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Abstract

Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports
that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths,
like many free-living organisms, should optimize their development and reproduction in response to cues predicting future
life expectancy. However, immune-dependant development by helminth parasites has so far eluded such evolutionary
explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes,
the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their
development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce
microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial
life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is
implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in
response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby
mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity
against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be
expected and may, at worst, lead to increased transmission and, hence, pathology.

Citation: Babayan SA, Read AF, Lawrence RA, Bain O, Allen JE (2010) Filarial Parasites Develop Faster and Reproduce Earlier in Response to Host Immune Effectors
That Determine Filarial Life Expectancy. PLoS Biol 8(10): e1000525. doi:10.1371/journal.pbio.1000525

Academic Editor: David S. Schneider, Stanford University, United States of America

Received September 22, 2009; Accepted September 7, 2010; Published October 19, 2010

Copyright: � 2010 Babayan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by a European Union Marie-Curie Fellowship, EU grants ‘‘VARBO’’ (INCO-DEV contract ICA4-CT- 1999-10002) and ‘‘SCOOTT’’
(INCO-CT-2006-03232), the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security, and the Fogarty International Center,
National Institutes of Health, the BBSRC, and the Wellcome Trust. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: D p.i., day post infection; IL-5, Interleukin-5; rIL-5, recombinant IL-5; Th2, T helper 2.

* E-mail: s.babayan@ed.ac.uk

Introduction

Facultative alterations in reproductive and developmental

schedules are an important mechanism by which animals optimize

their lifetime reproductive output in the face of environmental

heterogeneities that determine mortality [1,2]. For instance, in the

presence of predatory fish, Daphnia (small freshwater crustacean)

adjust their age and size at maturity to maximize reproductive

output for a given local predation risk [3,4]. Similarly, Nucella

lamellosa marine snails only display their full defensive phenotype

when they detect the soluble products of both predatory crabs and

the debris of conspecific snails [5]. The evolution of adaptive

phenotypic plasticity of this kind requires fitness-relevant environ-

mental heterogeneity, detectable environmental cues that reliably

predict future survival, and the existence of life history strategies

that mitigate the consequences of altered life expectancy [6–11].

Evolutionary biologists have suggested that all three requirements

will be met in parasitic helminths [12–16].

Despite the renowned ability of helminths to modulate the

immune responses of their host [17,18], the amplitude and profile

of the immune response remain largely predictive of parasite

mortality [19–22]. The strength of protective responses mounted

by hosts against parasitic attack will depend on host factors such as

level of prior exposure, age, sex, and condition [23], with the

consequence that parasite life expectancy can vary substantially

among hosts. Thus, helminths can encounter hosts in which they

will have either long or short life spans. There are a variety of

reports that helminth development is enhanced by host immune

molecules [14,24–33], raising the possibility that invading

helminths could be adjusting their developmental and reproduc-

tive schedules in order to minimize the fitness consequences of

impending immune attack. All else being equal, the expectation is

that parasitic helminths should reproduce earlier in hosts where

life-threatening responses are already present [8,13,14]. However,

this has yet to be tested in a suitable experimental setting, despite

its relevance for disease control. For instance, alterations in
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reproductive schedules in immunized hosts may reduce and

possibly even negate the impact of non-sterilizing vaccines on

disease transmission [12,34].

Filarial nematodes can cause debilitating diseases in humans

such as river blindness and elephantiasis [35,36]. Their successful

establishment, survival to sexual maturity, and reproduction are

determined by the host’s adaptive immune response, which they

evade, modulate, and suppress [17,18,37]. Host immune responses

to helminth infections are complex, but IL-5 driven polynuclear

eosinophils are a primary effector cell type thought to be

responsible for parasite death [20–22,32,33,38–43]. In Litomosoides

sigmodontis infections (see life cycle in Figure S1), IL-5 driven

eosinophils are responsible for the vaccine-mediated killing of the

larvae at the outset of infection in conjunction with adaptive

immune responses [33,44,45] and for negatively impacting the

survival of adults at sexual maturity in both immunized and non-

immune hosts [39]. Mice that constitutively overexpress IL-5 have

an increased eosinophilia that causes a more rapid clearance of L.

sigmodontis [32]. Conversely, in mice lacking IL-5 and/or

functional eosinophils, the parasites survive and reproduce well

beyond their normal life span in control hosts [39,40]. However,

we have previously found that eosinophil-rich inflammation at the

cutaneous site of inoculation, such as that induced by vaccination,

rarely induces full protection and, counterintuitively, that this

inflammation triggers faster larval development of the parasites

that do survive [31,44], as assessed by their length and stage.

Enhanced development (which hereafter refers to both growth and

moulting) in the presence of strong eosinophil-rich immune

responses was contrary to our initial expectations but is consistent

with evolutionary predictions [12–14] that nematodes will respond

to environmental cues predictive of an enhanced risk from

immune attack and, consequently, will alter their reproduction

in order to maximize offspring production before immune

clearance.

In this study we determine that variations in filarial larval size

and stage are a plastic response to an early, local, and transient

predictor of their host’s immune response; we determine that

eosinophils, which are necessary for immune clearance of filarial

infections, act as a developmental cue and that adaptive immunity,

IL-5, and IL-4 contribute to accelerating early parasite growth

despite their role in stunting later development; and finally we

show how those early variations in the nematodes’ life history traits

alter their fecundity.

Results/Discussion

Filarial Nematodes Develop Faster When IL-5 and
Eosinophils Are Present

Interleukin-5 (IL-5), a major element of the T helper 2 (Th2)

type effector response, is responsible for vaccine-induced protec-

tion and resolution of filarial infection [22,33,39] and thus a likely

candidate for the developmental cue used by L. sigmodontis [33,44].

