
Chapter 19
Human Mobility, Networks and Disease
Dynamics on a Global Scale

Dirk Brockmann

19.1 Introduction

In early 2009, news accumulated in major media outlets about a novel strain of

influenza circulating in major cities in Mexico [1]. This novel H1N1 strain was

quickly termed “swine flu”, in reference to its alleged origin in pig populations before

jumping the species border to humans. Very quickly public health institutions were

alerted and saw the risk of this local influenza epidemic becoming a major public

health problem globally. The concerns were serious because this influenza strain

was of the H1N1 subtype, the same virus family that caused one of the biggest pan-

demics in history, the Spanish flu that killed up to 40 million people in the beginning

of the 20th century [2]. The swine flu epidemic did indeed develop into a pandemic,

spreading across the globe in matters of months. Luckily, the strain turned out to

be comparatively mild in terms of symptoms and as a health hazard. Nevertheless,

the concept of emergent infectious diseases, novel diseases that may have dramatic

public health, societal and economic consequences reached a new level of public

awareness. Even Hollywood picked up the topic in a number of blockbuster movies

in the following years [3]. Only a few years later, MERS hit the news, the Middle

East Respiratory Syndrome, a new type of virus that infected people in the Middle

East [4]. MERS was caused by a new species of corona virus of the same family

of viruses that the 2003 SARS virus belonged to. And finally, the 2013 Ebola crisis

in West African countries Liberia, Sierra Leone and Guinea that although it did not

develop into a global crisis killed more than 10000 people in West Africa [5].
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Emergent infectious diseases have always been part of human societies, and also

animal populations for that matter [6]. Humanity, however, underwent major changes

along many dimensions during the last century. The world population has increased

from approx. 1.6 billion in 1900 to 7.5 billion in 2016 [7]. The majority of people

now live in so-called mega-cities, large scale urban conglomerations of more than

10 million inhabitants that live in high population densities [8] often in close con-

tact with animals, pigs and fowl in particular, especially in Asia. These conditions

amplify not only the transmission of novel pathogens from animal populations to

human, high frequency human-to-human contacts yield a potential for rapid out-

breaks of new pathogens.

Population density is only one side of the coin. In addition to increasing face-

to-face contacts within populations we also witness a change of global connectiv-

ity [9]. Most large cities are connected by means of an intricate, multi-scale web

of transportation links, see Fig. 19.1. On a global scale worldwide air-transportation

dominates this connectivity. Approx. 4,000 airports and 50,000 direct connections

span the globe. More than three billion passengers travel on this network each year.

Every day the passengers that travel this network accumulate a total of more than

14 billion kilometers, which is three times the radius of our solar system [10, 11].

Clearly this amount of global traffic shapes the way emergent infectious diseases can

spread across the globe. One of the key challenges in epidemiology is preparing for

eventual outbreaks and designing effective control measures. Evidence based con-

trol measures, however, require a good understanding of the fundamental features

and characteristics of spreading behavior that all emergent infectious diseases share.

In this context this means addressing questions such as: If there is an outbreak at

Fig. 19.1 The global air-transportation network. Each node represents one of approx. 4000 air-

ports, each link one of approx. 50000 direct connections between airports. More than 3 billion pas-

sengers travel on this network each year. All in all every day more than 16 billion km are traversed

on this network, three times the radius of our solar system
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location X when should one expect the first case at a distant location Y? How many

cases should one expect there? Given a local outbreak, what is the risk that a case

will be imported in some distant country. How does this risk change over time? Also,

emergent infectious diseases often spread in a covert fashion during the onset of an

epidemic. Only after a certain number of cases are reported, public health scientists,

epidemiologist and other professionals are confronted with cases that are scattered

across a map and it is difficult to determine the actual outbreak origin. Therefore, a

key question is also: Where is the geographic epicenter of an ongoing epidemic?

Disease dynamics is a complex phenomenon and in order to address these ques-

tions expertises from many disciplines need to be integrated, such as epidemiolgy,

spatial statistics, mobility and medical research in this context. One method that has

become particularly important during the past few years is the development of com-

putational models and computer simulations that help address these questions. These

are often derived and developed using techniques from theoretical physics and more

recently complex network science.

