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Abstract

Background: The use of RNAi in both basic and translational research often requires expression of multiple siRNAs from the
same vector.

Methods/Principal Findings: We have developed a novel chicken miR126-based artificial miRNA expression system that can
express one, two or three miRNAs from a single cassette in a lentiviral vector. We show that each of the miRNAs expressed
from the same lentiviral vector is capable of potent inhibition of reporter gene expression in transient transfection and
stable integration assays in chicken fibroblast DF-1 cells. Transduction of Vero cells with lentivirus expressing two or three
different anti-influenza miRNAs leads to inhibition of influenza virus production. In addition, the chicken miR126-based
expression system effectively inhibits reporter gene expression in human, monkey, dog and mouse cells. These results
demonstrate that the flanking regions of a single primary miRNA can support processing of three different stem-loops in a
single vector.

Conclusions/Significance: This novel design expands the means to express multiple miRNAs from the same vector for
potent and effective silencing of target genes and influenza virus.
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Introduction

Since its discovery in 1998, RNA interference (RNAi) has not

only become an enabling technology for studying gene function

but has also provided a new approach for treating several diseases

[1,2]. Short interfering RNA (siRNA), short hairpin RNA

(shRNA) and microRNA (miRNA) can be introduced into cells

or organisms by direct delivery of synthetic oligonucleotides [3].

shRNA and miRNA can also be introduced into cells or organisms

by expression vectors. To date, the most widely used vectors are

retrovirus-based because of their transduction efficiency and stable

and long-term expression of shRNA or miRNA following

integration into the host cell genome [4,5]. Among retroviral

vectors, lentiviral vectors have been studied extensively and shown

to be effective in expressing shRNAs and miRNAs in animals

[6,7].

Application of RNAi in both basic and translational research

often requires expression of multiple siRNAs from the same

lentiviral vector. In one of the early designs, ter Brake et al

constructed vectors where each of the multiple shRNA expression

cassette was driven by a U6 polymerase III (Pol III) promoter [8].

Although multiple shRNAs were expressed simultaneously from

the same vector, repetition of the promoter sequences led to

deletion of the expression cassettes during lentivirus production.

To prevent recombination, the authors constructed vectors where

shRNAs were driven by different Pol III promoters with no

significant sequence homology. Specifically, three human Pol III

promoters U6, H1 and 7SK and one human Pol II promoter U1

were used to express four shRNAs specific for HIV [9]. The stably

transduced cells expressed four anti-HIV shRNAs and were shown

to delay the emergence of resistant viruses in cell cultures.

Another approach to multiple siRNA expression was stimulated

by report that a mouse miR30-based shRNA expression cassette

can be driven by Pol II promoters and provide higher knockdown

efficiency than those driven by the Pol III U6 promoter [10]. The

combination of Pol II promoters and miRNA-based design offers

some significant advantages. First, the use of tissue-specific or

inducible Pol II promoters allows more effective control of the

timing and the level of miRNA expression [11]. Second, the Pol II

promoter supports expression of both miRNA cassettes and

reporter genes, such as GFP, from the same transcript, thus

allowing easier tracking of miRNA expression. Third, using

artificial miRNA cassettes modeled after endogenous miRNAs

seems to avoid the induction of cellular immune responses and

apoptosis [12,13,14].

Different strategies have been investigated to express multiple

artificial miRNAs from the same lentiviral vector. Zhou et al

reported that two tandem copies of the miR30-based cassette can

be expressed in a single transcript driven by a Pol II promoter

[15,16]. Subsequently, Sun et al showed that a single Pol II
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promoter can drive three artificial miR30 cassettes to express

siRNAs all targeting GFP, resulting in further knockdown of the

GFP intensity in the cells [17]. A similar miR30-based approach

was utilized by Zhu et al to knockdown multiple genes [18]. In

addition to miR30-based designs, mouse miR155-based design has

also been used to knockdown multiple genes [19]. Some miRNAs

are present in the genome as a cluster, such as the miR17–92

cluster with six pre-miRNAs encoded in a ,1 kb pri-miRNA. To

explore the miRNA polycistrons for artificial miRNA expression

[20], four different anti-HIV artificial miRNAs under the control

of the CMV promoter were expressed simultaneously and shown

to inhibit virus production in transduced cells. Despite the

progress, application of RNAi technology requires more options

to express multiple shRNAs or miRNAs from the same lentiviral

vector.

