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ABSTRACT
Cigarette smoking is one of the major risk factors for the occurrence and progression of
oral squamous cell carcinoma (OSCC). Receptor-interacting protein 2 (RIP2) has been
involved in mucosal immunity and homeostasis via a positive regulation of nuclear
factor κB (NF-κB) transcription factor activity. Caspase-12 can bind to RIP2 and
dampen mucosal immunity. However, the roles of RIP2/NF-κB and caspase-12 in
OSCC induced by cigarette smoking remain unknown. Herein, we investigated the
effects of cigarette smoking on the RIP2/NF-κB and caspase-12 in humanOSCC tissues
and OSCC cell lines (HSC-3). We first observed that RIP2 mediated NF-κB activation
and caspase-12 upregulation in OSCC patients with cigarette smoking and cigarette
smoke extract (CSE)-treated HSC-3 cells, respectively. Moreover, we confirmed that
the downregulation of RIP2 by siRNA resulted in the reduction of caspase-12 expression
and NF-κB activity in the presence of CSE treatment in vitro. In summary, our results
indicated that cigarette smoking induced the activation of the RIP2/caspase-12/NF-κB
axis and it played an important role in the development of OSCC. The RIP2/caspase-
12/NF-κB axis could be a target for OSCC prevention and treatment in the future.
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INTRODUCTION
Oral squamous cell carcinoma (OSCC) is the fifth most common cancer worldwide and
occurs in the mouth, including the tongue, gums, cheeks, palate, and bottom of the mouth
(Lin et al., 2020b). The worldwide annual incidence of OSCC is over 300,000 cases, with a
mortality rate of 48%.OSCC accounts for 90% of all oral cancers, with the highest incidence
being observed in men over 50 years of age. Despite the development of new therapies in
the treatment of OSCC, the 5-year survival rate is still below 50% in recent decades (Jiang
et al., 2020). Hence, there is a need to explore the pathogenesis and progression of OSCC,
which would help to find new therapeutic targets.

Several environmental factors and genetic factors have been reported to involve in
the process of OSCC (Zeng et al., 2020). At present, smoking is considered to be one of
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the key factors contributing to carcinogenesis and the progression of oral malignancy
(Chien et al., 2021; Tsou et al., 2021). Therefore, an increased risk of developing OSCC
was observed among cigarette smokers. However, the role of cigarette smoking in the
molecular pathogenesis of OSCC has rarely been assessed. Recent studies have shown
that receptor-interacting protein 2 (RIP2) is involved in the occurrence, progression and
metastasis of different types of tumors and serves as a prognostic biomarker and therapeutic
target (Li et al., 2021; Li et al., 2020). RIP2 also plays an important role in the regulation of
inflammation and cell death processes via nuclear factor κB (NF-κB) signaling pathway
(Eng, Wemyss & Pearson, 2021). However, the expression of RIP2/NF-κB signaling pathway
in OSCC induced by cigarette smoking has not been elucidated.

Philippe et al., indicated that caspase-12 could bind to RIP2, and dampen mucosal
immunity (LeBlanc et al., 2008). Our previous studies also showed that caspase-12 could
play a vital role in the regulatory effects of cigarette smoking on human beta defensins
expression in oral mucosal epithelial cells (Wang et al., 2014). However, the effect and
interaction mechanism between RIP2/NF-κB pathway and caspase-12 in the progression
of OSCC induced by cigarette smoking is entirely unknown. Therefore, in our present
study, we wanted to examine the expression of RIP2/NF-κB pathway and caspase-12 in
OSCC patients with cigarette smoking and cigarette smoke extract (CSE)-treated OSCC
cell lines, and to explore the interaction between RIP2/NF-κB and caspase-12.

MATERIALS & METHODS
Patients and tissue specimens
The OSCC tissue samples were collected in Nanjing Stomatological Hospital, Medical
School of Nanjing University, and the Ethics Committee of Nanjing Stomatological
Hospital, Medical School of Nanjing University approved our study (IRB Approval
Number: 2018NL-008 (KS)). Written informed consent was obtained from all the enrolled
patients as requested by the Institutional Ethics Committees. Surgical specimens of
40 patients were diagnosed with OSCC and were collected for our study. Pregnant
women, lactating women, patients with systemic diseases and other habits, such as alcohol
consumption, were excluded from our study. Cigarette smokers included in our study were
OSCC patients who had smoked more than 10 cigarettes per day for at least 10 years, while
non-smokers were considered patients who had never smoked among OSCC patients.