In homozygous IL-5 deficient mice (IL-52/2), the absence of IL-5

had no effect on the establishment of the filariae when compared

to C57BL/6 wild type controls, confirming previous data in

primary infections (Figure S2A) [45]. However, 10 d post infection

(D10 p.i.), filarial development was delayed in the IL-5 deficient

mice, as larvae were significantly smaller (Figure 1A), and fewer

had reached the fourth larval stage (L4) (Figure 1B) than in wild

type controls. However, at D30 p.i., the proportions of the

different stages were identical (20% L4, 15% undergoing their

moult, and 65% adults; Figure 1C), suggesting that early growth

retardation is not necessarily permanent. Because IL-5 acts

through eosinophils to kill filarial parasites, these cells may

mediate the early variations in larval development. Furthermore,

there have been reports that eosinophilia correlates with the size of

another nematode, Teladorsagia circumcincta [28]. To confirm that

IL-5 was acting via eosinophils, we inoculated L. sigmodontis into

PHIL mice that lack the eosinophil lineage entirely [46]. In these

mice the filariae developed slower than in wild type C57BL/6

controls as measured by both their lengths and moulting rate

(Figure 1D and 1E). Given our previous findings that no difference

in larval development is observed between large and small doses of

infective larvae [47], resource availability is unlikely to explain the

observed differences. Taken together, these results show that the

growth and moulting acceleration mediated by IL-5 and

eosinophils are morphologically detectable in the early phases of

larval development only, and that variations in larval development

are not due to differential survival nor to competition for resources

between the infective larvae.

Larval Development Schedule Was Determined by IL-5
Dependant Eosinophilia at the Earliest Encounter with
the Definitive Host

We then wanted to establish how soon L. sigmodontis life-history

traits were determined by their new environment because larvae

migrate away from the inflamed subcutaneous tissue within hours

of their inoculation [48], reaching the pleural cavity within 4 d

while still at the L3 stage [31]. Our results above implicate IL-5

driven eosinophils in accelerating the parasites’ development,

either directly or through their downstream products. We thus

included recombinant IL-5 (rIL-5) in the inoculum containing

infective larvae. This would ensure that the parasites be exposed to

rIL-5 only until they migrated away or until rIL-5 was degraded—

thus for no more than 4 d. We confirmed that the administration

of rIL-5 increased local subcutaneous eosinophilia in comparison

to a standard protein control of bovine albumin (BSA), while no

systemic increase in eosinophilia was observed (Figure 2A).

Systemic concentrations of IL-4, IL-5, IL-10, IFN-c, IgG1, and

IgG2a were unaffected by the administration of rIL-5 (unpub-

lished data). This transient presence of rIL-5 and eosinophils

resulted in accelerated growth of the larvae as early as D7 p.i.

when compared to BSA controls in BALB/c mice (Figure 2B) and

in C57BL/6 mice (unpublished data). Consequently, filarial

Author Summary

Many organisms are able to adapt their development to
the severity of their environment based on specific cues,
and we have identified such a phenomenon, termed
phenotypic plasticity, in the filarial parasite Litomosoides
sigmodontis. Filarial nematodes infect about 200 million
people worldwide, and much effort is going into finding a
vaccine that would complement current drug treatments.
Although anti-filarial immunity can be achieved, we show,
in accord with evolutionary theory, that when these
parasites infect a new host, they are able to adjust their
development and reproduction to the presence of
immune cells specialized in anti-helminth attack. These
developmental schedules are determined within hours and
impact their lifelong reproductive strategy; when immune
attack is strong, and thus mortality is likely to be high, they
produce offspring earlier and in greater numbers. Because
current experimental vaccines rely on the very immune
elements to which these nematodes adjust their develop-
ment, their phenotypic plasticity could mitigate the
expected reduction of disease burden in vaccinated
populations.

Immune-Dependant Plasticity of a Filarial Parasite
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nematodes are able to adjust their development to the immune

environment as soon as they enter the host, and this effect is

independent of mouse genetic background.

Since IL-5 stimulates the production and recruitment of

eosinophils [49], which in turn produce IL5 themselves, we

wanted to assess whether eosinophils were solely responsible for

our observation that the local addition of rIL-5 correlates with

faster filarial developmental. Twenty-four hours before inocula-

tion we selectively depleted eosinophils in BALB/c mice with

CCR3-specific monoclonal antibodies that have been shown to

deplete no other cell type [50]. Eosinophil recruitment was

abolished and remained strongly impaired during the first 12 d

of infection (Figure 2C), while neither IL-5 concentrations nor

those of IL-4, IL-10, or IFN-c were significantly affected

(unpublished data). Parasite establishment was altered by neither

anti-CCR3 nor rIL-5 treatment (Figure S2C), as expected from

previous work [33,45], but larvae inoculated into anti-CCR3-

treated mice grew slower than in mice treated with relevant

controls (Figure 2D). The addition of rIL-5 accelerated the larvae’s

growth in mice with intact eosinophils but failed to restore fast

developmental rates in anti-CCR3-treated animals (Figure 2D).

Indeed, in all anti-CCR3-treated animals, parasites were much

smaller than in control animals.

These results suggest that eosinophils, rather than IL-5, provide

the developmental cue that L. sigmodontis larvae detect in their host

and that larvae are capable of responding phenotypically to the

presence of eosinophils and/or their products as soon as they enter

their host.