19.2 Modeling Disease Dynamics

Modeling the dynamics of diseases using methods from mathematics and dynami-

cal systems theory has a long history. In 1927 Kermack and McKenrick [12] intro-

duced and analyzed the “Suceptible-Infected-Recovered” (SIR) model, a parsimo-

neous model for the description of a large class of infectious diseases that is also

still in use today [13]. The SIR model considers a host population in which indi-

viduals can be susceptible (S), infectious (I) or recovered (R). Susceptible individ-

uals can aquire a disease and become infectious themselves and transmit the dis-

ease to other susceptible individuals. After an infectious period individuals recover,

acquire immunity, and no longer infect others. The SIR model is an abstract model

that reduces a real world situation to the basic dynamic ingredients that are believed

to shape the time course of a typical epidemic. Structurally, the SIR model treats

individuals in a population in much the same way as chemicals that react in a well-

mixed container. Chemical reactions between reactants occur at rates that depend on

what chemicals are involved. It is assumed that all individuals can be represented

only by their infectious state and are otherwise identical. Each pair of individuals

has the same likelihood of interacting. Schematically, the SIR model is described by

the following reactions

S + I
𝛼

←←←←←←→ 2I I
𝛽

←←←←←←→ R (19.1)

where 𝛼 and 𝛽 are transmission and recovery rates per individual, respectively. The

expected duration of being infected, the infectious period is given by T = 𝛽
−1

which
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can range from a few days to a few weeks for generic diseases. The ratio of rates

R0 = 𝛼∕𝛽 is known as the basic reproduction ratio, i.e. the expected number of sec-

ondary infections caused by a single infected individual in a fully susceptible popu-

lation. R0 is the most important epidemiological parameter because the value of R0
determines whether an infectious disease has the potential for causing an epidemic or

not. When R0 > 1 a small fraction of infected individuals in a susceptible population

will cause an exponential growth of the number of infections. This epidemic rise will

continue until the supply of susceptibles decreases to a level at which the epidemic

can no longer be sustained. The increase in recovered and thus immune individuals

dilutes the population and the epidemic dies out. Mathematically, one can translate

the reaction scheme (19.1) into a set of ordinary differential equations. Say the pop-

ulation has N ≫ 1 individuals. For a small time interval Δt and a chosen susceptible

individual the probability of that individual interacting with an infected is propor-

tional to the fraction I∕N of infected individuals. Because we have S susceptibles the

expected change of the number susceptibles due to infection is

ΔS ≈ −Δt × 𝛼 × S × I
N

(19.2)

where the rate 𝛼 is the same as in (19.1) and the negative sign accounts for the fact that

the number of susceptibles decreases. Likewise the number of infected individuals

is increased by the same amount ΔI = +Δt × 𝛼 × S × I∕N. The number of infecteds

can also decrease due to the second reaction in (19.1). Because each infected can

spontaneouly recover the expected change due to recovery is

ΔI ≈ −Δt × 𝛽 × I. (19.3)

Based on these assumptions Eqs. (19.2) and (19.3) become a set of differential equa-

tions that describe the dynamics of the SIR model in the limit Δt → 0:

ds∕dt = −𝛼sj (19.4)

dj∕dt = 𝛼sj − 𝛽j
r = 1 − s − j

where s(t) = S(t)∕N, j(t) = I(t)∕N and r(t) = R(t)∕N are the fractions of suscepti-

bles, infecteds and recovereds in the population as a function of time. The last equa-

tion in (19.4) is a consequence of the conservation of individuals, S(t)+ I(t)+R(t) =
N. Solutions to this set of equations for a small initial fraction of infecteds j(0) = j0,
r(0) = 0, and s(0) = 1 − j0 exhibit a typical epi-curve, i.e. an initial exponen-

tial increase of infecteds with a subsequent decline if the basic reproduction ratio

R0 > 1. Typical solutions of the SIR model are shown in Fig. 19.2. A more realistic

approach accounts for fluctuations that are caused by the intrinsic randomness of the
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Fig. 19.2 The SIR model. The curves depict the generic time course of the fraction of infected

individuals j(t) generated by the SIR model defined by reactions (19.1, colored trajectories) and

Eq. (19.4, black line). Initially only a small fraction of 1% of the population is infected. When R0 > 1
(here R0 = 2.5 and 𝛽

−1 = 1week) an exponential growth is followed by an exponential decay,

leading to the generic epidemic curve. The fluctuations in the colored trajectories are generated by

a stochastic generalization of the deterministic system defined by Eq. (19.4) in which in a finite

population of N = 1000 individuals transmission and recovery events (reactions (19.1)) occur

randomly

probabilistic reactions (19.1) and the finite number N of individuals in a population.

Depending on the magnitude of N a model in which reactions occur randomly at

rates 𝛼 and 𝛽 a stochastic system generally exhibits solutions that fluctuate around

the solutions to the deterministic system of Eq. (19.4).

Both, the deterministic SIR model and the more general particle kinetic stochastic

model are designed to model disease dynamics in a single population, spatial dynam-

ics or movement patterns of the host population are not accounted for. These systems

are thus known as well-mixed systems in which the analogy is one of chemical reac-

tants that are well-stirred in a chemical reaction container as mentioned above.

19.2.1 Spatial Models

When a spatial component is expected to be important in natural scenario, several

methodological approaches exist to account for space. Essentially the inclusion of a
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spatial component is required when the host is mobile and can transport the state of

infection from one location to another. The combination of local proliferation of an

infection and the disperal of infected host individuals then yields a spread along the

spatial dimension [13, 14].

