in MGSCv3 if greater than 25% of its exonic

sequence falls into any of these four categories.

Links to our gene catalogues and further details of these analyses

can be found in Protocol S1 (Assembly Comparison and Analysis:

Protein Coding Genes and Gene Families).

Identifying ancestral and derived ncRNAs. We looked for

evidence of human transcription for a set of known, mouse long

ncRNAs [63] using human ESTs and RNA sequences from

GenBank. The coordinates of all human ESTs and RNAs

available from GenBank that mapped uniquely to regions

outside of known protein-coding genes in the human genome

(Ensembl v50; 384,861 sequences) were mapped onto the mouse

Build 36 assembly using the human–mouse genome alignment

data and the LiftOver tool from University of California Santa

Cruz [79]. We used default parameters and set the minimum ratio

of mapped nucleotides to 0.2, which was appropriate for the

human–mouse divergence. Of 145,321 sequences that map to the

mouse assembly, only those found outside of known protein-

coding genes in the mouse genome were considered for further

analysis (96,367 human ESTs or RNAs). To identify candidate

ancestral noncoding transcripts, we selected mouse ncRNAs from

the previously described set of 3,051 mouse long noncoding genes

that overlapped by one or more nucleotides these mapped human

intergenic ESTs and RNAs. The statistical significance of this

overlap was determined using a genome-wide association

procedure that accounts for G+C-content and chromosomal

biases [63]. The statistical significance for the overlap between

mouse non-coding RNAs and the annotated mouse repeat-derived

sequence [80] were determined similarly, using mouse intergenic

sequence as the null model. The significance of the increased

fraction of overlapping sequence between repetitive elements and

conserved over nonconserved mouse ncRNAs was determined

using a Fisher’s exact test.

Supporting Information

Protocol S1 Supporting figures, tables, and text. All supporting

information can be found at the following Website: http://www.

ncbi.nlm.nih.gov/projects/genome/guide/mouse/Build36_Publi-

cation_Supplement/.

Found at: doi:10.1371/journal.pbio.1000112.s001 (0.04 MB

DOC)
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