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Abstract: With the emergence of network security issues, various security devices that generate a
large number of logs and alerts are widely used. This paper proposes an alert aggregation scheme that
is based on conditional rough entropy and knowledge granularity to solve the problem of repetitive
and redundant alert information in network security devices. Firstly, we use conditional rough
entropy and knowledge granularity to determine the attribute weights. This method can determine
the different important attributes and their weights for different types of attacks. We can calculate the
similarity value of two alerts by weighting based on the results of attribute weighting. Subsequently,
the sliding time window method is used to aggregate the alerts whose similarity value is larger than a
threshold, which is set to reduce the redundant alerts. Finally, the proposed scheme is applied to the
CIC-IDS 2018 dataset and the DARPA 98 dataset. The experimental results show that this method can
effectively reduce the redundant alerts and improve the efficiency of data processing, thus providing
accurate and concise data for the next stage of alert fusion and analysis.
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1. Introduction

With the continuous development of computer network technology, people are becoming
increasingly dependent on the convenience of the Internet. At the same time, the diversity, openness,
connectivity, and other characteristics of the network are leading to the diversification and complexity
of security threats. A large number of different network security technologies have been used widely,
such as the intrusion detection system (IDS), firewall, vulnerability scanner, etc., in order to protect
devices on the Internet from illegal intrusion. How to deal with the large amount of alert data that are
generated by these security devices, especially the intrusion detection system, and discover security
events, has become an important research topic in practical applications.

Intrusion detection can be divided into anomaly detection and misuse detection, according to
different detection techniques. Anomaly detection assumes that the activity of an intruder is different
from that of a normal user. The system collects data from normal users and obtains a normal behavior
pattern through analysis and processing. During the detection process, the data to be detected are
compared with the normal behavior model. When the model cannot be matched, the activity is
considered to be an intrusion behavior [1]. In the misuse detection method, the abnormal behavior is
defined first, and then all of the other behaviors are defined as normal. The goal of the system is to
detect whether the user’s behavior conforms to the defined abnormal behavior [2]. This method can
detect the existing intrusion methods, but cannot do anything about new ones. Intrusion detection
systems can be divided into network-based intrusion detection systems (NIDS) [3] and host-based
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intrusion detection systems (HIDS) [4,5], according to different information sources. NIDS focuses on
discovering attack information in the network, while HIDS can find abnormal situations in the system
logs. Different intrusion detection systems have their advantages and disadvantages. Therefore, it is
necessary to deploy different types of intrusion detection systems in different locations in order to
monitor as many aspects of the network system as possible [6].

According to the principle of intrusion detection technology, it has the ability to detect known
intrusion behavior. However, in reality, the intrusion detection system has a high false positive rate
and false negative rate. The first step is to set the threshold of the intrusion detection system in order to
reduce the false negative rate and enhance the effectiveness of the intrusion detection system; secondly,
distributed intrusion detection systems must be widely used. Low thresholds generate a large amount
of alert data, while the alerts that are generated by distributed IDS also contain a large number of
redundant alerts and false positives. As a result, administrators waste time on unimportant alerts, and
it is difficult to find the actual security events that are covered by redundant alerts [7]. Especially under
the development trend of large-scale networks and complicated intrusion behavior, the application of
large-scale distributed systems in the field of intrusion detection is becoming increasingly widespread.
However, the heterogeneity and autonomy of the distributed systems and defects of traditional
intrusion detection technology make duplicate or imperfect alert events rampant [8]. For example,
for a distributed denial of service (DDoS) attack probably launched by Botnet, which is controlled by
its master and formed by a large number of bots, when the host or network system is attacked by
thousands of bots, it is difficult to imagine how to handle large amounts of alerts that are generated
by IDSs. According to statistics [9–11], IDS often produces a large number of alerts in a short time,
more than 85% of which are false or irrelevant alerts. Obviously, reducing the redundant alerts that
are generated by the intrusion detection system has a certain practical significance in improving the
performance of the entire intrusion detection system.

This paper mainly focuses on alert aggregation reduction that is based on attribute similarity and
proposes an improved method. While considering that different attacks have different characteristics,
the important attributes of different attacks should be different, and the corresponding attribute
weights should also be different. In previous studies [12–14], the selection of attributes and the setting
of attribute weights mostly depended on expert experience. It ignored the objective characteristics
of attributes, and the results were easily affected by decision-makers’ lack of sufficient knowledge.
Therefore, we propose a method for calculating the attribute weights of specific attack scenarios
via combining conditional rough entropy and knowledge granularity. Using the attribute similarity
method, the events with certain similarities are aggregated to eliminate the redundant and duplicate
alerts and improve the efficiency of alert analysis for network administrators.

The structure of this paper is as follows: Section 2 introduces related work. Section 3 provides
the theoretical background and introduces the rough set theory, information systems, and knowledge
granularity. Section 4 proposes an alert aggregation method while using an improved attribute
weighting algorithm. In Section 5, the experiment is carried out and the experimental results are given.
The paper is concluded in Section 6.

2. Literature Review

In recent years, network security event aggregation and correlation analysis that are based on
the research on the correlation algorithm have gradually become hot spots in the field of network
security, and some meaningful results have been produced. Researchers have done a lot of work on the
correlation of events and have proposed methods, such as alert correlation based on a sequence [15–17],
alert correlation based on known scenarios [18], and alert correlation based on attribute similarity [19,20].

• Alert correlation based on a sequence
This type of method determines a correlation that is based on the cause and effect of an alert event.

Pre/Post-conditions and graphs are the two most widely used technologies. Hu et al. [15,16] fused the
alert information in two dimensions of time and space based on the causality between the various
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steps of a multi-step attack. This paper proposed a security situation quantification method that was
based on attack prediction to assist security administrators in grasping the security status trend of the
entire network. In [21], an improved correlation analysis framework, IACF (Intrusion Action Based
Correlation Framework), for detecting multi-step attack scenarios is proposed. When compared to our
method, the framework uses a new original alert grouping method that is based on intrinsic strong
correlation concepts, instead of traditional time windows and hyper-alerts. The pruning algorithm
is used to remove redundant actions and action link modes in the session to reduce the impact of
false positives in order to find the high stable correlation between actions. However, while the SPA
(Sequence Pruning Algorithm) algorithm can greatly reduce false positives, because there is no binary
correlation in the SPA algorithm, it also filters out some single-step attacks in intrusion scenarios.
In [22], a multi-step attack detection model that is based on SGMS (Smart Grid Monitoring System)
alerts is proposed. In this model, an alert graph is constructed through IP correlation, and the child
nodes of the alert graph are aggregated. Denoising is then performed through negative causally-related
pruning and non-cascading events. Finally, an attack chain and visual attack graph are formed. While
the model has a good performance, it requires a small amount of prior knowledge to automatically
extract multi-step attack events and demonstrate the trajectories among IPs. Our method does not
require any prior knowledge. It only discovers knowledge that is based on the characteristics of the
data itself.

The sequence-based correlation analysis method can fully explore the impact of the event on the
correlation relationship, but not all relationships can accurately reflect the attack intention. The results
of this method may contain many false alerts. This is especially common when the logical predicates are
poorly configured, or the quality of sensor alerts is low. In addition, the cost of building a knowledge
base while using this method is high, and the tolerance for false negatives is low.

• Alert correlation based on known scenarios

This method correlates different alerts by comparing specific system behaviors with predefined
scenarios in a knowledge-based system. In [23], an alert model that was related to the background of
the problem was established. The main objective of the established correlation model was to detect
attack scenarios and generate early alerts, showing the actions of the next intruder in the target network.
Its contribution lies in proposing a new framework for extracting alerts from IDS. The framework
changes a series of alerts into a set of alerts and then serializes them in the form of super alerts in the
prediction of the next attack. In [18], early warnings are correlated based on a knowledge base and the
related likelihood. An attack path construction algorithm is proposed for obtaining the attack path of
the specified target IP, and an alert correlation graph is constructed to correlate the alerts to a specific
range and then merge them based on the alert type. In [24], an effective false positive recognition model
that was based on the gradient boosting tree model was proposed. This article designs a graph-based
method to analyze and extract important features from aggregation and correlation to identify the false
alerts. Different from our feature selection method, this paper proposes a bidirectional recursive feature
elimination method combined with the random forest algorithm. However, the imbalance problem of
categories cannot be effectively solved because the model only uses a simple integration method.

The correlation method that is based on known scenarios can effectively correlate predefined
attack scenarios, but it relies heavily on its knowledge base. It is difficult to enumerate all possible
attack scenarios in advance and create a useful knowledge base within a reasonable time frame.