One of the most basic ways of incorporating a spatial dimension and host dispersal

is by assuming that all quantities in the SIR model are also functions of a location

𝐱, so the state of the system is defined by s(𝐱, t), j(𝐱, t) and r(𝐱, t). Most frequently

two spatial dimensions are considered. The simplest way of incorporating dispersal

is by an ansatz following Eq. (2.19) in Chap. 2 which assumes that individuals move

diffusively in space which yields the reaction-diffusion dynamical system

𝜕s∕𝜕t = −𝛼js + D∇2s (19.5)

𝜕j∕𝜕t = 𝛼js − 𝛽j + D∇2j (19.6)

𝜕r∕𝜕t = 𝛽j + D∇2r (19.7)

where e.g. in a two-dimensional system with 𝐱 = (x, y) the Laplacian is ∇2 =
𝜕
2∕𝜕2x +𝜕

2∕𝜕2y and the parameter D is the diffusion coefficient. The reasoning behind

this approach is that the net flux of individuals of one type from one location to a

neighboring location is proportional to the gradient or the difference in concentra-

tion of that type of individuals between neighboring locations. The key feature of

diffusive dispersal is that it is local, in a discretized version the Laplacian permits

movements only within a limited distance.

In reaction diffusion systems of this type the combination of initial exponential

growth (if R0 = 𝛼∕𝛽 > 1) and diffusion (D > 0) yields the emergence of an epidemic

wavefront that progresses at a constant speed if initially the system is seeded with a

small patch of infected individuals [15]. The advantage of parsimoneous models like

the one defined by Eq. (19.7) is that properties of the emergent epidemic wavefront

can be computed analytically, e.g. the speed of the wave in the above system is related

to the basic reproduction number and diffusion coefficient by

v ∼
√(

R0 − 1
)

D (19.8)

in which we recognize the relation of Eq. (2.17). Another class of models considers

the reaction of Eq. (19.1) to occur on two-dimensional (mostly square) lattices. In

these models each lattice site is in one of the states S, I or R and reactions occur only

with nearest neighbors on the lattice. These models account for stochasticity and

spatial extent. Given a state of the system, defined by the state of each lattice site,

and a small time interval Δt, infected sites can transmit the disease to neighboring

sites that are susceptible with a probability rate 𝛼. Infected sites also recover to the

http://dx.doi.org/10.1007/978-3-319-67798-9
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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Fig. 19.3 Stochastic lattice SIR models. a From left to right the images are temporal snapshots of

a stochastic SIR model in which an infected lattice site (red) can transmit an infection to a suscep-

tible (white) neighboring site with probability rate 𝛼. At rate 𝛽 infected sites recover and become

immune (grey). Initially a single site in the center is infected. Asmyptotically a concentric pattern

emerges. The infection front spreads at a constant speed. Stochastic effects at the wavefront caused

the ragged structure of the interface. b The system is identical to the system depicted in (a). How-

ever, in addition to the generic next neighbor transmission, with a small but significant probability

a transmission to a distant site can occur. This probability also decreases with distance as an inverse

power-law, e.g. p(d) ∼ d−(1+𝜇)
where the exponent is in the range 0 < 𝜇 < 2. Because the rare but

significant occurance of long-range transmissions, a more complex pattern emerges, the concentric

nature observed in system a is gone. Instead, a fractal, multiscale pattern emerges

R state and become immune with probability 𝛽Δt. Figure 19.3a illustrates the time

course of the lattice-SIR model. Seeded with a localized patch of infected sites, the

system exhibits an asymptotic concentric wave front that progresses at an overall

constant speed if the ratio of transmission and recovery rate is sufficiently large.

Without the stochastic effects that yield the irregular interface at the infection front,

this system exhibits similar properties to the reaction diffusion system of Eq. (19.7).

In both systems transmission of the disease in space is spatially restricted per unit

time.

19.2.2 The Impact of Long-Distance Transmissions

The stochastic lattice model is particularly useful for investigating the impact of per-

mitting long-distance transmissions. Figure 19.3b depicts temporal snapshots of a

simulation that is identical to the system of Fig. 19.3a apart from a small but signif-

icant difference. In addition for infected sites to transmit the disease to neighboring

susceptible lattice sites, every now and then (with a probability of 1%) they can also
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Fig. 19.4 Arrival time and geographic distance. Each panel depicts the relation of epidemic arrival

time and geographic distance to the initial outbreak location (country of origin) for two different

recent epidemics, the H1N1 pandemic 2009 (left) and the SARS epidemic 2003 (right). Because

of the complexity of connectivity of the worldwide air-transportation network (see Fig. 19.1) geo-

graphic distance to the initial outbreak location is no longer a good predictor of arrival time, unlike

in systems with local or spatially limited host mobility

infect randomly chosen lattice sites anywhere in the system. The propensity of infect-

ing a lattice site at distance r decreases as an inverse power-law as explained in the

caption to Fig. 19.3. The possibility of transmitting to distant locations yields new

epidemic seeds far away that subsequently turn into new outbreak waves and that in

turn seed second, third, etc. generation outbreaks, even if the overall rate at which

long-distance transmission occur is very small. The consequence of this is that the

spatially coherent, concerntric pattern observed in the reaction diffusion system is

lost, and a complex spatially incoherent, fractal pattern emerges [16–18]. Practically,

this implies that the distance from an initial outbreak location can no longer be used

as a measure for estimating or computing the time that it takes for an epidemic to

arrive at a certain location. Also, given a snapshot of a spreading pattern, it is much

more difficult to reconstruct the outbreak location from the geometry of the pattern

alone, unlike in the concentric system where the outbreak location is typically near

the center of mass of the pattern.