In our development of lentiviral vectors capable of expressing

multiple anti-influenza miRNAs, we have developed a novel

chicken miR126-based miRNA expression cassette. The miR126-

based cassette can express one, two or three miRNAs from a single

cassette in the context of a lentiviral vector. We show that each of

the miRNAs expressed from the same lentiviral vector is capable

of potent inhibition of reporter genes in both transient transfection

and stable integration assays. Cells transduced with lentivirus

expressing two or three, but not one, anti-influenza miRNAs also

inhibit influenza virus production. Although the expression

cassette is based on chicken miR126, the resulting lentiviral

vectors also effectively inhibit reporter gene expression in human,

dog, mouse and monkey cells. These results demonstrate the

versatility of the miR126-based miRNA expression cassette for

potent and effective silencing of target genes.

Results

Expression of NP miRNA from the mouse miR30-based
lentiviral vector

The mouse miR30-based miRNA expression cassette has been

widely used to express artificial miRNA in lentiviral vectors [21].

In the pLB2 vector (Figure 1a), the miRNA cassette is under the

control of the RNA polymerase II promoter (CMV-enhancer

chicken beta-actin promoter-CAGGS) and transcribed as part of

the dual selection marker Puro-2A-GFP transcript. To express

anti-influenza artificial miRNA, we replaced the mature miR30

sequences in pLB2 with sequences that target nucleoprotein (NP)

of influenza virus (Figure 1b). Anti-influenza RNAi activity was

evaluated by dual luciferase assays following either transient

transfection or stable integration of the lentiviral vector in chicken

embryonic fibroblast DF-1 cells. In the transient transfection assay,

the miR30-NP lentiviral vector and psicheck-2 dual luciferase

reporter plasmid, in which the NP target sequence was cloned into

the 39 UTR of the synthetic Renilla luciferase gene, were co-

transfected into DF-1 cells. The firefly and Renilla luciferase

activities were measured 48 hrs later and normalized to the ratio

of reporter plasmid without target sequence (set as 100%). As

shown in Figure 1c, transient expression of miR30-NP inhibited

Renilla luciferase activity by ,85%. In the stable integration

assay, we produced lentivirus and infected DF-1 cells at low

multiplicity of infection (MOI = 0.1). The percentage of GFP

positive cells was ,10% two days after infection (data not shown),

suggesting single proviral integration in the majority of the cells.

Transduced cells were selected with puromycin and further

purified by sorting for GFP positive cells (.95%). Luciferase

activity was then measured at 48 hrs following transfection of

psicheck-2 reporter plasmid into the GFP-positive cells. After

normalization, inhibition of Renilla luciferase activity was about

45% (Figure 1d). These results suggest that although NP miRNA

can be expressed from the mouse miR30-based cassette in DF-1

cells, the level of target gene knockdown is modest following stable

integration of the lentiviral vector.

Expression of the endogenous chicken miRNAs from
lentiviral vectors

We reasoned that using chicken miRNA-based expression

cassettes in the lentiviral vector may improve knockdown efficiency

in transduced chicken DF-1 cells. Based on literature reports and

the miRNA database (miRBase), we chose four endogenous chicken

miRNAs gga-miR21, gga-miR126, gga-miR140 and gga-miR451

that are expressed in many different tissues of adult chicken and

chicken embryo [22]. These four chicken miRNAs plus ,200 bp

flanking sequences on either side of the miRNA stem-loop were

amplified by PCR and cloned into the pLB2 lentiviral vector. The

chicken miRNA lentiviral vectors and their corresponding sense or

antisense psicheck-2 reporter plasmids were co-transfected into DF-

1 cells and luciferase activities were assayed 48 hrs later. Expression

of both the sense and antisense strands of gga-miR21, gga-miR126

and gga-miR140 led to the inhibition of Renilla luciferase activity

(Figure 2a). Expression of the sense but not the antisense strand of

gga-miR451 inhibited Renilla luciferase activity, consistent with the

report from miRBase [23].