Adaptive Immunity Triggers Faster Larval Development
But Is Not Obligatory for Optimal Worm Development

In endemic areas, where individuals are constantly exposed to

infective larvae, rarely would filarial nematodes encounter solely

innate immune responses. Exposed individuals typically mount

adaptive Th2 lymphocyte responses characterized by the produc-

tion of IL-4, which is needed for Th2 effector function and is a

major factor in the production of IL-5 and, thus, in anti-filarial

protective immunity [35,51]. Moreover, in vaccinated mice the

adaptive immune system is responsible for killing incoming larvae,

both through IL-5-producing Th2 cells and antibody-producing B

cells [52]. IL-5 has also been shown to induce B cell maturation

and antibody production [53]. Improved development of the

filarial nematode B. malayi as well as the trematode Schistosoma

mansoni have been linked to the presence of both B and T cells

[27,29,30]. It is thus possible that filarial nematodes cue directly

into concentrations of IL-4 and/or T and B cells as well as IL-5 or,

alternatively, that T and B cells and IL-4 could affect worm

developmental schedules through their downstream effects on IL-5

and eosinophils. To specify the role of adaptive immunity in filarial

development, and whether IL-5 accelerates larval development

only in the presence of T or B cells and/or IL-4, we analyzed

larval moulting rates in C57BL/6 rag2/2 mice that have neither T

Figure 1. Filarial nematodes developed faster when IL-5 driven eosinophils were present. Litomosoides sigmodontis filarial nematodes
developed slower during their larval stages in IL-5 deficient (IL-52/2) mice than in C57BL/6 wild type controls as measured (A) by their shorter lengths
(** p = 0.015, ANOVA; n = 50 larvae nested in 5 mice per group) and (B) by their delayed moulting to the 4th larval stage at D10 p.i. (** p = 0.0007, Chi2

test; n = 5 mice). (C) At D30 p.i., however, no differences in the moulting rate to the adult stage were observed between IL-52/2 mice and wild type
controls (n = 5 mice). The constitutive absence of eosinophils in PHIL mice resulted in slower larval development as judged by (D) their lengths in
both male and female mice (*, p = 0.04 for the effect of mouse strain when variation due to mouse sex is accounted for, GLM; n = 57 to 59 in 7 mice)
and by (E) their moulting rates (p = 0.02, Fisher Exact Test; n = 7 mice) at D12 p.i. as compared to C57BL/6 wild type controls. None of the treatments
affected larval survival (see Figure S2A and S2B). Error bars depict s.e.m.
doi:10.1371/journal.pbio.1000525.g001

Immune-Dependant Plasticity of a Filarial Parasite
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nor B cells and rag2/2il-42/2 mice that additionally lack IL-4.

These latter mice are therefore almost totally immune deficient in

the context of filarial infections. As expected, rag2/2il-42/2 mice

failed to recruit leukocytes to the site of infection (Figure 3A), and

the eosinophilic response in particular was weaker than in control

mice (Figure S3A). At D10 p.i., larval development in rag2/2il-42/

2 mice was slower than in wild type mice (Figure 3B), while

development in rag2/2 mice was intermediate. However, injecting

larvae concurrently with rIL-5 restored their developmental rate in

rag2/2il-42/2 mice to the levels observed in wild type control

mice. No difference in overall parasite survival was observed

between groups (Figure S3B). However, long-term exposure to

large numbers of leukocytes, and especially eosinophils, is known

to stunt filarial nematodes [33,39,47,54]. Indeed, by D30 p.i., the

negative effect of the adaptive immune response on parasite

development was evident in the wild type C57BL/6 mice, which

are non-permissive to patent infection with L. sigmodontis. In

contrast, the parasites in rag2/2il-42/2 mice had more than

compensated for their early slow development (Figure 3C). By D60

p.i. the number of microfilariae in rag2/2il-42/2 mice exceeded

that in BALB/c wild type mice by a factor of 30 (Figure 3D),

consistently with the known role of adaptive immunity and IL-4 on

microfilariae survival [35].

Thus, although adaptive Th2 immunity contributes to acceler-

ating larval development of L. sigmodontis, it is not obligatory as IL-5

alone can modify the parasites’ developmental schedules. Indeed, in

the absence of adaptive immunity, L. sigmodontis achieved greater

fertility than in the most permissive immunocompetent mouse

strain. This provides a confirmation that immune-dependant

developmental acceleration is a sign not of better health but of a

fitness-enhancing developmental strategy of the parasite. These data

are in contrast to what has been observed in Schistosoma mansoni

infections, in which the host’s T cells appear to provide a resource

required for normal worm development and transmission in mouse

models and in humans [25,27,55]. In rag2/2 mice, Schistosomes

acquire a profoundly abnormal phenotype with reduced body size

and reduced fecundity [26,56] that suggests they have become

dependant on the ubiquitous presence of the host’s adaptive

Figure 2. Filarial nematodes responded to the presence of IL-5 driven eosinophils at the outset of infection. (A) Topical injection of
recombinant IL-5 (rIL5) resulted in a local subcutaneous increase (p = 0.05, Wilcoxon rank-sum test, n = 5) but no systemic increase in eosinophil
recruitment relative to other lymphocyte populations. (B) The addition of rIL5 upon inoculation of infective larvae to BALB/c mice accelerated their
growth before their 3rd larval moult, at D7 p.i. (* p = 0.019, unpaired two-tailed t-test; n = 30, no significant effect of mouse). This occurred
independently of mouse genetic background as similar data were obtained in BALB/c and in C57BL/6 mice. (C) The depletion of eosinophils by a-
CCR3 antibody treatment 24 h before infection resulted in a prolonged reduction of eosinophilia and (D) in a slower larval development that were
not rescued by the addition of rIL-5 (p = 0.003, ANOVA and Dunn’s multiple comparison post test: ** p,0.01; * p,0.05; n = 19 to 23). None of the
treatments affected larval survival (see Figure S2C). Error bars depict s.e.m.
doi:10.1371/journal.pbio.1000525.g002
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immune system. L. sigmodontis, on the other hand, displays facultative

developmental schedules, and we hypothesize that this allows an

optimal maturation schedule given the hosts’ immune status at the

moment of infection.

Protective Immunity Causes Earlier Onset of Patency and
Increased Microfilaraemia

If larval developmental plasticity in the face of protective

immune responses is indeed an adaptive (fitness-enhancing) trait of

L. sigmodontis, the IL-5 mediated acceleration of parasite develop-

ment should lead to greater reproduction earlier in infection [12].

We thus assessed the relationship between the presence of IL-5

and eosinophils at the site of inoculation and worm fertility 2 mo

later. We injected larvae together with rIL-5 to mice as described

above to ensure that eosinophilia would peak locally and early in

the infection and then return to levels of control mice thereafter.