A visual inspection of the air-transportation system depicted in Fig. 19.1 is suf-

ficiently convincing that the significant fraction of long-range connections in global

mobility will not only increase the speed at which infectious diseases spread but,

more importantly, also cause the patterns of spread to exhibit high spatial incoher-

ence and complexity caused by the intricate connectivity of the air-transportation
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network. As a consequence we can no longer use geographic distance to an emer-

gent epidemic epicenter as an indicator or measure of “how far away” that epicenter

is and how long it will take to travel to a given location on the globe. This type of

decorrelation is shown in Fig. 19.4 for two examples: The 2003 SARS epidemic and

the 2009 influenza H1N1 pandemic. On a spatial resolution of countries, the figure

depicts scatter plots of the epidemic arrival time as a function of geodesic (shortest

distance on the surface of the Earth) distance from the initial outbreak location. As

expected, the correlation between distance and arrival time is weak.

19.3 Modeling Disease Dynamics on a Global Scale

Given that models based on local or spatially limited mobility are inadequate,

improved models must be developed that account for both, the strong heterogene-

ity in population density, e.g. that human populations accumulate in cities that vary

substantially in size, and the connectivity structure between them that is provided

by data on air traffic. In a sense one needs to establish a model that captures that the

entire population is a so-called meta-population, a system of m = 1,… ,M subpop-

ulation, each of size Nm and traffic between them, e.g. specifying a matrix Fnm that

quantifies the amount of host individuals that travel from population m to population

n in a given unit of time [19, 20]. For example Nn could correspond to the size of city

n and Fnm the amount of passengers the travel by air from m to n. One of earliest and

most employed models for disease dynamics using the meta-population approach is

a generalization of Eq. (19.4) in which each population’s dynamics is governed by

the ordinary SIR model, e.g.

dSn∕dt = −𝛼SnIn∕Nn (19.9)

dIn∕dt = 𝛼SnIn∕Nn − 𝛽In

dRn∕dt = 𝛽In

where the size Nn = Rn + In + Sn of population n is a parameter. In addition to this,

the exchange of individuals between populations is modeled in such a way that hosts

of each class move from location m to location n with a probability rate 𝜔nm which

yields

dUn∕dt =
∑

m

(
𝜔nmUm − 𝜔mnUn

)
(19.10)

where Um is a placeholder for Sm, Im and Rm. The first term corresponds to the flux

into location n from all other locations, the second term the flux in the opposite

direction. Combining Eqs. (19.9) and (19.10) yields:
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dSn∕dt = −𝛼SnIn∕Nn +
∑

m

(
𝜔nmSm − 𝜔mnSn

)
(19.11)

dIn∕dt = 𝛼SnIn∕Nn − 𝛽In +
∑

m

(
𝜔nmIm − 𝜔mnIn

)

dRn∕dt = 𝛽In +
∑

m

(
𝜔nmRm − 𝜔mnRn.

)

which is a generic metapopulation SIR model. In principle one is required to fix

the infection-related parameters 𝛼 and 𝛽 and the population sizes Nm as well as the

mobility rates 𝜔nm, i.e. the number of transitions from m to n per unit time. However,

based on very plausible assumptions [11], the system can be simplified in such a

way that all parameters can be gauged against data that is readily available, e.g. the

actual passenger flux Fnm (the amount of passengers that travel from m to n per day)

that defines the air-transportation network, without having to specify the absolute

population sizes Nn.

First the general rates 𝜔nm have to fulfill the condition

𝜔nmNm = 𝜔mnNn

if we assume that the Nn remain constant. If we assume, additionally, that the total

air traffic flowing out of a population n obeys

Fn =
∑

m
Fmn ∼ Nn,

i.e. it is proportional to the size of the population (e.g. the supply is proportional to

the demand), the model defined by Eq. (19.11) can be recast into

dsn∕dt = −𝛼sn jn + 𝛾

∑
m

Pmn
(
sm − sn

)
(19.12)

djn∕dt = 𝛼snjn − 𝛽jn + 𝛾

∑
m

Pmn
(
jm − jn

)

rn = 1 − sn − jn.

where the dynamic variables are, again, fractions of the population in each class:

sn = Sn∕Nn, jn = In∕Nn, and rn = Rn∕Nn. In this system the new matrix Pmn and the

new rate parameter 𝛾 can be directly computed from the traffic matrix Fnm and the

total population involved N =
∑

m Nm according to

Pnm =
Fnm∑
k Fkm
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and

𝛾 = F∕N

where F =
∑

n,m Fmn is the total traffic in the network. The matrix Pnm is there-

fore the fraction of passengers that are leaving node m with destination n. Because

passengers must arrive somewhere we have
∑

n Pnm = 1.