• Alert correlation based on attribute similarity

The similarity-based alert correlation method associates different alerts by defining and using
alert similarity. The main assumption of this approach is that similar alerts have the same root cause
or a similar impact on the system being monitored, and similarity is evaluated by comparing the
predefined features. This method has advantages in early alert correlation research. It can better
aggregate known attack types, and the algorithm has high calculation efficiency and good real-time
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performance. At the same time, it is not too complicated, so it can be implemented in a variety of
different systems. In addition, it has proven effective in reducing the total number of alerts for alert
correlation and aggregation processes. When compared with the above two methods, this method
cannot describe the attack path. It primarily aggregates alerts for the same event.

The theory of the attribute similarity method is based on clustering, which aggregates and
classifies events that meet a certain similarity. Researchers have conducted many studies on alert
reduction methods based on attribute similarity to eliminate redundancy or duplication and improve
the efficiency of network administrator alert analysis. Valdes and Skinner [25,26] first proposed an
alert aggregation method that was based on attribute similarity. This method predefines the similarity
function between various attributes of the alert data, such as the IP address, port, and time attribute,
in order to calculate the similarity value. Each attribute is assigned a different weight to calculate
the overall similarity value. Finally, the total similarity value is compared with a pre-set threshold
to determine whether the alerts should be aggregated. The advantage of this method is that it can
effectively aggregate similar alerts, and the calculation is relatively simple. Cuppens et al. [13] used an
expert system, in which expert rules specified similarity measures. These rules specify similarities
between specific attributes in a universe: classification similarity (the type of attack), temporal similarity,
and source-target similarity. After measuring similarity, alert instances are assigned to global alerts
(or clusters), thereby avoiding alert redundancy. However, this method relies too much on expert
experience and might be subjective. Julisch [27] gives a description of the similarity between alerts
based on a defined classification method. In some taxonomy, the closer the attributes are, the more
similar the two alerts are. This paper proposes an attribute-oriented inductive data mining heuristic
algorithm. In addition, Julisch proved that the future alert load can be reduced by more than 90%.
Moreover, he points out that the intrusion detection alerts are very homogeneous and repetitive.

In [28], the structure of intrusion detection alerts is analyzed and an SR-ISODATA algorithm for
intrusion detection alert aggregation is proposed. The algorithm is proposed to replace the original
algorithm’s Euclidean distance calculation with the average similarity radius and modify the merge
segmentation criterion. The attribute weight calculation of the alert data is based on the optimal
sequence comparison method, and different attributes are selected for different similarity calculation
methods. In [19], a new alert correlation model is proposed by analyzing the characteristics of an
alert flow, and the similarity method is used to define the correlation between alerts, without using
the pre-defined knowledge and prerequisites. Two steps are introduced in the article to analyze the
characteristics of the alert flow, namely, low-level alert analysis and high-level alert analysis. In low-level
alert analysis, characteristic measures measure the correlation of similar alert types, and high-level
alert analysis is used to discover the correlation between two different types of alerts. Wu et al. [20]
applies similarity-based alert correlation technology in the field of CMS (Cyber-Manufacturing System)
network physical attack detection. It includes three steps: network alert correlation, physical alert
correlation, and network physical alert correlation. In each step, the attributes are defined according to
the characteristics of the physical network attack and the CMS environment. Different manufacturing
attributes are created and used for similarity-based alert correlation.

There are some limitations to using the alert aggregation reduction method that is based on
attribute similarity. First, it is necessary to select an appropriate attribute and similarity calculation
function in order to calculate the overall similarity of all attributes. Generally, the selected attributes
include source and destination IP addresses, source and destination ports, attack types, timestamps,
etc. However, different attack types have different characteristics, and the same attributes cannot
express the specificity of an attack. As we all know, different attributes and different similarity
calculation functions will have different results. Therefore, it is necessary to select different attribute
sets for different attack types and define different attribute similarity functions for different attributes.
In addition, the traditional attribute similarity aggregation method does not consider the weight
of attributes; it only assigns the same weight to each attribute or relies on expert experience, thus
ignoring the objective weight of attributes. However, the weights defined by experts’ experiences are



Entropy 2020, 22, 324 5 of 23

too subjective and arbitrary. If we rely on different experts, we will obtain different weights, and it is
difficult to fully reflect the true weights of attributes.

Therefore, the determination of attribute weights is a key issue when using the attribute similarity
method for alert aggregation. Wei et al. [29] used gray correlation analysis to determine the importance
of alert attributes in classification and then used it as the weight of attributes. However, they assign the
same attribute weight to all attack types, while ignoring that the attribute weight might be different,
depending on the attack scenario. Yao et al. [30] used the calculation of the dependence of decision
attributes on conditional attributes as the basis for judging the importance of attributes in rough set
theory. This calculation is applied to historical data, and different weights are set for the corresponding
attributes of different attack categories. However, this method cannot exploit the characteristics of
the attack well and it only uses a fixed time window. Zang et al. [31] used the same attribute weight
determination method as that used in [30]. In addition, they considered that different attacks may have
different attack speeds, so they updated the time interval, and the aggregation efficiency was improved.

Inspired by the literature that is presented above, we propose an alert correlation and aggregation
method based on attribute similarity. We mainly focus on the improvement of the attribute weight
determination method in the aggregation process. We propose a method of attribute selection and
attribute weight determination based on conditional rough entropy and knowledge granularity, which
can find the difference of attributes in different attack scenarios better and improve the efficiency of
alert aggregation.

3. Theoretical Background

Professor Pawlak of Warsaw University of Technology in Poland proposed rough set theory in
1981. It is a method of studying incomplete, uncertain knowledge and data for expression, learning,
and induction [32–34]. Rough sets have been widely used in many fields, such as pattern recognition,
data mining, and machine learning, because of its characteristics, especially because it does not require
prior knowledge [35,36]. With the development of rough set theory, Zadeh [37] proposed the concept of
knowledge granularity in 1996, which is a theory that uses granularity in the process of solving problems.
Knowledge granularity is an important part of artificial intelligence and information processing [38–40].
A knowledge granule is a group of objects gathered together through the indiscernibility, similarity,
and proximity of attributes [41,42].

3.1. Rough Set Theory and Information Systems

An information system is a basic description of some information expressions [38]. In general,
an information system is defined as I = (U, AT, V, f ), and it is also called an approximate space
or knowledge base. Where U = {x1, x2, . . . , xn} is a collection of objects that are finite and not empty
(the universe of discourse), AT is a set of finite non-empty attributes and V is a set of attribute values.
For each attribute a ∈ AT, a set of attribute values Va is associated with the function f : U ×AT→ V,
that is, for each a ∈ AT, x ∈ U has f (x, a) ⊆ Va. A decision table is a special type of information system,
which is usually expressed as I =(U, C, D, V, f ), where C is a finite non-empty set of conditional
attributes and D is a finite non-empty set of decision attributes, in which C∩D = Φ, C∪D = A.

Rough set theory is based on the classification mechanism. It regards knowledge as the division of
finite non-empty object universes. A rough set considers this division as the equivalence relationship
between object universes in a specific space. Rough set theory assumes that each object in the
universe is related to a certain amount of information (data, knowledge), and this information is
expressed by means of some attributes that are used for object description [43]. Objects with the same
description are indistinguishable (similar) in the available information. The resulting indistinguishable
relationship constitutes the mathematical basis of rough set theory; it divides the universe into several
indistinguishable objects, called basic sets, which can be used to build knowledge regarding the real or
abstract world.



Entropy 2020, 22, 324 6 of 23

Definition 1. For any attribute set A ⊆ AT, there is an associated indistinguishable relationship RA, which is
defined as

IND(A) = {(x, y) ∈ U ×U
∣∣∣∀a ∈ A, fa(x) = fa(y)} = RA. (1)

If (x, y) ∈ IND(A), x and y are indistinguishable in the attribute set A, and then the equivalence class of the
indistinguishable relation of the attribute set A is defined as [x]A [44]. Obviously, IND(A) = ∩a∈AIND({a}). It
can be shown that IND(A) is an equivalence relation on U. For any A ⊆ AT, the relation IND(A) constitutes a
partition of U, which is denoted by U/IND(A) or just U/A. That is, U/A = {[x]A|x ∈ U} is called information
concerning U, where [x]A = ∪{x ∈ U

∣∣∣ (x, y) ∈ IND(A)} = ∪{x ∈ U | f (a, x) = f (a, y), ∀a ∈ A} is called
an equivalence class of x in reference to A.