Because gga-miR21, gga-miR126, gga-miR140 and gga-

miR451 are generally expressed, we assayed their activity in DF-

1 cells by directly transfecting the reporter plasmids into DF-1

cells. As shown in Figure 2b, Renilla luciferase activity was

inhibited by ,98% by the sense strand of gga-miR21, ,20% by

the antisense strand of gga-miR21, and ,60% by the sense strand

of gga-miR140. In contrast, the other endogenous miRNAs did

not significantly inhibit the luciferase activity. Comparing the

inhibition of luciferase activity by the lentiviral expressed and

endogenously expressed miRNAs, these results show that 1) the

lentiviral expressed miR126 (both sense and antisense strands) and

miR140 antisense strand exhibit potent RNAi activity; 2) the

lentiviral expressed miR451 antisense strand does not have any

RNAi activity; 3) the observed RNAi activity of lentiviral

expressed miR21 (both sense and antisense strands) and miR140

sense strand could be due to endogenous miRNAs. These results

suggest that chicken miRNA-based lentiviral vectors could be

developed to express anti-influenza miRNAs.

Expression of NP miRNA via chicken miRNA-based
lentiviral vectors

Based on these results, we selected gga-miR21 and gga-miR126

to construct lentiviral vectors to express NP miRNA. Two different

stem-loop designs were tested for miRNA processing. One design

mimics the secondary structure of the original miRNA precursor.

According to the miRBase, both sense and antisense strands of

gga-miR21 and gga-miR126 can produce mature miRNAs. For

gga-miR21, the more abundant one is the sense strand and for

gga-miR126, the antisense strand. Therefore, we constructed

miR21-NP and miR126-NP lentiviral vectors (Figure 3a) where

the anti-influenza NP sequences replaced the miR21 sense or

miR126 antisense strand, respectively. Because the length of

miR21 and miR126 sequences are different, slightly different anti-

influenza NP sequences, both containing a 20 nucleotide core

sequence of UUGUCUCCGAAGAAAUAAGA, were used to

replace them (Figure 3a). The other design replaces the entire pre-

miRNA stem-loop with one that is commonly used to express

shRNA driven by Pol III promoters (miR21-NP-shRNA and

miR126-NP-shRNA) (Figure 3b) [24].

Novel miRNA Expression Vectors
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To examine the RNAi activity of these different designs, we co-

transfected the lentiviral vectors and NP psicheck-2 reporter

plasmid into DF-1 cells and assayed luciferase activity 48 hrs

later. The results showed that miR126-NP inhibited luciferase

activity by 95% (Figure 3c); miR21-NP-shRNA by 70%; whereas

miR21-NP and miR126-NP-shRNA exhibited only minor or no

inhibition. The observed differences in targeting efficacy by the

different vector designs could be due to differences in miRNA

backbones used and/or slightly differences in NP sequences

cloned into them. Because miR126-NP was most potent, we

chose it for further evaluation. To test the RNAi activity of

miR126-NP in stably integrated DF-1 cells, we transduced DF-1

cells with the miR126-NP lentivirus at an MOI of 0.1.

Transduced cells (GFP positive) were transfected with the

luciferase reporter plasmid and luciferase activity was measured

48 hrs later. Renilla luciferase activity was inhibited by 85%

(Figure 3d).

Development of lentiviral vectors expressing multiple
anti-influenza miRNAs

Based on the miR126-NP stem-loop design, we constructed

miR126-PB1 and miR126-PA, encoding miRNAs targeting

influenza polymerase components PB1 and PA, respectively.

The miR126-PB1 stem-loop was inserted at the 59 end of the

miR126 flanking sequence in pLB2-NP, producing lentiviral

vector pLB2-PB1-NP (Figure 4a). The miR126-PA stem-loop was

inserted at the 39 end of the miR126 flanking sequence in pLB2-

PB1-NP, producing lentiviral vector pLB2-PB1-NP-PA. RNAi

activity of NP, PB1 and PA in these vectors was compared by

transient transfection assays in DF-1 cells using reporter plasmids

that harbored only the NP or PB1 or PA target sequence.