An important first question is concerning the different time scales, i.e. the para-

meters 𝛼, 𝛽 and 𝛾 that appear in system (19.12). The inverse 𝛽
−1 = T is the infectious

period, that is the time individuals remain infectious. If we assume T ≈ 4–6 days

and R0 = 𝛼∕𝛽 ≈ 2 both rates are of the same order of magnitude. How about 𝛾? The

total number of passengers F is approximately 8 × 106 per day. If we assume that

N ≈ 7 × 109 people we find that

𝛾 ≈ 0.0015 d
−1
.

It is instructive to consider the inverse T
travel

= 𝛾
−1 ≈ 800 days. On average a typical

person boards a plane every 2–3 years or so. Keep in mind though that this is an aver-

age that accounts for both a small fraction of the population with a high frequency of

flying and a large fraction that almost never boards a plane. The overall mobility rate

𝛾 is thus a few orders of magnitude smaller than those rates related to transmissions

and recoveries. This has important consequences for being able to replace the full

dynamic model by a simpler model discussed below.

Figure 19.5 depicts a numerical solution to the model defined by Eq. (19.12) for a

set of initial outbreak locations. At each location a small seed of infected individuals

initializes the epidemic. Global aspects of an epidemic can be assessed by the total

fraction of infected individuals jG(t) =
∑

n cnjn(t) where cn is the relative size pop-

ulation n with respect to the entire population size N . As expected the time course

of a global epidemic in terms of the epicurve and duration depends substantially on

the initial outbreak location.

A more important aspect is the spatiotemporal pattern generated by the model.

Figure 19.6 depicts temporal snapshots of simulations initialized in London and

Chicago, respectively. Analogous to the qualitative patterns observed in Fig. 19.3b,

we see that the presence of long-range connections in the worldwide air-transportation

network yields incoherent spatial patterns much unlike the regular, concentric wave-

fronts observed in systems without long-range mobility. Figure 19.7 shows that also

the model epidemic depicts only a weak correlation between geographic distance

to the outbreak location and arrival time. For a fixed geographic distance arrival

times at different airports can vary substantially and thus the traditional geographic

distance is useless as a predictor.
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Fig. 19.5 Global epi-curves. Each curve depicts the global fraction of infected individuals as a

function of time for different outbreak locations as predicted by the metapopulation model defined

by Eq. (19.12). Depending on the initial outbreak location curves differ in epidemic maximum,

curve shape and epidemic duration

Fig. 19.6 Properties of spatiotemporal patterns of global disease dynamics. Each panel from left to

right depicts temporal snapshots of the spread of a computer-simulated hypothetical pandemic. Red

nodes denote locations with a high fraction of infecteds. Each row corresponds to a different initial

outbreak location (London (LHR), top and Chicago (ORD), bottom). The patterns are spatially

incoherent, especially for larger times. It is thus difficult to assess which locations are affected next

in the sequence of locations
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Fig. 19.7 Arrival time and geographic distance. For a simulated pandemic based on the dynamical

system of Eq. (19.12) and the worldwide air-transportation network (top) the bottom panel depicts

the arrival time at each location as a function of the geographic distance to the initial outbreak

location Hong Kong. Airports are colored according to geographic location. Only a weak correla-

tion between arrival time and geographic distance exists (dashed line). For a fixed small range of

geographic distances a wide range of arrival times exists, geographic distance is thus not a good

predictor
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19.4 Issues with Computational Models

The system defined by Eq. (19.12) is one of the most parsimoneous models that

accounts for strongly heterogeneous population distributions that are coupled by traf-

fic flux between them and that can be gauged against actual population size distribu-

tions and traffic data. Surprisingly, despite its structural simplicity this type of model

has been quite successful in accounting for actual spatial spreads of past epi- and pan-

demics [19]. Based on early models of this type and aided by the exponential increase

of computational power, very sophisticated models have been developed that account

for factors that are ignored by the deterministic metapopulation SIR model. In the

most sophisticated approaches, e.g. GLEAM [21], the global epidemic and mobil-

ity computational tool, not only traffic by air but other means of transportation are

considered, more complex infectious dynamics is considered and in hybrid dynam-

ical systems stochastic effects caused by random reactions and mobility events are

taken into account. Household structure, available hospital beds, seasonality have

been incorporated as well as disease specific features, all in order to make predic-

tions more and more precise. The philosophy of this type of research line heavily

relies on the increasing advancement of both computational power as well as more

accurate and pervasive data often collected in natural experiments and webbased

techniques [21–25].