When larvae were injected with rIL-5, the onset of patency

(detection of microfilariae) occurred earlier than in control

infections (Figure 4A). After D70 p.i., no difference in microfilaria

prevalence was observed between treatment groups. Thus, a local

and transiently increased eosinophilia reduces the age at which

females are able to release microfilariae into the peripheral

circulation. The faster larval development triggered by the

addition of rIL-5 upon infection (see Figure 2B, 2D) also resulted

in an increased microfilaraemia in the peripheral blood compared

to control mice throughout patency (Figure 4B). Additionally,

because IL-4 has been shown to specifically control microfilarae-

mia [39], we wanted to assess whether our observations were due

to a rIL-5-driven alteration of IL-4 in susceptible genotypes. In

both wild type and IL-42/2 BALB/c mice, rIL-5 treatment

increased overall microfilaraemia 5–8-fold over BSA-injected

controls (Table 1). While there were vastly superior numbers of

circulating microfilariae in IL-42/2 mice as compared to BALB/c

mice, in both strains rIL-5 treatment resulted in a similar increase

of the overall number of microfilariae in the peripheral circulation

throughout patency (Table 1). Thus the impact of early

Figure 3. Adaptive immunity accelerates early larval development of L. sigmodontis despite impeding its sexual maturation. (A) Cell
recruitment increased significantly over time during infection when filariae were inoculated into rag2/2, il42/2 and double deficient (rag2/2il-42/2)
mice that lack T cells, B cells, and IL-4, but was severely lower overall in rag2/2il-42/2 than in C57BL/6 wild type controls. (B) Filarial larvae in rag2/2

il-42/2 mice developed slowest unless rIL-5 was added upon their delivery to the host. (C) However, by D30 p.i. the parasites in rag2/2il-42/2 mice
had compensated for their slower development and reached the adult stage earlier than in wild type controls, likely due to the continuous attack by
eosinophils and other inflammatory cells in the control mice (see Figure S3A). (D) This resulted in the release of more offspring in rag2/2il-42/2 mice
than what is observed in susceptible immunocompetent BALB/c mice. * p,0.05; ** p,0.01, Wilcoxon rank-sum test; n = 5–10 mice per group. Error
bars represent s.e.m.
doi:10.1371/journal.pbio.1000525.g003

Immune-Dependant Plasticity of a Filarial Parasite

PLoS Biology | www.plosbiology.org 5 October 2010 | Volume 8 | Issue 10 | e1000525



eosinophilia on fecundity was independent of the effector

pathways associated with immunity against microfilariae.

Since IL-5-dependent eosinophilia is a good predictor that hosts

are mounting life-shortening immune responses [22,32,39,57–59],

our data are consistent with the hypothesis [13,60] that parasitic

worms will develop faster in hosts where they can predict that their

life spans will be shortened. Our experimental manipulations

created a local and transient increase in eosinophilia that had no

effect on worm survival but did accelerate their larval develop-

ment. This is consistent with previously published data showing in

primary infections no detectable impact of IL-5 or eosinophils on

the survival of infective larvae [32,45]. Therefore, we did not select

larger or fitter larvae (or their odds of surviving would have

differed) but induced a developmental reaction to the presence of

eosinophils.

However, a corollary of this hypothesis of adaptive phenotypic

plasticity is that there must be a trade-off between accelerated

larval development and other worm life-history traits [13],

otherwise L. sigmodontis would always grow faster, irrespective of

eosinophilia. Our experiments were designed to investigate

developmental rates and fecundity, and therefore can necessarily

not examine all aspects of fitness in which this cost may be

manifested. It could be that faster larval development itself

shortens worm lifespan, perhaps because of direct physiological

costs, or insufficient investment in immunosuppression. It may also

be that fast larval development reduces offspring viability in

subsequent hosts. However, in addition to the limitations of our

model system, the costs of phenotypic plasticity are often weak and

have rarely been observed in the wild [61]. An alternative

hypothesis is that rather than being the result of developmental

plasticity, the phenotypic effects we observe are a consequence of

L. sigmodontis being poorly adapted to our control animals. It could

be, for example, that the Th2/IL-5 driven eosinophilic response

provides an essential resource for the parasites to develop and

reproduce without which they are stunted. This hypothesis fails to

explain why L. sigmodontis achieves greater reproductive success in

mice lacking IL-5 [22,39], IL-4 (Table 1), or adaptive immune

responses (Figure 3) than it does in immunocompetent controls,

despite their slower initial larval development (Figure 1A–B,

Figure 3B–D). Nonetheless, further study is warranted to

definitively distinguish between the adaptive and non-adaptive

hypotheses. The adapationist hypothesis is that the worms produce

a developmental schedule that maximizes fitness in the immune

environment they find themselves; if this hypothesis is correct, our

experimental approach essentially ‘‘tricks’’ the worms into

undergoing a developmental schedule appropriate to an immune

environment more potent than the one they are truly in. Fully

evaluating the fitness consequences of eosinophil-triggered devel-

opmental plasticity requires an assessment of the phenotypic

responses to eosinophils on the longevity, fecundity, and fitness of

future generations of faster developing parasites in naı̈ve and

immunized hosts.

Our findings may have implications for public health, insofar as

blood circulating microfilariae are the transmission stage and a

major cause of pathology [35]. We have shown that filarial parasites

alter their developmental and reproductive schedules in response to

host immune factors in a manner expected to maximize their fitness.