Uncertainty is an important problem in information systems. The existing uncertainty
measurement methods mainly include knowledge granularity, entropy theory, and roughness. These
measures have been successfully applied in many fields. The concept of entropy is derived from
classical energy science and it can be used to measure the disorder of a system. The entropy of
a system, called information entropy, gives a measure of the uncertainty of its actual structure, as
defined by Shannon [45]. It has become a useful mechanism for characterizing various models and
applications of uncertainty in many different fields. The concept of rough entropy is introduced
in rough sets to measure the rough degree of knowledge more accurately based on information
entropy [46]. Rough entropy and information entropy are commonly used measures of uncertainty in
information processing [47]. The definition of rough entropy is as follows:

Definition 2. Let I = (U, AT, V, f ) be an information system, for any A ∈ AT, the rough entropy of A is
defined as

Er(A) = −
m∑

i=1

|Xi|

|U|
log2

1
|Xi|

. (2)

Rough entropy is used to describe the rough degree of information. The larger the rough entropy,
the rougher the information. Obviously, rough entropy has minimum and maximum values: If U/RA =

{{x1}, {x2}, . . . , {xn}}, the rough entropy of A has a minimum value of 0; if U/RA = {{x1, x2, . . . , xn}},
the rough entropy of A has a maximum value of log2|U| [38]. While rough entropy can represent
the roughness degree of information, it cannot effectively solve a special information system, such
as a decision table. In order to solve this problem, the concept of the conditional rough entropy of
information is introduced [48].

Definition 3. Let I = (U, C, D, V, f ) be a decision information system, the equivalent divisions of knowledge
P and knowledge Q on U are U/IND(P) = {X1, X2, . . . , Xn}, U/IND(Q) = {Y1, Y2, . . . , Yn}. Then, the
conditional rough entropy of knowledge Q, relative to knowledge P, is defined as

H(Q|P ) = −
n∑

i=1

|Xi|

|U|

m∑
j=1

∣∣∣Xi ∩Y j
∣∣∣

|Xi|
log2

∣∣∣Xi ∩Y j
∣∣∣

|Xi|
. (3)

This actually explains the use of conditional information entropy to directly define the conditional
rough entropy of knowledge. In the above definition, if P = R, the conditional rough entropy of
knowledge Q, relative to knowledge P, becomes the conditional rough entropy of knowledge Q, relative
to knowledge R, which is the rough entropy of knowledge Q.

Example 1: Let I = (U, C, D, V, f ) be a decision information system, in which the field U =

{u1, u2, u3, u4, u5, u6, u7, u8} contains eight objects, the set of conditional attributes C = {C1, C2, C3, C4},
D is the decision attribute, and the data are normalized and discretized, as shown in Table 1.
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Table 1. A decision information system.

U C1 C2 C3 C4 D

u1 1 2 2 3 a
u2 2 3 2 1 b
u3 1 1 2 3 a
u4 2 3 1 1 a
u5 2 3 2 3 b
u6 2 3 2 1 b
u7 1 3 2 3 b
u8 1 3 2 3 a

According to Definition 1, the indiscriminate classification of the universe for condition attributes and
decision attributes is

U/D = {{u1, u3, u4, u8}, {u2, u5, u6, u7}},

U/C = {{u1}, {u2, u6}, {u3}, {u4}, {u5}, {u7, u8}}.

From this, the relationship between the equivalent classification sets can be further calculated.

|C1 ∩D1| =|{u1}| = 1 |C1 ∩D2|=|Φ|= 0
|C2 ∩D1|=|Φ|= 0 |C2 ∩D2|=|{u2, u6}|= 2
|C3 ∩D1|=|{u3}|= 1 |C3 ∩D2|=|Φ|= 0
|C4 ∩D1|=|{u4}|= 1 |C4 ∩D2|=|Φ|= 0
|C5 ∩D1|=|Φ|= 0 |C5 ∩D2|=|{u5}|= 1
|C6 ∩D1|=|{u8}|= 1 |C6 ∩D2|=|{u7}|= 1

Therefore, while using Equation (3), the conditional rough entropy of decision attribute D, relative to
conditional attribute set C, is

H(D
∣∣∣C) = −

n∑
i=1

|Ci|

|U|

m∑
j=1

∣∣∣Ci ∩D j
∣∣∣

|Ci|
log2

∣∣∣Ci ∩D j
∣∣∣

|Ci|
= 0.25.

3.2. Knowledge Granularity

It is generally believed that knowledge is related to equivalent classification based on the
development of rough set theory, which indicates that knowledge is granular. Zadeh [37] proposed
Granularity Computing (GrC) in 1996. He identified three basic concepts that emphasized the
processes of human cognition, namely, granulation, organization, and causality. “Granulation involves
decomposing the whole into parts, organization involves integrating the parts into a whole, and
causation involves the association of causes and effects”. Information granularity is mainly used to
study the uncertainty of information or knowledge in information systems. Wierman [49] introduced
the concept of granularity measurement to measure the uncertainty of information. The concept is the
same as the form of Shannon entropy under the proposed axiom definition.

According to the knowledge granularity calculation, U/RA is a granular structure and it can be
expressed as: K(RA) = {GRA(x1), GRA

(x2), . . . , GRA
(xn)}. Therefore, the indistinguishable relation RA

is regarded as a granulation method for dividing objects. In particular, the best granular structure
on U is denoted as K(δ) = {{x1}, {x2}, . . . , {xn}}, and the worst granular structure is denoted as
K(ω) = {{x1, x2, . . . , xn}}.
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Definition 4. Definition K = (U, R) is a knowledge base, and R is an equivalent relationship, also known as
knowledge. Then, the granularity of knowledge R can be defined as

DG(R) =
|R|∣∣∣U2

∣∣∣ (where
∣∣∣ R

∣∣∣ represents the base o f R ⊆ U ×U). (4)

Let R be the equivalent relationship in the knowledge base K = (U, R), U/R = {X1, X2, . . . , Xn}, then

the knowledge granularity can be expressed as: DG(R) =
n∑
i

|Xi |
2

|U|2
. Knowledge granularity represents the

indistinguishability of the equivalence relation R to knowledge. When (u, v) ∈ Xi, this means that objects u
and v belong to the same equivalence class of the equivalence relation R, and they are therefore indistinguishable
under R. From this, it can be known that with the increase of DG (R), the number of objects belonging to the
same equivalence class of the equivalence relation R increases, the resolution capability of R decreases, and the
knowledge becomes more indistinguishable. Therefore, DG (R) represents the possibility of the R-indistinguishable
selection of two objects randomly in U. The greater this possibility, that is, the greater the DG (R), the weaker the
resolution of R; otherwise, the resolution is stronger.

Definition 5. The discernibility of the equivalence relation R is defined as

Dis(R) = 1−DG(R) = 1−
n∑
i

|Xi|
2

|U|2
. (5)

The discernibility of the equivalence relationship R represents the ability of R to distinguish
knowledge. It can also be understood as the importance of the equivalence relationship R to
classification. The larger the value of Dis(R), the smaller the knowledge granularity of the corresponding
equivalence relation R, that is, the finer the knowledge division, which means that R is more important
for classification.

Example 2: (Continued from Example 1) We continue to use the data in Table 1. In Example 1, we classify
the conditional attribute set equivalently, so, according to definition 5, we can calculate the discernibility of the
conditional attribute C as

Dis(C) = 1−DG(C) = 1−
n∑
i

|Ci|
2

|U|2
= 1−

12 + 22 + 12 + 12 + 12 + 22

82 = 0.8125.

4. Proposed Method

4.1. Overview of the Aggregation Scheme

This paper proposes an alert aggregation method that is based on security event attribute discovery.
The aggregation process includes two decisive steps: the determination of the weight of the important
attributes of security events and the aggregation of alerts based on their similarity. The premise of this
method is alert data collection and preprocessing.

The framework obtains alert data and performs pre-processing operations, such as digitization,
normalization, and discretization, as shown in Figure 1. We propose an attribute weight calculation
method that us based on attack classification to conduct a targeted analysis of attack events and apply
this method to historical data to obtain important attribute weights for different attack classifications
while combining conditional rough entropy and knowledge granularity. In a real environment, new
alerts that are generated by distributed IDS are collected and preprocessed to a uniform format.
Subsequently, the attribute similarity value of the alert and the alert within the time window are
calculated according to a preset time window threshold. The attributes here are important attributes
corresponding to the attack type, and they are obtained by the attribute weight determination method.
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Finally, the attribute similarity is weighted to obtain the overall similarity of the two alerts. If the
value is greater than the preset similarity threshold, the corresponding two alerts can be aggregated.
The scheme mainly consists of three parts: alert preprocessing, attribute weight allocation, and alert
similarity calculation.

Alert preprocessing: This part includes three processing steps: attribute digitization, normalization,
and discretization. Since the alert data contain some non-numeric attributes, such as the protocol type,
service type, alert type, etc., in order to facilitate subsequent calculations, the first thing we need to
do is digitize the attributes and convert the character attributes into numeric attributes. The function
of data normalization is to summarize the statistical distribution of a unified sample and map all of
the attributes of the data to the same scale, so as to prevent certain attributes of the data forming a
dominant role due to their different dimensions. Rough set theory, as an inductive learning method, can
only deal with discrete data. Therefore, we use cluster discretization to convert continuous attributes
into discrete attributes before calculating the attribute weights.