Despite the success of these quantitative approaches, this strategy bears a num-

ber of problems some of which are fundamental. First, with increasing computa-

tional methods it has become possible to implement extremely complex dynamical

systems with decreasing effort and also without substantial knowledge of the dynam-

ical properties that often nonlinear dynamical systems can possess. Implementing a

lot of dynamical detail, it is difficult to identify which factors are essential for an

observed phenomenon and which factors are marginal. Because of the complexity

that is often incorporated even at the beginning of the design of a sophisticated model

in combination with the lack of data modelers often have to make assumptions about

the numerical values of parameters that are required for running a computer simula-

tion [26]. Generically many dozens of unknown parameters exist for which plausible

and often not evidence-based values have to be assumed. Because complex computa-

tional models, especially those that account for stochasticity, have to be run multiple

times in order to make statistical assessments, systematic parameter scans are impos-

sible even with the most sophisticated supercomputers.

Finally, all dynamical models, irrespective of their complexity, require two

ingredients to be numerically integrated: (1) fixed values for parameters and (2) ini-

tial conditions. Although some computational models have been quite successful in

describing and reproducing the spreading behavior of past epidemics and in situa-

tions where disease specific parameters and outbreak locations have been assessed,

they are difficult to apply in situations when novel pathogens emerge. In these situ-

ations, when computational models from a practical point of view are needed most,

little is known about these parameters and running even the most sophisticated mod-

els “in the dark” is problematic. The same is true for fixing the right initial con-
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ditions. In many cases, an emergent infectious disease initially spreads unnoticed

and the public becomes aware of a new event after numerous cases occur in clusters

at different locations. Reconstructing the correct initial condition often takes time,

more time than is usually available for making accurate and valueable predictions

that can be used by public health workers and policy makers to devise containment

strategies.

19.5 Effective Distance

Given the issues discussed above one can ask if alternative approaches exist that

can inform about the spread without having to rely on the most sophisticated highly

detailed computer models. In this context one may ask whether the complexity of the

observed patterns that are solutions to models like the SIR metapopulation model

of Eq. (19.12) are genuinely complex because of the underlying complexity of the

mobility network that intricately spans the globe, or whether a simple pattern is really

underlying the dynamics that is masked by this complexity and our traditional ways

of using conventional maps for displaying dynamical features and our traditional

ways of thinking in terms of geographic distances.

In a recent approach Brockmann and Helbing [11] developed the idea of replacing

the traditional geographic distance by the notion of an effective distance derived from

the topological structure of the global air-transportation network. In essence the idea

is very simple: If two locations in the air-transportation network exchange a large

number of passengers they should be effectively close because a larger number of

passengers implies that the probability of an infectious disease to be transmitted from

A to B is comparatively larger than if these two locations were coupled only by a small

number of traveling passengers. Effective distance should therefore decrease with

traffic flux. What is the appropriate mathematical relation and a plausible ansatz to

relate traffic flux to effective distance? To answer this question one can go back to the

metapopulation SIR model, i.e. Eq. (19.12). Dispersal in this equation is governed

by the flux fraction Pnm. Recall that this quantity is the fraction of all passengers that

leave node m and arrive at node n. Therefore Pnm can be operationally defined as the

probability of a randomly chosen passenger departing node m arriving at node n. If,

in a thought experiment, we assume that the randomly selected person is infectious,

Pnm is proportional to the probability of transmitting a disease from airport m to

airport n. We can now make the following ansatz for the effective distance:

dnm = d0 − logPnm (19.13)

where d0 ≥ 0 is a non-negative constant to be specified later. This definition of

effective distance implies that if all traffic from m arrives at n and thus Pnm = 1 the

effective distance is dnm = d0 which is the smallest possible value. If, on the other

hand Pnm becomes very small, dnm becomes larger as required. The definition (19.13)

applies to nodes m and n that are connected by a link in the network. What about pairs
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of nodes that are not directly connected but only by paths that require intermediate

steps? Given two arbitrary nodes, an origin m and a destination n, an infinite amount

of paths (sequence of steps) exist that connect the two nodes. We can define the

shortest effective route as the one for which the accumulation of effective distances

along the legs is minimal. So for any path we sum the effective distance along the

legs according to Eq. (19.13) adding up to an effective distance Dnm. This approach

also explains the use of the logarithm in the definition of effective distance. Adding

effective distances along a route implies the multiplication of the probabilities Pnm
along the involved steps. Therefore the shortest effective distance Dnm is equivalent

to the most probable path that connect origin and destination. The parameter d0 is a

free parameter in the definition and quantifies the influence of the number of steps

involved in a path. Typically it is chosen to be either 0 or 1 depending on the appli-

cation.

One important property of effective distance is its asymetry. Generally we have

dnm ≠ dmn.