Luciferase activity was inhibited by 95% regardless whether NP or

PB1 or PA miRNA was expressed from lentiviral vectors

expressing NP and PB1, or NP, PB1 and PA (Figure 4b). The

observed RNAi activities were specific as pLB2-NP inhibited only

Figure 1. Inhibition of luciferase activity by NP miRNA expressed from a mouse miR30-based lentiviral vector. (a) Schematic diagram
of the miR30-NP lentiviral vector. The backbone of the vector is pBL2. (b) Sequence of miR30-NP hairpin. Blue color letters represent the antisense
sequences targeting influenza NP transcript. Flanking and hairpin sequences are miR30. (c) Inhibition of luciferase activity by transient transfection of
miR30-NP lentiviral vector in DF-1 cells. Psicheck-2 dual luciferase reporter plasmid (50 ng) and miR30-NP lentiviral vector (450 ng) were co-
transfected in DF-1 cells. Firefly and Renilla luciferase activities were measured 48 hrs later. Shown are relative Renilla to firefly luciferase activities
after normalization to the ratio of control reporter plasmid without target sequence (set as 100%). (d) Inhibition of luciferase activity by stably
integrated miR30-NP lentiviral vector in DF-1 cells. Cells were infected with lentivirus at an MOI of 0.1 then selected with puromycin and further
sorted for GFP-positive cells (.95%). The transduced cells were then transfected with psicheck-2 dual luciferase reporter plasmid (50 ng) and a
control plasmid pUC18 (450 ng). Luciferase activity was measured and normalized as in (c). All bar graphs represent means 6 standard deviations
(SD) of three independent experiments.
doi:10.1371/journal.pone.0022437.g001
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NP, but not PB1 or PA, reporter activity, and pLB2-PB1-NP

inhibited only NP and PB1, but not PA, reporter activity (Figure

S1). In DF-1 cells that were stably transduced with the pLB2-PB1-

NP or pLB2-PB1-NP-PA lentivirus, NP, PB1 and PA reporter

activity was also inhibited by 80–90% (Figure 4c). Consistent with

the RNAi activity, we detected the fully processed NP, PB1 and

PA siRNAs by small RNA Northern blotting in DF-1 cells that

were transiently transfected with pLB2-PB1-NP-PA lentiviral

vector or stably transduced with pLB2-PB1-NP-PA lentivirus

(Figure 4d–f). These results show that three artificial miRNAs can

be expressed from a single cassette of the chicken miR126-based

lentiviral vector.

Inhibition of influenza virus production by stably
expressed anti-influenza miRNAs

Next, we tested whether the lentivirus-expressed anti-influenza

miRNAs are capable of inhibiting influenza virus production. For

this purpose, we used Vero cells, from which type I interferon

genes had been deleted and are ideal for testing virus inhibition by

RNAi. Vero cells were transduced with pLB2-NP, pLB2-PB1-NP,

and pLB2-PB1-NP-PA lentiviruses at an MOI of 0.1. As a control,

Vero cells were transduced with a CPGM lentivirus that expressed

miR30-based miRNA specific for the firefly luciferase transcript.

Stably transduced Vero cells (.95% GFP-positive) were tested for

inhibition of luciferase activity following transfection of appropri-

ate reporter plasmids (Figure 5a). Inhibition of luciferase activity

was significant (by 60–90%) but less than in transduced DF-1 cells,

probably due to differences between the two cell types.

Transduced Vero cells were infected with the PR8 strain of

influenza A virus at an MOI of 0.01 and supernatants were

collected 48 hours later for virus titer assay. Transduced Vero cells

expressing NP only did not show a significant reduction in viral

titer (Figure 5b), whereas transduced Vero cells expressing either

NP and PB1, or NP, PB1 and PA showed a reduction in viral titer

of approximately 10-fold compared to control CPGM transduced

Vero cells.

To exclude the possibility that the anti-viral activity is due to a

non-specific effect of flanking sequences that improve processing of

miR126-NP, we constructed pLB2-ScrA-NP lentiviral vector

where a scrambled sequence replaced PB1, and pLB2-ScrA-NP-

ScrB lentiviral vector where two scrambled sequences replaced

PB1 and PA (Figure S2a and S2b). Stably transduced Vero cells

were examined for luciferase activity following transfection of NP

reporter plasmid. All three vectors (pLB2-NP, pLB2-ScrA-NP and

pLB2-ScrA-NP-ScrB) inhibited NP reporter activities to the same

extent (Figure S2c), suggesting that inclusion of additional flanking

sequences does not improve processing of miR126-NP. We further

challenged transduced Vero cells with influenza viruses and

observed no significant difference in influenza virus inhibition

(Figure S2d). Together, these results demonstrate that expression

of multiple anti-influenza miRNAs from stably integrated lentiviral

vectors is capable of inhibiting influenza virus production.