Current experimental vaccines rely on the very immune elements

that these nematodes use as developmental cues. Unless vaccines

can successfully induce sterilizing immunity, facultative life history

responses of the sort we have demonstrated here will likely constrain

the transmission-blocking that could otherwise be achieved by

widespread immunization. In the limit, plastic life history responses

could completely negate any expected reduction of the number of

secondary infections generated by an initial infection of a vaccinated

Figure 4. Early eosinophilia enhances L. sigmodontis reproduc-
tive output. (A) When co-inoculated with eosinophilia-inducing rIL-5
and L3 parasites, BALB/c mice became microfilaraemic sooner than in
control infections as suggested by the proportion of mice presenting
blood circulating microfilariae by D55 p.i. (p = 0.08, Fisher’s exact test,
n = 17, analysis restricted to mice that became microfilaraemic). (B) Early
rIL-5-induced eosinophilia resulted in increased microfilaraemia
throughout patency (effect of treatment on microfilaraemia
p = 0.0001, negative binomial glm; n = 12, data points represent means
6 s.e.m.) and a marginally earlier peak in microfilaraemia (occurring on
day 68.561 and 72.862 in treated mice and controls, respectively,
p = 0.09).
doi:10.1371/journal.pbio.1000525.g004

Table 1. The addition of rIL-5 increased parasite fecundity
independently of IL-4.

BSA rIL-5

BALB/c 28.566.6 66.7614.1

BALB/c IL-42/2 254.8683.4 425.66189.2

BALB/c mice, n = 16 per group pooled from three experiments (no significant
variation between experiments), and BALB/c il-42/2 mice, n = 6 per group, were
infected subcutaneously with L. sigmodontis larvae that were allowed to
develop and reproduce for 150 d. Numbers represent mean cumulative
microfilarial loads 6 s.e.m. Effects of rIL-5 treatment and of mouse strain were
both significant (p = 0.009 and p,0.0001, respectively), and there was no
interaction between treatment and strain (negative binomial glm).
doi:10.1371/journal.pbio.1000525.t001
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patient [62]. Rightly, clinical trials analyze the impact of potential

vaccines on host health and sometimes antigenic escape of the

parasite; we suggest they should also study their effects on parasite

life history.

Materials and Methods

Mice and Infections
Wild type BALB/c and C57BL/6 mice were bred in house or

purchased from Harlan UK. Mice homozygous for disrupted

alleles encoding IL-4 (il42/2), IL-5 (il52/2), or RAG2 (rag2/2)

were bred and housed on site. il-42/2 and rag2/2 C57BL/6 mice

were crossed and the resulting double knock-outs were maintained

on site. PHIL mice on the C57BL/6 background devoid of

eosinophils [46] were maintained at the Royal Veterinary College,

London. BALB/c mice were used for all experiments involving

parasite fitness-relevant assessment, because they are permissive to

the sexual maturation and reproduction of Litomosoides sigmodontis.

BALB/c mice and C57BL/6 mice (wild type and genetically

modified) were used for assessing effects on larval development

according to mouse availability. Precautions were taken to ensure

that those two genetic backgrounds did not confound our

developmental observations by repeating key experiments on both

strains. All experimental mice were females except for PHIL mice

that had equal numbers of each sex in all groups. All mice were

kept in individually ventilated cages and age-matched to 6–8 wk

old at the time of infection. All experiments complied with the

Animals (Scientific Procedures) Act 1986.

In Vivo Filarial Infections
Litomosoides sigmodontis [63] was used for all in vivo experiments

(see life cycle in Figure S1). L. sigmodontis was maintained in the jird

Meriones unguiculatus and the mite Ornithonyssus bacoti as described

previously [64]. Twenty-five to 40 infective L3 were inoculated

subcutaneously into laboratory mice, with 4 ng of either recom-

binant mouse IL-5 (rIL-5) resuspended in PBS-BSA 0.1% or

concentration-matched BSA alone to control for protein quantity.

Autopsy dates were determined by the L. sigmodontis life cycle: the

L3 migrates through the lymphatic system to the pleural cavity

within 4 d [31] and moults 7–12 d post inoculation (p.i.) and again

28–35 d p.i. into the L4 and adult stages, respectively [64].

Microfilariae become detectable after D50 p.i. L. sigmodontis larvae

and adults were extracted from the pleural cavity of infected mice

and their survival rate was calculated as previously described [31].

Briefly, the pleural cavity of each mouse was washed with 10 ml of

cold PBS, and the parasites were isolated and fixed in PBS-4%

paraformaldehyde for further analysis.

Assessment of Filarial Survival, Development, and
Fertility

Filarial survival is assessed at the experiment’s endpoint

(percentage of the number of larvae recovered during necropsy /

number of larvae inoculated at D0). Parasite survival does not

differ significantly between any of the strains used until D40 p.i.

given the numbers of mice used (see supporting figures and our

previous publications [31]). To evaluate parasite development, L.

sigmodontis larvae were assessed individually at the endpoint of each

experiment with a camera lucida-mounted microscope. The

parasites’ developmental stage and the progress of their moulting

between D7 and D12 p.i. were assessed with the morphology of

their buccal capsule and by the presence of all, part, or none of

the L3 cuticle overlaying the L4 cuticle [65]. Because worm

length correlates well with worm stage, we also compared larval

length as a more discrete, and thus more sensitive, indicator of

developmental rate. To assess filarial sexual maturation, onset of

reproduction, and fertility, microfilariae were counted in 10 ml of

peripheral blood onwards from D50 p.i., daily for 2 wk, then twice

a week until D120 p.i., in four separate experiments of 5–6 mice

per group. The blood was immediately mixed with 400 ml of lysis

buffer (BD, Cat. # 349202) and stored at room temperature.

Counting was carried out after spinning each sample for 3 min at

30006g, re-suspending the pellet in 40 ml of the same buffer, and

then spreading the entire suspension on a microscope slide. All the

microfilariae in each sample were counted on an inverted

microscope at a magnification of 650. For analysis, microfilariae

counts were averaged per mouse over 10-d windows to reduce

day-to-day variations.

Eosinophil Depletion
Eosinophils were depleted from BALB/c mice by a single

injection of 1 mg monoclonal rat anti-CCR3 6S2-19-4 [50]

intraperitoneally, 24 h before infection with L. sigmodontis. 1 mg rat

IgG of the same isotype was used as a control. Efficacy of the

depletion was assessed by eosinophil enumeration on cytospins.