Attribute weight distribution: Alerts under different attack types may present different patterns
in alert characteristics, but previous studies have ignored this. We propose the use of a combination
of conditional rough entropy and knowledge granularity with real historical alert data to extract the
important corresponding attributes and attribute weights of different attack classifications in order to
accurately reduce redundant alerts.

Calculation of alert similarity: The basic idea of the alert aggregation method that is based on
similarity is to calculate the similarity values of important attributes for different types of attacks and
then calculate the overall similarity by weighting each attribute. Sufficiently similar alerts will be
aggregated into super alerts to reduce the number of duplicate and similar alerts.
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Figure 1. Overview of our alert aggregation model.

4.2. Attribute Discretization

Each alert contains discrete attributes, such as the connection duration, number of bytes sent and
received, timestamp, and so on. Rough set theory, as an inductive learning method, can only deal with
discrete data. Therefore, it is necessary to convert an input dataset with continuous attributes to a
dataset with discrete attributes before calculating the attribute weights.

The discretization operation involves grouping the range of continuous data values and dividing
them into discrete intervals. Subsequently, different symbols or integer values are used to represent
the data values that fall into each interval. Thus, discretization involves two processes: determining
the number of classifications n and mapping continuous attribute values to n classification intervals.
The equal width discrete, equal frequency discrete, and cluster discrete are included as common
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methods for the discretization of continuity attributes [50]. In this section, we use K-Means cluster
discretization to transform the continuous data.

The K-Means clustering method remains one of the most popular clustering methods, and it is
also suitable to be used to discretize continuously valued variables, because it calculates the continuous
distance-based similarity measure to cluster the data points. K-Means is a non-hierarchical partitioning
clustering algorithm that operates on a set of data points and assumes that the number of clusters (k) to be
determined is given. The main idea of the K-Means algorithm is roughly the following: initially, the k
data points are randomly assigned as the so-called cluster centers. Each data point of a given set is then
associated with the closest center, which results in an initial distribution of the cluster. After this initial
step, the average of all values in each cluster is calculated as the new cluster center. Each data point is
redistributed to the closest center to form a cluster again. The two steps of cluster center selection and
sample point division are repeated, until the center point no longer changes, as shown in Figure 2.
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Figure 2. Scatter diagram of the main process of the K-Means clustering algorithm. (a) k center points
are randomly selected, and all sample points are assigned to the nearest cluster; (b) the new center
point is determined according to the distance, and the sample points are reclassified; (c) the center
point and classification of the sample points continue to be selected; and, (d) the center point no longer
changes, and the cluster ends.

In fact, as the continuous attribute discretization operation involves only one variable, it is
equivalent to a “one-dimensional” K-Means clustering analysis. One-dimensional cluster discretization
includes three processes:

• The elbow method is used to obtain the optimal number k of each attribute.
• The clustering algorithm (K-Means algorithm) is used to cluster one-dimensional continuous

attributes. The k clusters are obtained, so that the intra-cluster distance is the smallest, and the
inter-cluster distance is the largest.
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• The classification value corresponding to each cluster (similar to this cluster label) is obtained, and
the continuous data in the corresponding cluster is then replaced with its cluster label to become
the new discrete data.

The cluster discretization method can better discretize continuous data, which is convenient for
us in using rough sets and knowledge granularity methods to mine data characteristics and extract
data attribute weights.

4.3. Attribute Weight Determination

Zhang et al. [31] used the ratio of the cardinality of the set of positive regions to the cardinality
of the set of universes to determine the importance of conditional attributes for decision attributes.
However, the cardinality of the set of positive regions is the same, but the set of equivalence
relations is different when the two attributes are equivalently classified. For example, in the field
U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, let X = {1, 3, 4, 5, 7, 8}, and let R1 and R2 be equivalent relations that
are defined by U, and then assuming that the equivalent divisions that they produce are

U/R1 = {{1, 3, 4, 7}, {2, 5, 6}, {8, 9}}

U/R2 = {{1, 7}, {3}, {4}, {2, 5, 6}, {8, 9}}.

The positive region of X, with respect to R1 and R2, will be

R1(X) = {x
∣∣∣[x]R ⊆ X} = {1, 3, 4, 7} = R2(X),

where R(X) is the lower approximation of R on X. And the importance of the knowledge characteristics
will be

SigR1(X) = SigR2(X) = |POS R1 (X)
∣∣∣/∣∣∣U∣∣∣ = |POS R2 (X)

∣∣∣/∣∣∣U∣∣∣ = 4
9

.

The attribute importance of R1 and R2, calculated in this way is the same, but the equivalent division
of these two attributes is obviously different. According to the analysis of the above examples, it is
shown that the attribute weight that is calculated by this method is inaccurate.

In addition, most of the current alert aggregation methods that are based on similarity of attributes
use the same set of attributes to calculate the similarity of different attack types. However, different
attacks have different characteristics, and the same set of attributes is not targeted. Therefore, the
important attributes of the attack should be different for different attack scenarios. We combined
conditional rough entropy and knowledge granularity calculation to solve the above problems.
For different classifications of decision attributes, we used the knowledge roughness that was expressed
by conditional rough entropy and knowledge granularity to define the relationship between different
knowledge attributes and decision attributes. The change in the roughness of knowledge before
and after the existence of each attribute indicates its ability to classify different decision attribute
values, which is defined as the degree of discrimination of knowledge attributes. When a condition
attribute has a greater degree of discrimination for decision attributes, that is, the existence of the
attribute can classify the objects well, which means that the attribute is more meaningful for decision
attributes. Therefore, we should determine the weight according to the classification ability of the
condition attribute.

For a given information system, we need to evaluate its roughness or uncertainty for the target
object or target decision. The roughness of the rough set monotonically decreases with the decrease
of the granularity of knowledge, which is consistent with people’s cognitive intuition. However,
many practical examples show that the roughness of a rough set will not change when the knowledge
granules that belong to the positive or negative domain of a set are subdivided. Moreover, when the
knowledge particles belonging to a set boundary are subdivided, their roughness may not change,
which is inconsistent with people’s cognitive intuition. In rough sets, rough relational databases, and
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information systems, an uncertainty measure, called rough entropy, has been proposed to calculate the
roughness of knowledge to overcome this problem. The combination of roughness and knowledge
granularity can more comprehensively describe the rough degree of knowledge. The smaller the
roughness of knowledge, the larger the average amount of information it provides, according to the
meaning of the roughness of knowledge. Subsequently, its average uncertainty and randomness will be
smaller, and its rough entropy should be smaller. Based on rough entropy, conditional rough entropy
for decision information systems is proposed. Conditional rough entropy can represent the rough
entropy of decision attributes, relative to conditional attributes, namely, roughness. In Definition 2, the
conditional rough entropy H(Q|P ) represents the average uncertainty that still exists for knowledge Q,
when knowledge P is known.

While considering a given decision information system I = (U, C, D, V, f ), P and Q are the set
of equivalent relations on U, and their equivalent divisions on U are U/IND(P) = {X1, X2, . . . , Xn},
U/IND(Q) = {Y1, Y2, . . . , Ym}. According to Definition 3, we can obtain the conditional rough entropy
H(Q|P ) of knowledge Q, relative to knowledge P. However, we hope to obtain the rough degree
of different equivalence classifications, with respect to conditional attributes, in the equivalence
classification of decision attributes. Therefore, we make a more precise and detailed division of H(Q|P ).
We obtain the rough degree of knowledge P for each equivalent class Yi of knowledge Q, which is the
relative condition rough entropy.

Definition 6. Relative to knowledge P, the relative conditional rough entropy of the equivalent classification Yi
of knowledge P is defined as

R(Yi

∣∣∣P) = −
n∑

j=1

|X j ∩Yi
∣∣∣

|U|
log2

1

|X j ∩Yi
∣∣∣ . (6)

In Definition 5, the discernibility of the equivalence relationship R represents the classification
ability of R for the data. However, it only shows the ability of R to distinguish all of the categories of
decision attributes and it cannot distinguish the classification ability of the equivalent relationship R
for different categories. We introduce the concept of relative discernibility in order to calculate the
importance of the equivalence relationship, relative to the specific classification of the decision attribute.