This may seem surprising at first sight, yet it is plausible. Consider for example

two airports A and B. Let’s assume A is a large hub that is strongly connected to

many other airports in the network, including B. Airport B, however, is only a small

airport with only as a single connection leading to A. The effective distance B →
A is much smaller (equal to d0) than the effective distance from the hub A to the

small airport B. This accounts for the fact that if, again in a thought experiment,

a randomly chosen passenger at airport B is most definitely going to A whereas a

randomly chosen passenger at the hub A is arriving at B only with a small probability.

Given the definition of effective distance one can compute the shortest effective

paths to every other node from a chosen and fixed reference location. Each airport m
thus has a set of shortest paths Pm that connect m to all other airports. This set forms

the shortest path tree Tm of airport m. Together with the effective distance matrix

Dnm the tree defines the perspective of node m. This is illustrated qualitatively in the

Fig. 19.8 that depicts a planar random triangular weighted network.

One can now employ these principles and compute the shortest path trees and

effective distances from the perspective of actual airports in the worldwide air-

transportation network based on actual traffic data, i.e. the flux matrix Fnm.

Figure 19.9 depicts the shortest path tree of one of the Berlin airports (Tegel, TXL).

The radial distance of all the other airports in the network is proportional to their

effective distance from TXL. One can see that large European hubs are effectively

close to TXL as expected. However, also large Asian and American airports are effec-

tively close to TXL. For example the airports of Chicago (ORD), Beijing (PEK),

Miami (MIA) and New York (JFK) are comparatively close to TXL. We can also

see that from the perspective of TXL, Germany’s largest airport FRA serves as a

gateway to a considerable fraction of the rest of the world. Because the shortest path

tree also represents the most probable spreading routes one can use this method to

identify airports that are particularly important in terms of distributing an infectious

disease throughout the network.
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Fig. 19.8 Shortest paths and shortest path trees in complex networks. Left: A random planar

weighted network consisting of 100 nodes and 283 links. Links vary in strength. The size of the

nodes quantifies the total link weight per node. Center: For a chosen node (no. 76) the shortest

path tree is shown. Color depicts effective distance. Right: The shortest path tree of node no. 36.

The shortest path trees are also those paths that correspond to the most probable paths of a random

walker that starts at the reference location and terminates at the respective target node

19.6 Recovery of Concentric Patterns

The use of effective distance and representing the air-transportation network from

the perspective of chosen reference nodes and making use of the more plausible

notion of distance that better reflects how strongly different locations are coupled

in a networked system is helpful for “looking at” the world. Yet, this representa-

tion is more than a mere intuitive and plausible spatial representation. What are the

dynamic consequences of effective distance? The true advantage of effective dis-

tance is illustrated in Fig. 19.10. This figure depicts the identical computer-simulated

hypothetical pandemic diseases as Fig. 19.6. Unlike the latter, that is based on the

traditional geographic representation, Fig. 19.10 employs the effective distance and

shortest path tree representation from the perspective of the outbreak location as dis-

cussed above. Using this method, the spatially incoherent patterns in the traditional

representation are transformed into concentric spreading patterns, similar to those

expected for simple reaction diffusion systems.

This shows that the complexity of observed spreading patterns is actually

equivalent to simple spreading patterns that are just convoluted and masked by the

underlying network’s complexity. This has important consequences. Because only

the topological features of the network are used for computing the effective distance

and no dynamic features are required, the concentricy of the emergent patterns are a

generic feature and independent of dynamical properties of the underlying model. It

also means that in effective distance, contagion processes spread at a constant speed,

and just like in the simple reaction diffusion model one can much better predict the

arrival time of an epidemic wavefront, knowing the speed and effective distance. For

example if shortly after an epidemic outbreak the spreading commences and the ini-

tial spreading speed is assessed, one can forecast arrival times without having to run

computationally expensive simulations. Even if the spreading speed is unknown, the
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Fig. 19.9 Shortest path trees and effective distance from the perspective of airport Tegel (TXL) in

Berlin. TXL is the central node. Radial distance in the tree quantifies the effective distance to the

reference node TXL. As expected large European hubs like Frankfurt (FRA), Munich (MUC) and

London Heathrow (LHR) are effective close to TXL. However, also hubs that are geographically

distant such as Chicago (ORD) and Beijing (PEK) are effectively closer than smaller European

airports. Note also that the tree structure indicates that FRA is a gateway to a large fraction of other

airports as reflected by the size of the tree branch at FRA. The illustration is a screenshot of an

interactive effective distance tool available online [27]

effective distance which is independent of dynamics can inform about the sequence

of arrival times, or relative arrival times.

The benefit of the effective distance approach can also be seen in Fig. 19.11 in

which arrival times of the 2003 SARS epidemic and the 2009 H1N1 pandemic in

affected countries are shown as a function of effective distance to the outbreak origin.