Leukocyte Extraction and Differential Identification
The effect of rIL-5 on subcutaneous eosinophil recruitment was

assessed as follows. rIL-5 or BSA were mixed with DMSO 1:1 and

applied on the ears of BALB/c mice. After 4 h, the mice were

sacrificed and their ears taken and briefly immersed in 70%

ethanol. They were left to dry for 5 min, and the two faces were

pulled apart and set to float face down atop 1 ml RPMIc (RPMI

1640, 10% FCS, 100 U penicillin, 100 mg streptomycin, 2 mM

glutamine) in 24 well plates overnight at 37uC, 5% CO2. The

adherent cells were detached with PBS - 3 mM EDTA - 10 mM

glucose, and all cells were harvested and span onto cytospins.

Subcutaneous leukocytes, pleural exudate cells, and tail blood

smears were stained with Diff-Quick (Reagena, Finland) and the

relative proportions of eosinophils, neutrophils, macrophages/

monocytes, and lymphocytes estimated from at least 300 cells per

sample.

Statistical Analysis
The choice of statistical tests was based on sample sizes and on

the F test for homogeneity of variances when normal distributions

of the errors were expected. Microfilarial count data followed a

negative binomial distribution, and homoscedasticity was assessed

with the Fligner-Killeen test of homogeneity of variances. In the

latter case, data from separate experiments were pooled when

possible. Student’s unpaired two-tailed t test, Chi2 or Fisher’s

Exact test, the Wilcoxon rank-sum test, ANOVA, or Kruskall-

Wallis’s H-test were used to compare filarial lengths, moulting,

and recovery rates depending on sample sizes, normality, and

homoscedasticity of the errors. When samples allowed, ANOVA

accounting for nesting of mouse and/or mouse sex within

experimental group were used instead of non-parametric tests.

Generalized linear models were used to assess the effect of

treatment, experiment, mouse strain, and day of sampling on

microfilaraemia data. R [66] and GraphPad Prism were used for

data analyses and representation.

Supporting Information

Figure S1 Litomosoides sigmodontis life cycle. The

infective larva (L3) infects the definitive host (Sigmodon hispidus

naturally, Mus musculus and Meriones unguiculatus in the laboratory)

via subcutaneous inoculation by the vector Ornithonyssus bacoti

during a blood feed, or experimentally by needle inoculation.
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From an initial cohort of infecting larvae, 60% (in primary

infections) to 80% (in vaccinated or repeatedly exposed hosts) die

in the skin, on average. The survivors migrate through the

lymphatic vasculature and reach the pleural cavity after 4 d, where

they remain thereafter. Seven days post inoculation, the larvae

begin moulting to the 4th larval stage (L4). After 3 more weeks, the

L4 moult and become adults. Microfilariae are only detected after

D50 in the peripheral blood of the hosts. Our present work

analyzes the immunological sources of the variability in these life

history trait schedules.

Found at: doi:10.1371/journal.pbio.1000525.s001 (0.79 MB EPS)

Figure S2 Direct effects of IL-5 on worm survival,
systemic eosinophilia, and on in vitro development of
infective larvae. (A) Worm survival was not affected by the lack

of IL-5 in genetically deficient C57BL/6 mice (data identical at D10

and D30 p.i.) nor (B) by the ablation of eosinophils in PHIL mice

compared to their wild type C57BL/6 controls. (C) Neither rIL-5

nor a-CCR3 treatments altered worm survival in BALB/c mice.

Found at: doi:10.1371/journal.pbio.1000525.s002 (0.61 MB EPS)

Figure S3 Absence of adaptive immunity impairs
eosinophil recruitment but has no effect on parasite

survival. (A) The enumeration of cell types in the pleural cavity

of infected mice at D30 p.i. revealed that the proportion of

eosinophils was lower in rag2/2il-42/2 than in wild type

C57BL/6 mice (** p = 0.008, Wilcoxon rank-sum test, n = 5 mice,

error bars represent s.e.m.). (B) No effect of adaptive immunity on

parasite survival was observed between groups, as is expected in

primary infections within 30 d p.i.

Found at: doi:10.1371/journal.pbio.1000525.s003 (0.57 MB EPS)

Acknowledgments

We thank A. Fulton and N. Gray for technical support, and R. Antia, A.

Graham, A. MacDonald, M. Taylor, and T. Little for discussing earlier

versions of this article.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: SAB JEA.

Performed the experiments: SAB. Analyzed the data: SAB. Contributed

reagents/materials/analysis tools: AFR RAL OB JEA. Wrote the paper:

SAB AFR JEA.

References

1. Stearns SC (1992) The evolution of life histories. Oxford: Oxford University

Press. 249 p.

2. Roff DA (2002) Life history evolution. SunderlandMass: Sinauer Associates.

527 p.

3. Weider LJ, Pijanowska J (1993) Plasticity of Daphnia life histories in response to

chemical cues from predators. Oikos 67: 385–392.

4. Stibor H, Luning J (1994) Predator-induced phenotypic variation in the pattern

of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct Ecol

8: 97–101.

5. Bourdeau PE (2010) Cue reliability, risk sensitivity and inducible morphological

defense in a marine snail. Oecologia 162: 987–994.

6. Schlichting C, Pigliucci M (1998) Phenotypic evolution: a reaction norm

perspective. SunderlandMass: Sinauer. 387 p.

7. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford; New

York: Oxford University Press. 794 p.

8. Hazel W, Smock R, Lively CM (2004) The ecological genetics of conditional

strategies. Am Nat 163: 888–900.

9. Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev

Ecol Syst 24: 35–68.

10. Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am

Nat 139: 971–989.

11. Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in

a changing environment: towards a predictive theory. PLoS Biol 8: e1000357.

doi:10.1371/journal.pbio.1000357.

12. Lynch PA, Grimm U, Read AF (2008) How will public and animal health

interventions drive life-history evolution in parasitic nematodes? Parasitology

135: 1599–1611.