Our study included 40 patients with OSCC in the groups of smokers and non-smokers,
consisting of 24 men and 16 women, with an age range from 30 to 81 years old (median
58 years). The average number of cigarettes among the group of smokers was 20 pack years.
Tissue specimens were either immediately processed for immunohistochemistry or stored
at −80 ◦C for western blotting analysis.

Western blotting
Tissues were rinsed with chilled PBS twice, homogenized by using a high-efficiency tissue
grinder, and then lysed in chilled RIPA buffer supplemented with protease inhibitor. The
lysates were incubated on ice for 30 min and centrifuged at 14,000 × g for 10 min at 4 ◦C.
The nuclear fractions were separated using a nuclear and cytoplasmic protein extraction
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kit (KeyGEN BioTECH, Jiangsu, China) according to the manufacturer’s instructions.
Total proteins and nuclear proteins were collected and separated by a 10% gradient gel and
electrophoretically transferred to polyvinylidene difluoride membranes. The membrane
was shaken and sealed for 1 h in 5% BSA at room temperature. The primary antibodies
used in our study included RIP2, caspase-12 and NF-κB p65 (1:1000 dilution; Abcam,
Cambridge, UK), GAPDH and histone (1:5000 dilution; Cell Signaling, Danvers, MA,
USA). The membrane was incubated with the primary antibodies overnight at 4 ◦C,
followed by each corresponding secondary antibody at room temperature for 1 h at 37 ◦C.
Finally, using ECL kits (Pierce, Rockford, IL, USA), the data of the target protein were first
normalized to GAPDH or histone.

Immunohistochemistry
Serial tissue sections (4 µm thick) were sliced from paraffin-embedded formalin-fixed
tissues, and immunohistochemical staining was performed. Briefly, tissue sections were
stained using specific primary antibodies, biotin-conjugated secondary antibodies,
and horseradish peroxidase (HRP)-conjugated avidin. Subsequently, specific antibody
interactions were detected with the HRP substrate 3,3′-diaminobenzidine (DAB). Finally,
sections were rinsed and counterstained with hematoxylin. The primary antibodies used
weremousemonoclonal anti-RIP2 (1:50 dilution), rabbit polyclonal anti-caspase-12 (1:800
dilution), and rabbit polyclonal anti-NF-κB p65 (1:400 dilution).

Densitometry image analysis was performed using the procedure described in a previous
study (Qian et al., 2015). The densitometry analysis of immunohistochemical results was
performed by a blinded investigator using Image-Pro Plus analysis software (version 6.0;
Dallas, TX, USA). Ten discontinuous fields (400 ×) were randomly selected from each
section for evaluation, and the color segmentation algorithm was then used to separate the
contributions of the DAB and hematoxylin dyes. The average value of the optical densities
of all selected pixels was the mean optical density (integrated option density/area).

Preparation of CSE
The cigarettes used in the study (3R4F) were manufactured by the Tobacco Research
Institute, University of Kentucky (Lexington, KY, USA). CSE was prepared using a protocol
similar to that previously described (Giebe et al., 2021; Ye et al., 2021; Zeller et al., 2019).
Briefly, 3R4F was lit and suctioned with a miniature desktop vacuum pump to 10 ml of cell
growth medium at a speed of 50 ml/min. After filtration with a 0.22-µm pinhead filter and
adjusting the pH to 7.45, the filtered aliquot was used as the 100% CSE original solution.
Then, the CSE original solution was stored at −20 ◦C for use in in vitro assays, to avoid
repeated freeze-thaw.

We measured the contents of CSE after thawing, including nicotine, using an Agilent
1200 series rapid resolution LC system (Agilent Technologies Inc., Santa Clara, CA,
USA). The chromatographic separation was achieved on an Ultimate XB-C18 column,
150 × 4.6 mm i.d. with 5-µmparticles (WelchMaterials, Shanghai, China). The separation
was performed at a flow rate of 1.0 ml/min, and the column temperature was 25 ◦C. The
quantitation of nicotine was performed using calibration curves of peak area versus nicotine
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concentration. The concentration of nicotine within 100% CSE ranged from 1.65 to
1.86 µg /ml.