Definition 7. The relative discernibility of knowledge P to the equivalent classification Yi of knowledge Q is
defined as

DisRYi(P) = 1−
t∑
z

|Zz|
2

|U|2
Z = {X j|X j ∩Yi , Φ} = {Z1, Z2, . . .Zt}. (7)

Knowledge granulation and entropy theory are the two main methods for studying the uncertainty
of information systems. Knowledge granulation can be used to characterize the roughness of the
knowledge structure. The finer the knowledge structure, the smaller the knowledge granulation.
The rough entropy of knowledge decreases with the fine division of classes. According to definition 5,
the greater the granularity of knowledge, the less distinguishable the knowledge, and the weaker the
classification ability. Because the conditional rough entropy increases with the increase of knowledge
granularity, the classification ability of knowledge should be inversely proportional to the conditional
rough entropy. From Definition 6, we can obtain the relative condition rough entropy of different
equivalence divisions of the decision attributes, relative to the equivalence relation R. Combined with
the relative discernibility of the equivalence relation, the relative knowledge attribute discernibility of
the equivalence relation can be defined.

Definition 8. Relative to the equivalent classification Yi of knowledge Q, the relative knowledge attribute
discernibility of knowledge P is

KFDisRYi(P) =
DisRYi(P)

10R(Yi |P)
. (8)
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Let I = (U, A) be an information system, then C ⊆ A is a subset of conditional attributes, c ∈ C is an
attribute. Because the importance of each condition attribute is different, it is necessary to determine
the importance of each attribute. In the rough set, the idea is to remove an attribute first, and then
consider how the classification will change without the attribute. If the corresponding classification
change is relatively large after this attribute is removed, the intensity of the attribute is large, that is,
the importance is high; otherwise, the intensity of the attribute is small, and the importance is low.
According to this feature, the ability of attribute c to classify a finite non-empty set U can be understood
as the degree to which the relative knowledge attribute discernibility of set U increases (decreases) after
(decreasing) attribute c is added to attribute set C. The more the existence of attribute c changes the
relative knowledge attribute discernibility of the non-empty set, the stronger the classification ability
of the finite non-empty set U in the attribute C. Therefore, we define the relative attribute importance
of attribute c as follows.

Definition 9. Let I = (U, C, D, V, f ) be a decision information system, then Y =

U/D = { Y1, Y2, . . . , Ym} is the equivalent classification of the universe U under the decision attribute D. For
all condition attributes c ∈ C, there exist X = U/C = {X1, X2, . . .Xn} and Z = U/(C− c j) = {Z1, Z2, . . . , Zt}.
Afterwards, the relative attribute importance of attribute c ∈ C is defined as

SignYi(c) = KFDisRYi(C) −KFDisRYi(C− {c}). (9)

Definition 9 can be understood in the following way. When attribute c is added to the set C− {c},
the indistinguishability of the equivalence relationship increases, and the number of sets divided into
equivalence classes increases, when compared to the original set. Consequently, the discernibility is
increased. At the same time, the conditional rough entropy is reduced, the accuracy of the data is
improved, and the equivalence division is more accurate. Therefore, we believe that the classification
ability of equivalence relations can be improved after the addition of attribute c.

Finally, according to the different classifications of decision attributes, the weight W(c) of condition
attributes c ∈ C is calculated, as

W(c) =
SignYi(c)∑

c∈C SignYi(c)
. (10)

Algorithm 1 shows the steps of the attribute weighting algorithm, which combines conditional
rough entropy and knowledge granularity calculation. The condition attribute weights corresponding
to different decision attribute values in the decision table are determined according to the influence of
the presence or absence of corresponding condition attributes in the roughness of knowledge.

Algorithm 1: Method to Determine Condition Attribute Weights

Input: the knowledge base K = (U, R), R = C∩D;
Output: the weight of the condition attributes, Wi(c) = {w(c1), . . . , w(c j), . . . , w(cn)};
1: compute the equivalence class [X]C = {X1, . . . , X j, . . .Xn}, [X]D = {D1, . . . , Di, . . . , Dm}

2: for i = 1 to m do
3: compute the relative knowledge attribute discernibility KFDisRDi (C)
4: for j = 1 to n do
5: compute the equivalence class

[
X j

]
(C−c j)

= U/(C− c j)

6: compute the relative knowledge attribute discernibility KFDisRDi (C− c j)

7: compute the relative attribute importance of conditional attribute c j, SignDi (c j)

8: end for
9: computer the condition attribute weight Wi(c)
10: end for
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Example 3: We continue to calculate the data shown in Table 1. First, each condition attribute ci is removed
from the condition attribute set C, and then the equivalent classification of the universe is calculated by the
corresponding equivalence relation:

U/(C− {c1}) = {{u1}, {u2, u6}, {u3}, {u4}, {u5, u7, u8}},
U/(C− {c2}) = {{u1, u3, u7, u8}, {u2, u6}, {u4}, {u5}},

U/(C− {c3}) = {{u1}, {u2, u4, u6}, {u3}, {u5}, {u7, u8}},
U/(C− {c4}) = {{u1}, {u2, u5, u6}, {u3}, {u4}, {u7, u8}}.

According to Definition 6, we can calculate the relative conditional rough entropy of the equivalent
classifications D1 and D2 of the decision attribute D, relative to the conditional attribute C, as

R(D1|C ) = −
n∑

j=1

∣∣∣C j∩D1
∣∣∣

|U| log2
1∣∣∣C j∩D1

∣∣∣
= −( 1

8 log2
1
1 + 0 + 1

8 log2
1
1 + 1

8 log2
1
1 + 0 + 1

8 log2
1
1 ) = 0,

R(D2

∣∣∣C) = −
n∑

j=1

∣∣∣C j∩D2
∣∣∣

|U| log2
1∣∣∣C j∩D2

∣∣∣ = −(0 + 2
8 log2

1
2 + 0 + 0 + 1

8 log2
1
1 + 1

8 log2
1
1 )

= 0.25.

The relative conditional rough entropy of the equivalent classifications D1 and D2 of the decision attribute
D, relative to the conditional attribute C− {c1}, is calculated as

R(D1
∣∣∣(C− {c1}) ) = −

n∑
j=1

∣∣∣X j ∩D1
∣∣∣

|U|
log2

1∣∣∣X j ∩D1
∣∣∣ = 0,

R(D2
∣∣∣(C− {c1}) ) = −

n∑
j=1

∣∣∣X j ∩D2
∣∣∣

|U|
log2

1∣∣∣X j ∩D2
∣∣∣ = 0.5.

While using Equation (7), the relative discernibility of the conditional attribute set C and the equivalent
classifications D1 and D2 of the decision attribute D are calculated as

Z1 = {C j|C j ∩D1 , Φ} = {{u1}, {u3}, {u4}, {u7, u8}},

DisRD1(C) = 1−
t∑
z

|Zz |
2

|U|2
= 1− 12+12+12+22

82 = 0.8906,

Z2 = {C j|C j ∩D2 , Φ} = {{u2, u6}, {u5}, {u7, u8}},

DisRD2(C) = 1−
t∑
z

|Zz |
2

|U|2
= 1− 22+12+22

82 = 0.8594.

At the same time, the relative discernibility of the conditional attribute set C − {c1} for the equivalent
classifications D1 and D2 of the decision attribute D are

Z1 = {C j|C j ∩D1 , Φ} = {{u1}, {u3}, {u4}, {u5, u7, u8}},

DisRD1(C− {c1}) = 1−
t∑
z

|Zz |
2

|U|2
= 1− 12+12+12+32

82 = 0.8125,

Z2 = {C j|C j ∩D2 , Φ} = {{u2, u6}, {u5, u7, u8}},

DisRD2(C) = 1−
t∑
z

|Zz |
2

|U|2
= 1− 22+32

82 = 0.7969.

Finally, we can obtain the relative attribute importance of the conditional attribute c1 according to the above
calculation and Equation (9), as follows:

SignD1(c1) = KFDisRD1(C) −KFDisRD1(C− {c1}) =
0.8906

100 −
0.8125

100 = 0.0781,
SignD2(c1) = KFDisRD2(C) −KFDisRD2(C− {c1}) =

0.8594
100.25 −

0.7969
100.5 = 0.2313.
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In the same way, we can obtain the relative attribute importance of the conditional attributes c2, c3, and
c4, and calculate the attribute weight values of each conditional attribute for different categories of the decision
attribute D, as shown in Table 2.

Table 2. Attribute weight assignment.

D C1 C2 C3 C4

Relative Attribute Importance a 0.0781 0.7037 0.125 0
b 0.2313 0.1054 0.0439 0.2805

Attributes Weights a 0.0861 0.7760 0.1378 0
b 0.3498 0.1595 0.0665 0.4242

4.4. Alert Similarity Calculation

We calculated the corresponding important attributes and their weights according to different
attack classifications. In order to aggregate similar alerts, we also need to calculate the similarity value
of each important attribute between the two alerts and weight the total similarity. The two alerts are
aggregated if the total similarity of the two alerts is greater than the set threshold. It should be noted
that we only need to forcibly reduce the alerts whose total similarity is greater than the threshold for
a certain period of time, so the setting of the time threshold is necessary. Therefore, we use sliding
time windows to slice alert sequences and aggregate alerts within the same time window. As we have
performed cluster discretization preprocessing on the data, and the data values of the same interval
have been classified into one category, we define the similarity function of the attribute ci as

Si

{
0 the two alert attributes ci have di f f erent values
1 the two alert attributes ci have the same value

. (11)

And we compute total similarity of two alerts as

Stotal =
n∑

i=1

wi ∗ Si, (12)

where i is the alert attribute index, n is the total number of alert attributes, wi is the weight of the i-th
important attribute of the alert, Si is the attribute similarity of the attribute ci between the two alerts,
and Stotal is the total similarity value of the two alerts. Once the total similarity between two alerts in
the same time interval is greater than a set threshold, the latter is deleted.