13. Gemmill AW, Skorping A, Read AF (1999) Optimal timing of first reproduction

in parasitic nematodes. J Evol Biol 12: 1148–1156.

14. Guinnee MA, Gemmill AW, Chan BH, Viney ME, Read AF (2003) Host

immune status affects maturation time in two nematode species–but not as

predicted by a simple life-history model. Parasitology 127: 507–512.

15. Sorci G, Skarstein F, Morand S, Hugot JP (2003) Correlated evolution between

host immunity and parasite life histories in primates and oxyurid parasites.

Proc R Soc Lond B Biol Sci 270: 2481–2484.

16. Bleay C, Wilkes CP, Paterson S, Viney ME (2009) The effect of infection history

on the fitness of the gastrointestinal nematode Strongyloides ratti. Parasitology 136:

567–577.

17. Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, et al. (2004)

Helminth parasites–masters of regulation. Immunol Rev 201: 89–116.

18. Taylor MD, LeGoff L, Harris A, Malone E, Allen JE, et al. (2005) Removal of

regulatory T cell activity reverses hyporesponsiveness and leads to filarial

parasite clearance in vivo. J Immunol 174: 4924–4933.

19. Anthony RM, Rutitzky LI, Urban JFJ, Stadecker MJ, Gause WC (2007)

Protective immune mechanisms in helminth infection. Nat Rev Immunol 7:

975–987.

20. Jackson JA, Turner JD, Rentoul L, Faulkner H, Behnke JM, et al. (2004) T

helper cell type 2 responsiveness predicts future susceptibility to gastrointestinal

nematodes in humans. J Infect Dis 190: 1804–1811.

21. Quinnell RJ, Pritchard DI, Raiko A, Brown AP, Shaw MA (2004) Immune

responses in human necatoriasis: association between interleukin-5 responses

and resistance to reinfection. J Infect Dis 190: 430–438.

22. Saeftel M, Arndt M, Specht S, Volkmann L, Hoerauf A (2003) Synergism of

gamma interferon and interleukin-5 in the control of murine filariasis. Infect
Immun 71: 6978–6985.

23. Faulkner H, Turner J, Kamgno J, Pion SD, Boussinesq M, et al. (2002) Age- and

infection intensity-dependent cytokine and antibody production in human
trichuriasis: the importance of IgE. J Infect Dis 185: 665–672.

24. Amiri P, Locksley RM, Parslow TG, Sadick M, Rector E, et al. (1992) Tumour
necrosis factor alpha restores granulomas and induces parasite egg-laying in

schistosome-infected SCID mice. Nature 356: 604–607.

25. Dunne DW, Hassounah O, Musallam R, Lucas S, Pepys MB, et al. (1983)
Mechanisms of Schistosoma mansoni egg excretion: parasitological observations in

immunosuppressed mice reconstituted with immune serum. Parasite Immunol 5:
47–60.

26. Davies SJ, Grogan JL, Blank RB, Lim KC, Locksley RM, et al. (2001)

Modulation of blood fluke development in the liver by hepatic CD4+
lymphocytes. Science 294: 1358–1361.

27. Blank RB, Lamb EW, Tocheva AS, Crow ET, Lim KC, et al. (2006) The

common gamma chain cytokines interleukin (IL)-2 and IL-7 indirectly modulate
blood fluke development via effects on CD4+ T cells. J Infect Dis 194:

1609–1616.

28. Henderson NG, Stear MJ (2006) Eosinophil and IgA responses in sheep infected

with Teladorsagia circumcincta. Vet Immunol Immunopathol 112: 62–66.

29. Babu S, Shultz LD, Rajan TV (1999) T cells facilitate Brugia malayi development
in TCRalpha(null) mice. Exp Parasitol 93: 55–57.

30. Babu S, Porte P, Klei TR, Shultz LD, Rajan TV (1998) Host NK cells are

required for the growth of the human filarial parasite Brugia malayi in mice.
J Immunol 161: 1428–1432.

31. Babayan S, Ungeheuer M, Martin C, Attout T, Belnoue E, et al. (2003)
Resistance and susceptibility to filarial infection with Litomosoides sigmodontis are

associated with early differences in parasite development and in localized

immune reactions. Infect Immun 71: 6820–6829.

32. Martin C, Le Goff L, Ungeheuer MN, Vuong PN, Bain O (2000) Drastic

reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice.

Infect Immun 68: 3651–3656.

33. Martin C, Al-Qaoud KM, Ungeheuer MN, Paehle K, Vuong PN, et al. (2000)

IL-5 is essential for vaccine-induced protection and for resolution of primary
infection in murine filariasis. Medical Microbiology and Immunology 189:

67–74.

34. Gandon S, Day T (2008) Evidences of parasite evolution after vaccination.
Vaccine 26 Suppl 3: C4–7.

35. Allen JE, Adjei O, Bain O, Hoerauf A, Hoffmann WH, et al. (2008) Of mice,

cattle, and humans: the immunology and treatment of river blindness. PLoS
Negl Trop Dis 2: e217. doi:10.1371/journal.pntd.0000217.

36. de Almeida AB, Freedman DO (1999) Epidemiology and immunopathology of
bancroftian filariasis. Microbes Infect 1: 1015–1022.

37. Hoerauf A, Satoguina J, Saeftel M, Specht S (2005) Immunomodulation by

filarial nematodes. Parasite Immunol 27: 417–429.

38. Herbert DR, Lee JJ, Lee NA, Nolan TJ, Schad GA, et al. (2000) Role of IL-5 in

innate and adaptive immunity to larval Strongyloides stercoralis in mice. J Immunol

165: 4544–4551.

39. Volkmann L, Bain O, Saeftel M, Specht S, Fischer K, et al. (2003) Murine

filariasis: interleukin 4 and interleukin 5 lead to containment of different worm
developmental stages. Med Microbiol Immunol 192: 23–31.