Cell culture
The OSCC cell line (HSC-3) was purchased from ATCC and used in our study. The cell
culture medium contained Dulbecco’s modified Eagle medium (DMEM) (Gibco, Grand
Island, NY, USA), penicillin (100 U/L), streptomycin (100 U/L) and 10% (v/v) fetal bovine
serum (Gibco). Fresh medium was supplemented every 2–3 days. Cells were then treated
with different concentrations of CSE (0, 0.5%, 1%, 2%, 4%) for 24 h in a 37 ◦C constant
temperature incubator containing 5% CO2.

siRNA interference
To inhibit RIP2 expression, small interfering RNA (siRNA) against RIP2 was used. The
RIP2 siRNA (∼50 nM in each well of 6-well-plate) was added to Opti-MEM reduced
serum medium at a concentration of 100 pmol/µl, mixed with 5 µl of Lipofectamine
3000, and maintained at room temperature for 20 min. For the transfection assay, 5×
106 cells were seeded in 6-well plates and incubated overnight at 37 ◦C in 5% CO2 until
60%–80% confluence was achieved and were then transfected with siRNA. RIP2 siRNA
sense: CACCAATCCTTTGCAGATAAT.

Statistical analysis
Statistical analyses were performed using SPSS 22.0 statistical software (IBM Corporation,
USA) and GraphPad Prism 6.0 (La Jolla, CA, USA). All continuous data are reported as
the mean ± SD. Data normality tests were carried out by the Shapiro - Wilk statistical
test. The student t -test and One-way ANOVA were used for normally distributed data,
and comparisons between each group were performed using Dunnett’s test. P < 0.05 was
considered statistically significant.

RESULTS
Cigarette smoking induced RIP2-mediated NF-κB activation in OSCC
patients
To explore the possible role of RIP2/NF-κB in OSCC patients with cigarette smoking,
we first detected the levels of RIP2 and NF-κB expression by using western blotting and
immunohistochemical assays. Interestingly, compared with the non-smoker group, RIP2
was markedly increased in the smoker group (Fig. 1A). Immunohistochemistry analysis
showed that RIP2 staining was negative in non-smokers, and stronger in the OSCC tissues
of smokers. The positive expression of RIP2 was mainly located in the cytoplasm of tumor
cells (Fig. 1B). Consistently, results also indicated that NF-κB p65 expression was increased
in the OSCC tissues of the smokers compared with those of the non-smokers (Fig. 1C).
Moreover, we observed positive staining for NF-κB p65 in the cytoplasm and nucleus of
tumor cells in the OSCC tissues of smokers (Fig. 1D). As NF- κB is a nucleus-cytoplasm
shuttling protein, we further analyzed whether its cellular localization changes after
stimulation with cigarette smoking. The results indicated that cigarette smoking promoted
nuclear translocation of NF-κB p65 in OSCC tissues (Figs. 1E and 1F). Together, these data
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indicated that cigarette smoking induced RIP2-mediated NF- κB activation in the OSCC
tissues of smokers.

RIP2 mediated NF-κB activation correlated with the upregulation of
caspase-12
We further detected the expression of caspase-12 in the OSCC tissues of smokers. As
shown in Fig. 2A, caspase-12 protein was obviously higher in the OSCC tissues of smokers
than in those of non-smokers. Moreover, immunohistochemical assays also revealed that
a significantly stronger staining intensity of caspase-12 in the tumor cells and stroma was
observed in the OSCC tissues of smokers than in those of non-smokers (Fig. 2B). The
above results indicated that the expression of RIP2/NF-κB was positively correlated with
that of caspase-12 in OSCC tissues.

CSE promoted activation of RIP2/NF-κB and upregulated caspase-12
in HSC-3 cells
To further confirm the effect of cigarette smoking on the RIP2/NF-κB signaling pathway
and the expression of caspase-12, we examined the levels of RIP2, NF-κB and caspase-12
expression in HSC-3 cells by using western blotting. The results in Fig. 3A indicated that
CSE induced activation of the RIP2/NF-κB pathway in a dose-dependent manner (Fig.
3A). To further identify the effect of CSE on NF-κB-mediated transcriptional activity,
the nuclear protein NF-κB p65 in HSC-3 cells was measured. Our results clearly showed
that CSE treatment induced the activation of the NF-κB signaling pathway (Fig. 3B). In
addition, the protein level of caspase-12 was obviously increased after stimulation with CSE
(Fig. 3C). Our in vitro results were similar to the results obtained in OSCC tissues. These
results indicated that the RIP2/NF-κB pathway was activated and caspase-12 expression
was increased after CSE treatment.