5. Experiment

5.1. Experiment Dataset

There are currently some intrusion detection datasets, such as DARPA 98, KDD 99, and ISC 2012,
etc., which have been used by researchers to evaluate the performance of their proposed intrusion
detection and intrusion prevention methods. However, in [51], it is shown that many of these datasets
are outdated and unreliable. Some of these datasets lack traffic diversity, some datasets do not cover
various attacks, while others anonymize packet information, have payloads that do not reflect the
current trends, or they lack feature sets and metadata.

The Canadian Institute for Cybersecurity provides an updated dataset, called CIC-IDS 2018 [51],
which contains the latest threats and features and represents threats that are not addressed by the old
dataset. It covers all eleven necessary standards, with common updated attacks, such as DoS, DDoS,
Brute Force, XSS, SQL Injection, Infiltration, Port scan, and Botnet. This dataset uses the CICFlowMeter
software, published by the Canadian Institute for Cybersecurity, to extract and calculate more than
70 network traffic characteristics for all benign and attack traffic. CICFlowMeter is a network traffic
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flow generator, written in Java, which provides greater flexibility in selecting features to calculate,
adding new ones, and gaining a better control of the duration of the flow timeout. The output of
the application is in a CSV file format, with six columns that are labeled for each flow, namely, Flow
ID, Source IP, Destination IP, Source Port, Destination Port, and Protocol, and more than 70 network
traffic features.

At the same time, the dataset also has some shortcomings. One of the shortcomings is the huge
amount of data, with five days of traffic information from The Canadian Institute for Cybersecurity in
eight files, each of which has hundreds of thousands of records. As a result, the dataset contains many
redundant records, which makes it harder to detect attacks. Therefore, we apply the proposed alert
aggregation algorithm to this dataset to evaluate the efficiency of the algorithm.

In addition, we also use the DARPA 98 dataset, which has been widely used in order to better
evaluate the efficiency of the algorithm. The DARPA 98 dataset is collected and constructed by the
Lincoln Laboratory Information System Technology Group, and it is widely used for the training and
testing of the alert correlation system. This dataset collects data from seven weeks, including over
millions of attacks events. There are four types of attack events that were collected by the dataset:
DDOS, Probes, R2L, and U2R. We selected some data on each attack type for experiments to verify the
effectiveness of the aggregation method.

5.2. Experimental Setup

We use the CICIDS 2018 dataset and the DARPA dataset for the experiments. The CICIDS 2018
dataset covers seven types of attacks: DoS, DDoS, Brute Force, XSS, SQL Injection, Infiltration, and
Botnet. Moreover, the DARPA 98 dataset contains four categories of attacks: DDOS, Probes, R2L, and
U2R. In the face of extremely large amounts of data, we used data sampling to process them. Such
errors will not be very high, which greatly improves the processing efficiency and processing success
rate. We randomly extract a part of the records for each attack type in the two datasets and then divide
the data for each type of attack into two parts. One part of them is regarded as real historical data,
which uses our proposed attribute weight determination algorithm, which combines conditional rough
entropy and knowledge granularity to extract attribute weights. Moreover, our scheme was used to
aggregate alerts in the other part.

The experimental operating environment is Intel Core i5-7500 CPU 3.40GHz, and the memory
is 8 GB. The software environment is as follows: the operating system is Microsoft Windows 10,
the experimental program is written in Python, and the development environment is python 3.7.3.
PyCharm is the development tool. As an interpreted, object-oriented, and dynamic data type high-level
programming language, Python is widely used in data science. Python provides a rich feature set
to perform these tasks in collecting data, cleaning datasets, extracting important features, building
machine learning models, and visualizing results while using graphics.

5.3. Experimental Results

In this section, we first give the feature weight distribution results of the CIC-IDS 2018 dataset
based on the definition in Section 4.3. For each different attack category, we set its important attribute
composition, according to the characteristics of the data itself, and calculate the corresponding attribute
weight. Here, we choose five representative attack types, and Table 3 shows the results of attribute
weight distribution.
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Table 3. Important attributes of different attack categories and their weight distribution.

Label Attribute Name Description Weight

DoS GoldenEye

Flow IAT Min Minimum time between two flows 0.06473

Fwd IAT Std Standard deviation time between two flows 0.07628

Pkt Len Max Maximum length of a flow 0.04184

Init Fwd Win Byts Number of bytes sent in initial window in the
forward direction 0.56814

Init Bwd Win Byts Number of bytes sent in initial window in the
backward direction 0.23577

Idle Max Maximum time a flow was active before
becoming idle 0.01323

DDOS attack-LOIC-UDP

Flow Pkts/s Flow packet rate, that is, number of packets
transferred per second 0.029746

Flow IAT Std Standard deviation time between two flows 0.029860

Fwd IAT Std Standard deviation time between two packets sent in
the forward direction 0.720685

Fwd Pkts/s Number of forward packets per second 0.219709

Brute Force-web

Bwd Pkt Len Std Standard deviation size of packet in
backward direction 0.029314

Flow IAT Std Standard deviation time between two flows 0.047338

Flow IAT Max Maximum time between two flows 0.632954

Init Fwd Win Byts Number of bytes sent in initial window in the
forward direction 0.290394

SQL Injection

Fwd Pkt Len Max Maximum size of packet in forward direction 0.110489

Fwd Pkt Len Std Standard deviation size of packet in
forward direction 0.114238

Bwd Pkt Len Std Standard deviation size of packet in
backward direction 0.010134

Bwd Pkts/s Number of backward packets per second 0.168801

Init Fwd Win Byts Number of bytes sent in initial window in the
forward direction 0.517399

Init Bwd Win Byts Number of bytes sent in initial window in the
backward direction 0.078939

Infiltration

Dst Port Destination port number 0.203669

Fwd Pkt Len Std Standard deviation size of packet in
forward direction 0.135869

Bwd Pkt Len Min Minimum size of packet in backward direction 0.253720

Pkt Len Var Minimum inter-arrival time of packet 0.092476

Init Fwd Win Byts Number of bytes sent in initial window in the
forward direction 0.125480

Fwd Act Data Pkts Number of packets with at least 1 byte of TCP data
payload in the forward direction 0.188786

The alert aggregation rate is defined as the evaluation standard in the experimental analysis in
order to measure the effect of alert aggregation. Assuming that the number of original alerts is N, and
the number of remaining alerts after aggregation is n, the alert aggregation rate can be expressed as

δ =
N − n

N
. (13)

The alert aggregation rate δ is used to indicate the efficiency of the aggregation algorithm to
reduce the redundant and duplicate data. Because the dataset is too large, in order to simplify the
experiment, we randomly select records of various types of attack traffic in the dataset over a period
of time. Here, we take the DoS GoldenEye attack as an example and select 13796 attack records for
alert aggregation. The attack attribute weight distribution in Table 3 is used to calculate the similarity
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value between alerts within a specified time window, according to Section 4.4. The setting of the time
window is based on the actual attack situation, where it is set to 2 s. We use four different similarity
thresholds of aggregate alerts to compare the aggregation effects, and Figure 3 shows the results of
duplicated alert reduction.
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Figure 3. Reduced results of 13796 DoS GoldenEye attack records, with a time threshold of 2 s. (a) The
change of aggregation rate under different similarity values. (b) The number of remaining alert record
changes with different similarity values.

In our scheme, the aggregation rate decreases with the increase of the similarity threshold, as can be
seen from Figure 3. When the similarity threshold is 0.6, the experiment reaches the optimal aggregation
rate of 98.64%. The average aggregation rate of the four similarity thresholds is approximately 97.83%.
However, when the similarity threshold is set too low, non-redundant data may be removed. A higher
similarity threshold should be set according to the specific situation in order to ensure the integrity
of the alert and reduce the loss of information during the aggregation process. A suitable similarity
threshold can effectively eliminate duplicate alerts and provide higher quality data for the next data
fusion layer. Finally, we applied the aggregation method to a part of the records of the seven attack
types and obtained the aggregation results that are shown in Figure 4.
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From the data chart illustrated in Figure 4, we can see that the intrusion detection system collects
a large number of duplicate and redundant alerts. Moreover, real attack events are hidden in it, which
causes huge difficulties in network security management. In the experiment, we applied the proposed
attribute weight determination algorithm to the dataset, which can, by itself, discover the characteristics
of the data well. At the same time, the alerts are aggregated through attribute similarity calculations.
Subsequently, by setting a higher attribute similarity threshold, it can effectively remove redundant
duplicate alerts, while ensuring acceptable information loss, thus providing accurate analysis data for
the next data fusion process.