Immune-Dependant Plasticity of a Filarial Parasite

PLoS Biology | www.plosbiology.org 8 October 2010 | Volume 8 | Issue 10 | e1000525



40. Specht S, Saeftel M, Arndt M, Endl E, Dubben B, et al. (2006) Lack of

eosinophil peroxidase or major basic protein impairs defense against murine
filarial infection. Infect Immun 74: 5236–5243.

41. Giacomin PR, Gordon DL, Botto M, Daha MR, Sanderson SD, et al. (2008)

The role of complement in innate, adaptive and eosinophil-dependent immunity
to the nematode Nippostrongylus brasiliensis. Mol Immunol 45: 446–455.

42. Rainbird MA, Macmillan D, Meeusen EN (1998) Eosinophil-mediated killing of
Haemonchus contortus larvae: effect of eosinophil activation and role of antibody,

complement and interleukin-5. Parasite Immunol 20: 93–103.

43. Simons JE, Rothenberg ME, Lawrence RA (2005) Eotaxin-1-regulated
eosinophils have a critical role in innate immunity against experimental Brugia

malayi infection. Eur J Immunol 35: 189–197.
44. Babayan SA, Attout T, Harris A, Taylor MD, Le Goff L, et al. (2006)

Vaccination against filarial nematodes with irradiated larvae provides long-term
protection against the third larval stage but not against subsequent life cycle

stages. Int J Parasitol 36: 903–914.

45. Le Goff L, Loke P, Ali HF, Taylor DW, Allen JE (2000) Interleukin-5 is essential
for vaccine-mediated immunity but not innate resistance to a filarial parasite.

Infect Immun 68: 2513–2517.
46. Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, et al. (2004) Defining

a link with asthma in mice congenitally deficient in eosinophils. Science 305:

1773–1776.
47. Babayan S, Attout T, Specht S, Hoerauf A, Snounou G, et al. (2005) Increased

early local immune responses and altered worm development in high-dose
infections of mice susceptible to the filaria Litomosoides sigmodontis. Med Microbiol

Immunol 194: 151–162.
48. Marechal P, Le Goff L, Petit G, Diagne M, Taylor DW, et al. (1996) The fate of

the filaria Litomosoides sigmodontis in susceptible and naturally resistant mice.

Parasite 3: 25–31.
49. Foster PS, Mould AW, Yang M, Mackenzie J, Mattes J, et al. (2001) Elemental

signals regulating eosinophil accumulation in the lung. Int J Parasitol 179:
173–181.

50. Grimaldi JC, Yu NX, Grunig G, Seymour BW, Cottrez F, et al. (1999)

Depletion of eosinophils in mice through the use of antibodies specific for C-C
chemokine receptor 3 (CCR3). J Leukoc Biol 65: 846–853.

51. Le Goff L, Lamb TJ, Graham AL, Harcus Y, Allen JE (2002) IL-4 is required to
prevent filarial nematode development in resistant but not susceptible strains of

mice. Int J Parasitol 32: 1277–1284.
52. Martin C, Saeftel M, Vuong PN, Babayan SA, Fischer K, et al. (2001) B-cell

deficiency suppresses vaccine-induced protection against murine filariasis but

does not increase the recovery rate for primary infection. Infect Immun 69:

7067–7073.

53. Horikawa K, Takatsu K (2006) Interleukin-5 regulates genes involved in B-cell

terminal maturation. Immunology 118: 497–508.

54. Al-Qaoud KM, Pearlman E, Hartung T, Klukowski J, Fleischer B, et al. (2000)

A new mechanism for IL-5-dependent helminth control: neutrophil accumula-

tion and neutrophil-mediated worm encapsulation in murine filariasis are

abolished in the absence of IL-5. Int Immunol 12: 899–908.

55. Karanja DM, Colley DG, Nahlen BL, Ouma JH, Secor WE (1997) Studies on

schistosomiasis in western Kenya: I. Evidence for immune-facilitated excretion

of schistosome eggs from patients with Schistosoma mansoni and human

immunodeficiency virus coinfections. Am J Trop Med Hyg 56: 515–521.

56. Lamb EW, Crow ET, Lim KC, Liang YS, Lewis FA, et al. (2007) Conservation

of CD4+ T cell-dependent developmental mechanisms in the blood fluke

pathogens of humans. Int J Parasitol 37: 405–415.

57. Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, et al. (2004)

Developmental plasticity and human health. Nature 430: 419–421.

58. Sultan SE (2007) Development in context: the timely emergence of eco-devo.

Trends Ecol Evol 22: 575–582.

59. de Almeida AB, Maia e Silva MC, Maciel MA, Freedman DO (1996) The

presence or absence of active infection, not clinical status, is most closely

associated with cytokine responses in lymphatic filariasis. J Infect Dis 173:

1453–1459.

60. Thomas F, Brown SP, Sukhdeo M, Renaud F (2002) Understanding parasite

strategies: a state-dependent approach? Trends in Parasitology 18: 387–390.

61. Van Buskirk J, Steiner UK (2009) The fitness costs of developmental

canalization and plasticity. J Evol Biol 22: 852–860.

62. Gandon S, Day T (2007) The evolutionary epidemiology of vaccination. J R Soc

Interface 4: 803–817.

63. Chandler AC (1931) New genera and species of nematode worms. Proc US Nat

Hist Mus 78: 1–11.

64. Diagne M, Petit G, Liot P, Cabaret J, Bain O (1990) The filaria Litomosoides

galizai in mites; microfilarial distribution in the host and regulation of the

transmission. Ann Parasitol Hum Comp 65: 193–199.

65. Bain O, Wanji S, Vuong PN, Marechal P, Le Goff L, et al. (1994) Larval biology

of six filariae of the sub-family Onchocercinae in a vertebrate host. Parasite 1:

241–254.

66. Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics.

Journal of Computational and Graphical Statistics 5: 299–314.

Immune-Dependant Plasticity of a Filarial Parasite

PLoS Biology | www.plosbiology.org 9 October 2010 | Volume 8 | Issue 10 | e1000525



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