RIP2 positively regulated caspase-12 expression in CSE-treated
HSC-3 cells
To further confirm the relationship between RIP2 and caspase-12 in the presence of CSE
treatment, we used siRNA to reduce the expression of RIP2 in HSC-3 cells. We found that
the knockdown of RIP2 significantly reduced the levels of caspase-12 and total NF- κB p65
expression in CSE-treated HSC-3 cells (Figs. 4A–4D). The effect of RIP2 knockdown also
resulted in a reduction in the accumulation of nuclear NF-κB p65 after treatment with
CSE (Figs. 4E and 4F). These results indicated that RIP2 positively regulates the NF-κB
pathway and caspase-12 expression, which may be involved in the development of OSCC
induced by cigarette smoking.

DISCUSSION
In recent years, there has been an increase in the incidence of OSCC, according to growing
evidence (Zang et al., 2022). It adversely affects the appearance and quality of life in
OSCC patients. OSCC continues to have a poor prognosis despite significant advances in
therapeutic intervention. Therefore, there is an urgent need to find potential mechanisms
and therapeutic targets for OSCC.
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Figure 1 Cigarette smoking activated RIP2/NF-κB pathway in patients with OSCC. (A) Western blot-
ting analysis was performed to assess RIP2 protein level in the oral mucosa tissues of OSCC patients be-
tween non-smokers and smokers. The RIP2 protein of the mean expression in the group of smokers was
first normalized to GAPDH and then they were as compared to the (continued on next page. . . )

Full-size DOI: 10.7717/peerj.14330/fig-1
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Figure 1 (. . .continued)
group of non-smokers using the student t- test. n= 10. (B and D) Representative immunohistochemi-
cal staining of RIP2 (B) and NF-κB p65 (D) in the oral mucosal epithelium of non-smokers and smokers.
Scale bars: 500 µm. MOD, mean optical density. (C and E) Total NF-κB p65 protein and nuclear NF-κB
p65 protein were evaluated by western blot assay, normalized to GAPDH and Histone in the oral mucosal
epithelium of non-smokers and smokers, respectively. n= 10. (F) The histogram showed the correspond-
ing quantification of nuclear NF-κB p65, relative to total NF-κB p65.

Figure 2 Caspase-12 increased in smokers compared with non-smokers among oral mucosa of OSCC
patients. (A and B) Caspase-12 protein was analyzed by western blotting and immunohistochemical as-
says, respectively. The expression of caspase-12 in the group of smokers was normalized to GAPDH and
then were compared to the group of non-smokers using the student t- test. n= 10. Scale bars: 500 µm.
MOD, mean optical density.

Full-size DOI: 10.7717/peerj.14330/fig-2

RIP2 involves in the intracellular innate immune response and participates in
multichannel signal transduction (Gong et al., 2018; Lin et al., 2020a). Moreover, the
dysregulation of RIP2 signaling pathway ultimately promotes the development of cancers
(Zare et al., 2018; Zhou et al., 2021). Chan et al. (2016) showed that higher expression
of RIP2 protein presented in head and neck squamous cell carcinoma tissue than in
noncancerous matched tissue. Our results indicated that RIP2 expression obviously
increased in the OSCC patients with cigarette smoking and CSE-treated HSC-3 cells.
RIP2 activation induced by CSE treatment may drives proinflammatory and exhibit
antimicrobial responses in human oral mucosal epithelial cells. Our present findings are
consistent with a previous study that cigarette smoking upregulated RIP2 expression in
lung tissues in mice and silencing RIP2 gene could ameliorate acute lung injury (Dong et
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Figure 3 Different concentrations of CSE treatment promoted RIP2/NF-κB and caspase-12 protein in
HSC-3 cells. Western blotting was used to analyze the levels of total RIP2, NF-κB p65 (A), nuclear NF-
κB p65 (B), and caspase-12 (C) in HSC-3 cells in the presence of different concentrations of CSE. The tar-
get proteins of the mean expression in the CSE-treated HSC-3 cells were first normalized to GAPDH and
then were compared to the group of non-treated HSC-3 cells. The One-way ANOVA was used for nor-
mally distributed data, and comparisons between each group were using Dunnett’s test. df = 10.