We choose three similarity-based alert correlation methods for comparison experiments since our
method is based on attribute similarity. These three methods have become representative methods in
recent years. They are the no-weight method, scheme 1 [29] and scheme 2 [31], which are different from
our method in terms of the attribute weight determination and aggregation method. The no-weight
method assigns the same weight to each attribute, and its aggregation method is the same as ours.
Scheme 1 [29] and scheme 2 [31] adopt different attribute weighting methods and aggregation methods.
Therefore, these three methods and our method have comparative significance. We apply these three
methods and our method to the CIC-IDS 2018 dataset and the DARPA 98 dataset and compare the
efficiency of alert aggregation, as shown in Table 4.

Table 4. Comparison of aggregation rates with other alert aggregation schemes in relation to
different datasets.

Datasets
Attack

Category
Number of

Original Alerts

Alert Aggregation Rate

No-Weight
Method

Scheme 1
[29]

Scheme 2
[31] Our Scheme

CIC-IDS
2018

Botnet 2292 79.89% 88.43% 90.71% 89.27%
DDOS

attack-HOIC 2315 88.55% 95.81% 97.62% 98.79%

Infiltration 5587 76.50% 84.30% 89.97% 87.99%
DoS

GoldenEye 13260 90.56% 98.17% 98.53% 98.06%

Total 23454 85.97% 93.52% 95.64% 94.87%

DARPA98

Smurf 5013 81.87% 90.01% 92.34% 92.16%
IPsweep 11326 73.64% 78.15% 81.69% 80.53%
Warez 1786 85.72% 88.43% 96.70% 95.30%
Rootkit 254 79.53% 95.81% 94.49% 90.94
Total 18379 77.14% 84.30% 86.23% 85.34%

All of the schemes in Table 4 have a similar consideration of the alert’s feature quantity and they
exclude the irrelevant attribute. Our scheme and the scheme in [31] both employ a classification-based
approach to reduce duplicate alerts, while the scheme in [29] does not consider this aspect. The ratios
of the four schemes are approximate for the aggregation rate. Overall, our scheme is ahead of the
no-weight method approach and scheme 1 [29], but slightly lower than scheme 2 [31], in terms of its
reduction efficiency. However, we should also consider the integrity of the information in addition
to the aggregation rate. Excessive aggregation can lead to a loss of alerts, which is very dangerous
for intrusion detection. We define the soundness α of the system to measure the integrity of the alert,
as follows:

α =
td

N −N f
, (14)

where td is the number of alerts that the system actually detected correctly, N is the number of original
alerts, and N f is the number of alerts filtered out after aggregation. Subsequently, N −N f represents
the number of remaining alerts after aggregation. Soundness α is used to measure the correctness
of the recommended alerts. We counted the number of true alerts in the dataset and compared the
soundness of the different methods, as shown in Figure 5.
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According to the definition of soundness, when the value of α is greater than 1, the number of
remaining alerts after aggregation is less than the number of true alerts, which indicates that there is a
loss of information during the aggregation process; when the value of α is less than 1, the aggregation is
insufficient, so the aggregation rate is low. Therefore, the closer the value of α is to 1, the better the alert
aggregation effect. Our method is the closest of the four methods to the baseline in terms of the overall
trend, as can be seen from Figure 5. Table 4 shows that the aggregation rate of scheme 2 is higher than
our method. However, from the perspective of soundness, scheme 2 has certain information loss. It
removed some of the alerts that should not be reduced during the aggregation process, which results
in inaccurate results. In summary, on the whole, our method can guarantee the aggregation rate and
integrity of alerts to a certain extent.

Finally, we compared the time complexity of the four methods, as shown in Table 5, where m is
the number of condition attributes, n is the number of equivalent classifications of decision attributes,
and u is the total number of alert objects. The similarity-based correlation and aggregation method
mainly has two key steps, namely, the determination of attribute weights and alert aggregation.
We separately calculated the time complexity of these two steps. In Table 5, the time complexity
of the two steps of the four methods is sorted. For the attribute weighting methods, we have:
T1(no−weight method) < T1(scheme 1) = T1(scheme 2) < T1(our scheme), where T1(M) denotes the
time complexity of the attribute weighting algorithm M. As for the alert aggregation algorithm,
there are: T2(no−weight method) = T2(our scheme) < T2(scheme 1) < T2(scheme 2), where T2(N)

denotes the time complexity of the alert aggregation algorithm N.

Table 5. Comparison of the time complexity of different algorithms.

No-Weight Method Scheme 1 [29] Scheme 2 [31] Our Scheme

Attribute Weight
Determination O(1) O(mu2) O(mu2) O(mnu2)

Alert Aggregation O(u2 log u) O(u3) O(u3 log u) O(u2 log u)

While the time complexity of our attribute weighting algorithm is high, we can better find the
characteristics of different attack types and flexibly determine their important attributes and weights.
On the other hand, the difference between these four aggregation methods is in the determination of
the time interval. Scheme 1 uses the time interval dynamic update method and scheme 2 uses the time
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stamp as a condition attribute for aggregation. Therefore, the time complexity of these two methods is
high. Our aggregation algorithm is the same as the no-weight method, with lower time complexity.
At the same time, our method has higher aggregation efficiency while considering the aggregation rate
and soundness.

6. Discussion and Conclusions

This paper proposes an alert data aggregation method to remove redundant duplicate data that
were generated by the intrusion detection systems. First, an improved attribute weighting method is
proposed, which is combined with conditional rough entropy and knowledge granularity calculation.
This method can better find the important attributes of corresponding attacks and measure their
attribute weights. Subsequently, the similarity of each two alerts within a set time window is weighted
according to the weight calculation result. Finally, alert reduction is performed according to the
different set thresholds of similarity. We use the K-Means clustering method to discretize continuous
data, and the similarity is determined based on whether the data belong to the same cluster. The
experimental results for the CIC-IDS 2018 dataset and the DARPA 98 dataset show the applicability and
effectiveness of our proposed method. We compare the experimental results of different schemes, such
as the no-weight method, scheme 1 [29], scheme 2 [31], and our proposed method. The comparisons
indicate that our method has a better effect. Different from other methods, our method of determining
attribute weights is based on attack classification. Our method can select the corresponding important
attributes according to the characteristics of the attack itself while considering the different performance
of alert attributes in different attack scenarios. Our method has certain flexibility and pertinence, and
it is able to more comprehensively discover knowledge and reduce information loss in the process
of aggregation to some extent. Of course, our method also has some flaws. The addition of attack
classification leads to a higher time complexity of the attribute weighting algorithm. However, our
goal is to aggregate alerts, so this weakness can be tolerated when the aggregate results are more
accurate. In summary, our scheme can effectively reduce redundant alerts and help network security
administrators to find real attacks.

In future work, we hope to apply our scheme to real-world attacks to better test the performance
of our scheme. At the same time, we will focus on the next stage of alert correlation, with a view to
reconstructing the entire attack scenario.
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9. Husák, M.; Čermák, M.; Laštovička, M.; Vykopal, J. Exchanging security events: Which and how many alerts
can we aggregate? In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 604–607.

10. Mu, C.; Shuai, B. Research on preprocessing technique of alert aggregation. In Proceedings of the 2012 Fifth
International Joint Conference on Computational Sciences and Optimization, Harbin, China, 23–26 June 2012;
pp. 597–600.

11. Elshoush, H.T.; Osman, I.M. Alert correlation in collaborative intelligent intrusion detection
systems—A survey. Appl. Soft Comput. 2011, 11, 4349–4365. [CrossRef]

12. Cuppens, F. Managing alerts in a multi-intrusion detection environment. In Proceedings of the Seventeenth
Annual Computer Security Applications Conference, New Orleans, LA, USA, 10–14 December 2001; p. 0022.

13. Cuppens, F.; Miege, A. Alert correlation in a cooperative intrusion detection framework. In Proceedings of
the 2002 IEEE symposium on security and privacy, Berkeley, CA, USA, 12–15 May 2002; pp. 202–215.

14. Zhang, Y.; Huang, S.; Wang, Y. IDS alert classification model construction using decision support techniques.
In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering,
Hangzhou, China, 23–25 March 2012; pp. 301–305.