Comparing this figure to Fig. 19.7 we see that effective distance is a much better

predictor of arrival time, a clear linear relationship exists between effective distance
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ORD

LHR

Fig. 19.10 Simulations and effective distance. The panels depict the same temporal snapshots of

computer simulated hypothetical pandemic scenarios as in Fig. 19.6. The top row corresponds to

a pandemic initially seeded at LHR (London) the bottom row at ORD (Chicago). The networks

depict the shortest path tree effective distance representation of the corresponding seed airports as

in Fig. 19.9. The simulated pandemics that exhibit spatially incoherent complex patterns in the tra-

ditional representation (Fig. 19.6) are equivalent to concentric wave fronts that progress at constant

speeds in effective distance space. This method thus substantially simplifies the complexity seen in

conventional approaches and improves quantitative predictions

and epidemic arrival. Thus, effective distance is a promising tool and concept for

application in realistic scenarios, being able to provide a first quantitative assessment

of an epidemic outbreak and its potential consequences on a global scale.

19.7 Reconstruction of Outbreaks

In a number of situation epidemiologists are confronted with the task of reconstruct-

ing the outbreak origin of an epidemic. When a novel pathogen emerges in some

cases the infection spreads covertly until a substantial case count attracts attention

and public health officials and experts become aware of the situation. Quite often

cases occur much like the patterns depicted in Fig. 19.3b in a spatially incoherent

way because of the complexity of underlying human mobility networks. When cases

emerge at apparently randomly distributed locations it is a difficult task to assess

where the event initially started. The computational method based on effective dis-

tance can also be employed in these situations provided that one knows the underly-

ing mobility network. This is because the concentric pattern depicted in Fig. 19.10 is
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Fig. 19.11 Correlation of arrival time with effective distance. Left: the relationship of epidemic

arrival time and effective distance for the H1N1 pandemic 2009. Compared to the conventional

use of geographic distance effective distance is a much better predictor of epidemic arrival time as

is reflected by the linear relationship between arrival time and effective distance, e.g. compare to

Fig. 19.7. Right: The same analysis for the 2003 SARS epidemic. Also in this case effective distance

is much more strongly correlated with arrival time than geographic distance

only observed if and only if the actual outbreak location is chosen as the center per-

spective node. In other words, if the temporal snapshots are depicted using a different

reference node the concentric pattern is scrambled and irregular. Therefore, one can

use the effective distance method to identify the outbreak location of a spreading

process based on a single temporal snapshot. This method is illustrated in a proof-

of-concept example depicted in Fig. 19.12. Assume that we are given a temporal

snapshot of a spreading process as depicted in Fig. 19.12a and the goal is to recon-

struct the outbreak origin from the data. Conventional geometric considerations are

not sucessful because the network-driven processes generically do not yields sim-

ple geometric patterns. Using effective distance, we can now investigate the pattern

from the perspective of every single potential outbreak location. We could for exam-

ple pick a set of candidate outbreak locations (panel (b) in the figure). If this is done

we will find that only for one candidate outbreak location the temporal snapshot has

the shape of a concentric circle. This must be the original outbreak location. This

process, qualitatively depicted in the figure, can be applied in a quantitative way

and has been applied to actual epidemic data such as the 2011 EHEC outbreak in

Germany [28].
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Fig. 19.12 Outbreak reconstruction using effective distance. a The panel depicts a temporal snap-

shot of a computer simulated hypothetical pandemic, red dots denote airports with a high prevalence

of cases. From the snapshot alone it is difficult to assess the outbreak origin which in this case is

ORD (Chicago). b A choice of 12 potential outbreak locations as candidates. c For these candidate

locations the pattern is depicted in the effective distance perspective. Only for the correct outbreak

location the pattern is concentric. This method can be used quantitatively to identify outbreaks of

epidemics that initially spread in a covert way

19.8 Conclusions

Emergent infectious diseases that bear the potential of spreading across the globe

are an illustrative example of how connectivity in a globalized world has changed

the way human mediated processes evolve in the 21st century. We are connected by

complex networks of interaction, mobility being only one of them. With the onset of

social media, the internet and mobile devices we share information that proliferates

and spreads on information networks in much the same way (see also Chap. 20). In all

of these systems the scientific challenge is understanding what topological and statis-

tical features of the underlying network shape particular dynamic features observed

in natural systems. The examples addressed above focus on a particular scale, defined

by a single mobility network, the air-transportation network that is relevant for this

scale. As more and more data accumulates, computational models developed in the

future will be able to integrate mobility patterns at an individual resolution, poten-

tially making use of pervasive data collected on mobile devices and paving the way

towards predictive models that can account very accurately for observed contagion

patterns. The examples above also illustrate that just feeding better and faster com-

puters with more and more data may not necessarily help understanding the fun-

damental processes and properties of the processes that underly a specific dynamic

phenomenon. Sometimes we only need to change the conventional and traditional

ways of looking at patterns and adapt our viewpoint appropriately.

http://dx.doi.org/10.1007/978-3-319-67798-9_20
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