Full-size DOI: 10.7717/peerj.14330/fig-3

al., 2019). The above evidence suggested that an increase of RIP2 protein could directly
correlate with cigarette smoking involving in the progression of OSCC.

After RIP2 activation, NF-κB dimers (such as p65/p50) translocases into the nucleus
and triggers the transcription of target genes (Hoesel & Schmid, 2013). The activation of
NF-κB further promotes the proliferation of tumor cells and accelerates angiogenesis and
contributes to the initiation and progression of different kinds of tumors (Inoue et al., 2018;
Yu et al., 2020). Therefore, NF-κB pathway is a promising therapeutic target in the clinical
practice (Hyder et al., 2020). In our study, we found that the expression of NF-κB was
activated in both smokers with OSCC and CSE-treated HSC-3 cells. Studies have shown
that NF-κB is an important molecule in response to cigarette smoke (Le et al., 2020; Zhang
et al., 2016). CSE strengthened the transcriptional activity of NF-κB via promoting its
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Figure 4 RIP2 knockdownmediated the downregulation of caspase-12 and NF-κB in CSE-treatment
HSC-3 cells. (A) The levels of total proteins, including RIP2, caspase-12, and NF-κB p65, were analyzed
by western blotting in HSC-3 cells transfected with RIP2 siRNA or NC siRNA for 24 h before treatment
with 4% CSE. (B–D) The results were normalized to GAPDH, and compared using the student t- test. (E)
The expression level of NF-κB p65 in the nucleus was further detected by western blotting analysis. The
results were normalized to histone expression, and compared using the student t- test (F).

Full-size DOI: 10.7717/peerj.14330/fig-4

nuclear translocation and DNA binding activity in human A549 cells(Qiu et al., 2017). On
the contrary, other studies showed that cigarette smoke did not increase the activation of
NF-kB in the lung (Tharappel et al., 2010) or human umbilical vein endothelial cells (Chen
et al., 2009). Inconsistent conclusions of cigarette smoke on NF-κB expression among
different studies may depend on different cell types. When we tried to downregulate the
expression of RIP2, we observed that the translocation of NF-κB p65 in the nucleus could
be hampered. These results indicate that CSE triggers the translocation of NF-κB p65 into
the nucleus in a RIP2-dependent manner. Similarly, one study showed that silencing of
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RIP2 suppressed the growth of gastric cancer cell growth by inhibiting cell migration and
inducing apoptosis through the NF-κB signaling pathway (Yang et al., 2021).

Caspase-12 is a cysteine protease and plays an important role in innate immune responses
and inflammation, as well as in cell death (Zhang et al., 2021). Furthermore, recent studies
have also confirmed that the stimulation of cigarette smoke could activate the expression
of caspase-12 (Ding et al., 2018; Tan et al., 2017). Our results showed that caspase-12 was
increased among OSCC patients with cigarette smoking and CSE-treated HSC-3 cells,
respectively. Therefore, the available evidence supports that cigarette smoking upregulates
caspase-12 inOSCC. In addition, the downregulation of caspase-12 induced by RIP2 siRNA
in CSE-treated HSC-3 cells supported that caspase-12 may be a downstream molecular
of RIP2 in cigarette smoking-induced OSCC. Recent studies have revealed that excessive
caspase-12 mediated I κB α degradation and significantly increased the activation of NF-
κB activity (Chow et al., 2021; Chu et al., 2017). Accordingly, we hypothesize that smoking
promotes caspase-12 interaction with RIP2 and further activates NF-κB participating in
the progression of OSCC.

CONCLUSIONS
In summary, our data suggested that cigarette smoking could upregulate RIP2/caspase-
12/NF-κB in OSCC. From a mechanistic perspective, the increased expression of RIP2 was
essential for the activation of caspase-12 and could activate NF- κB. In conclusion, our
results indicated that cigarette smoking may promote the progression of OSCC through
the RIP2/NF- κB signaling pathway, and this process is closely related to caspase-12. RIP2
may be a viable pharmacological target to modulate the development of OSCC. Further
studies are needed to determine the specific mechanism underlying the activation of the
RIP2/caspase-12/NF-κB axis in OSCC due to cigarette smoking.
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