15. Hu, H.; Liu, Y.; Yang, Y.; Zhang, H.; Zhang, Y. New insights into approaches to evaluating intention and path
for network multistep attacks. Math. Probl. Eng. 2018, 2018. [CrossRef]

16. Hu, H.; Zhang, H.; Liu, Y.; Wang, Y. Quantitative method for network security situation based on attack
prediction. Secur. Commun. Netw. 2017, 2017. [CrossRef]

17. Alserhani, F. Alert correlation and aggregation techniques for reduction of security alerts and detection of
multistage attack. Int. J. Adv. Stud. Comput. Sci. Eng. 2016, 5, 1.

18. Zhang, D.; Qian, K.; Zhang, P.; Mao, S.; Wu, H. Alert correlation analysis based on attack path graph.
In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing,
China, 26–28 November 2017; pp. 1–6.

19. Hostiadi, D.P.; Susila, M.D.; Huizen, R.R. A new alert correlation model based on similarity approach.
In Proceedings of the 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS),
Denpasar, Bali, Indonesia, 22–23 August 2019; pp. 133–137.

20. Wu, M.; Moon, Y. Alert correlation for cyber-manufacturing intrusion detection. Procedia Manuf. 2019, 34,
820–831. [CrossRef]

21. Zhang, K.; Zhao, F.; Luo, S.; Xin, Y.; Zhu, H. An intrusion action-based ids alert correlation analysis and
prediction framework. IEEE Access 2019, 7, 150540–150551. [CrossRef]

22. Zhang, H.; Jin, X.; Li, Y.; Jiang, Z.; Liang, Y.; Jin, Z.; Wen, Q. A multi-step attack detection model based on
alerts of smart grid monitoring system. IEEE Access 2019. [CrossRef]

23. Ramaki, A.A.; Amini, M.; Atani, R.E. RTECA: Real time episode correlation algorithm for multi-step attack
scenarios detection. Comput. Secur. 2015, 49, 206–219. [CrossRef]

24. Wang, T.; Zhang, C.; Lu, Z.; Du, D.; Han, Y. Identifying truly suspicious events and false alarms based on
alert graph. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles,
CA, USA, 9–12 December 2019; pp. 5929–5936.

25. Valdes, A.; Skinner, K. Adaptive, model-based monitoring for cyber attack detection. Lect. Notes Comput. Sci.
2000, 1907, 80–92. [CrossRef]

26. Valdes, A.; Skinner, K. Probabilistic alert correlation. In Proceedings of the International Workshop on Recent
Advances in Intrusion Detection, Davis, CA, USA, 10–12 October 2001; pp. 54–68.

27. Julisch, K.; Security, S. Clustering intrusion detection alarms to support root cause analysis. ACM Trans. Inf.
2003, 6, 443–471. [CrossRef]

28. Long, C.; Shen, H.; Li, J.; Ge, J. An SR-ISODATA algorithm for IDS alerts aggregation. In Proceedings of the
2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014;
pp. 92–97.

http://dx.doi.org/10.1145/996943.996947
http://dx.doi.org/10.1016/j.asoc.2010.12.004
http://dx.doi.org/10.1155/2018/4278632
http://dx.doi.org/10.1155/2017/3407642
http://dx.doi.org/10.1016/j.promfg.2019.06.197
http://dx.doi.org/10.1109/ACCESS.2019.2946261
http://dx.doi.org/10.1109/ACCESS.2019.2961517
http://dx.doi.org/10.1016/j.cose.2014.10.006
http://dx.doi.org/10.1007/3-540-39945-3_6
http://dx.doi.org/10.1145/950191.950192


Entropy 2020, 22, 324 23 of 23

29. Liang, W.; Chen, Z.; Wen, Y.; Xiao, W.; Engineering, B. An alert fusion method based on grey relation and
attribute similarity correlation. Int. J. Online 2016, 12, 25–30. [CrossRef]

30. Yao, Y.Y.; Wang, Z.Q.; Gan, C.; Kang, Q.; Liu, X.J.; Xia, Y.J.; Zhang, L.M. Multi-source alert data understanding
for security semantic discovery based on rough set theory. Neurocomputing 2016, 208, 39–45. [CrossRef]

31. Zhang, R.; Guo, T.; Liu, J. An IDS alerts aggregation algorithm based on rough set theory. In Proceedings
of the IOP Conference Series: Materials Science and Engineering, Shanghai, China, 28–29 December 2017;
p. 062009.

32. Pawlak, Z.; Sciences, I. Rough sets. Int. J. Comput. 1982, 11, 341–356. [CrossRef]
33. Komorowski, J.; Pawlak, Z.; Polkowski, L.; Skowron, A. Rough sets: A tutorial. In Rough Fuzzy Hybridization:

A New Trend in Decision-Making; Springer: New York, NY, USA, 1999; pp. 3–98.
34. Yao, Y.Y. Probabilistic approaches to rough sets. Expert Syst. 2003, 20, 287–297. [CrossRef]
35. Prasad, M.; Tripathi, S.; Dahal, K. An efficient feature selection based Bayesian and Rough set approach for

intrusion detection. Appl. Soft Comput. 2020, 87, 105980. [CrossRef]
36. Liu, D.; Li, J. Safety monitoring data classification method based on wireless rough network of neighborhood

rough sets. Safety Sci. 2019, 118, 103–108. [CrossRef]
37. Zadeh, L. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 1996, 4, 103–111. [CrossRef]
38. Xu, W.H.; Yu, J.H. A novel approach to information fusion in multi-source datasets: A granular computing

viewpoint. Inf. Sci. 2017, 378, 410–423. [CrossRef]
39. Jing, Y.; Li, T.; Fujita, H.; Yu, Z.; Wang, B. An incremental attribute reduction approach based on knowledge

granularity with a multi-granulation view. Inf. Sci. 2017, 411, 23–38. [CrossRef]
40. Mu, T.; Zhang, X.; Mo, Z. Double-granule conditional-entropies based on three-level granular structures.

Entropy 2019, 21, 657. [CrossRef]
41. Pedrycz, W. Relational and directional aspects in the construction of information granules. IEEE Trans. Syst.

Man Cybern. A 2002, 32, 605–614. [CrossRef]
42. Pedrycz, W.; Bargiela, A. Granular clustering: A granular signature of data. Ieee Trans. Syst. Man Cybern. B

2002, 32, 212–224. [CrossRef]
43. Liang, J.; Shi, Z. The information entropy, rough entropy and knowledge granulation in rough set theory.

Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2004, 12, 37–46. [CrossRef]
44. Qian, W.; Shu, W. Mutual information criterion for feature selection from incomplete data. Neurocomputing

2015, 168, 210–220. [CrossRef]
45. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
46. Beaubouef, T.; Petry, F.E.; Arora, G. Information-theoretic measures of uncertainty for rough sets and rough

relational databases. Inf. Sci. 1998, 109, 185–195. [CrossRef]
47. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data; Springer Science & Business Media: Berlin,

Germany, 2012; Volume 9.
48. Sun, L.; Xu, J.; Cao, X. Decision table reduction method based on new conditional entropy for rough set

theory. In Proceedings of the 2009 International Workshop on Intelligent Systems and Applications, Wuhan,
China, 23–24 May 2009; pp. 1–4.

49. Wierman, M.J. Measuring uncertainty in rough set theory. Int. J. Gen. Syst. 1999, 28, 283–297. [CrossRef]
50. Dash, R.; Paramguru, R.L.; Dash, R. Comparative analysis of supervised and unsupervised discretization

techniques. Int. J. Adv. Sci. Technol. 2011, 2, 29–37.
51. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and

intrusion traffic characterization. In Proceedings of the ICISSP, Funchal, Madeira, Portugal, 22–24 January 2018;
pp. 108–116.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3991/ijoe.v12i08.5958
http://dx.doi.org/10.1016/j.neucom.2015.12.127
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1111/1468-0394.00253
http://dx.doi.org/10.1016/j.asoc.2019.105980
http://dx.doi.org/10.1016/j.ssci.2019.05.004
http://dx.doi.org/10.1109/91.493904
http://dx.doi.org/10.1016/j.ins.2016.04.009
http://dx.doi.org/10.1016/j.ins.2017.05.003
http://dx.doi.org/10.3390/e21070657
http://dx.doi.org/10.1109/TSMCA.2002.804790
http://dx.doi.org/10.1109/3477.990878
http://dx.doi.org/10.1142/S0218488504002631
http://dx.doi.org/10.1016/j.neucom.2015.05.105
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/S0020-0255(98)00019-X
http://dx.doi.org/10.1080/03081079908935239
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Theoretical Background 
	Rough Set Theory and Information Systems 
	Knowledge Granularity 

	Proposed Method 
	Overview of the Aggregation Scheme 
	Attribute Discretization 
	Attribute Weight Determination 
	Alert Similarity Calculation 

	Experiment 
	Experiment Dataset 
	Experimental Setup 
	Experimental Results 

	Discussion and Conclusions 
	References