The gga-miR126 based lentiviral vector design also works
in other cell types

Since RNAi processing machinery is highly conserved among

different species, we tested whether the chicken miR126-based

lentiviral vector also works in other cell types including human

epithelial cell 293T, Madin-Darby Canine Kidney (MDCK)

cells, mouse embryonic fibroblast (MEF) cells, and African

green monkey kidney (Vero) cells. Luciferase activity was

measured in these cell types following transient transfection

Figure 2. Inhibition of luciferase activity by endogenous and lentiviral expressed chicken miRNAs. (a) Inhibition of luciferase activity by
lentiviral expressed chicken miRNAs. Endogenous chicken miRNAs plus ,200 bp flanking sequences on both sides were cloned into pLB2 vector. The
corresponding sense and antisense target sequences were cloned into psicheck-2 dual luciferase reporter plasmid. DF-1 cells were transfected with
lentiviral vector (450 ng) and the corresponding reporter plasmid (50 ng) and luciferase activities were measured 48 hrs later. Shown are relative
Renilla luciferase activities (means 6 SD, n = 3) of chicken miRNA expressed from the sense (S) and antisense (AS) strands. (b) Inhibition of luciferase
activity by endogenously expressed miRNAs. DF-1 cells were co-transfected with 450 ng pUC-18 (as transfection control) and 50 ng psicheck-2
reporter plasmids with endogenous miRNA target sequences and luciferase activities were measured as above. Shown are relative Renilla luciferase
activities (means 6 SD, n = 3) of sense (S) or antisense (AS) strand of miRNAs.
doi:10.1371/journal.pone.0022437.g002
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with the pLB2-PB1-NP-PA lentiviral vector and appropriate

reporter plasmids. Luciferase activity was inhibited by NP, PB1

and PA miRNAs by 70 to 95% (Figure 6a), suggesting that the

chicken miR126-based lentiviral vector is a general platform for

expressing artificial miRNAs. We also tested whether the

miR126-NP stem-loop can be properly processed when

transcribed from a RNA polymerase III promoter. Thus,

miR126-NP was cloned into the pLL3.7 lentiviral vector under

the transcriptional control of the U6 promoter. In addition, six

thymidines (T) were added to the 39 end of the hairpin as a

termination signal for the Pol III. The resulting lentiviral vector

pLL3.7-NP was co-transfected with the reporter plasmid into

DF-1 cells and the luciferase activity was inhibited by ,90%

(Figure 6b), similar to the pLB2-NP vector. Thus, the chicken

miR126-based stem-loop hairpin can also be transcribed and

processed from a Pol III promoter.

Figure 3. Inhibition of luciferase activity by NP miRNA expressed from chicken miRNA-based lentiviral vectors. (a) Structures and
sequences of the miR21-NP and miR126-NP. Mature miR21 or miR126 sequences were replaced with anti-influenza NP sequences (blue). (b)
Structures and sequences of miR21-NP-shRNA and miR126-NP-shRNA. Anti-influenza NP sequences were in blue. (c) Inhibition of luciferase activity by
NP miRNA expressed from lentiviral vectors from a and b. DF-1 cells were co-transfected with lentiviral vector and the corresponding reporter
plasmid, and luciferase activity was measured 48 hrs after transfection. Shown are average relative Renilla luciferase activities (n = 3). (d) Inhibition of
luciferase activity by stably expressed NP miRNA. DF-1 cells were infected with miR126-NP lentivirus (MOI = 0.1) and were selected with puromycin
until GFP-positive cells reached .95%. Cells were then transfected with reporter plasmid and luciferase activity was assayed 48 hrs later. Average
Renilla luciferase activity is shown (n = 3).
doi:10.1371/journal.pone.0022437.g003

Novel miRNA Expression Vectors
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Figure 4. Inhibition of luciferase activity by multiple anti-influenza miRNAs expressed from chicken miR126-based lentiviral
vectors. (a) Schematic diagram of lentiviral vectors expressing one, two or three anti-influenza miRNAs. pLB2, lentiviral vector backbone; pLB2-NP,
pLB2-PB1-NP, and pLB2-PB1-NP-PA, lentiviral vectors expressing NP miRNA, NP and PB1 miRNAs, and NP, PB1 and PA miRNAs, respectively. (b)
Inhibition of luciferase activity by NP, PB1 or PA miRNAs in transient transfection assays. DF-1 cells were co-transfected with lentiviral vectors
(450 ng) and corresponding psicheck-2 reporter plasmids (50 ng). Luciferase activity was measured 48 hrs later. Shown are relative Renilla

Novel miRNA Expression Vectors
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Discussion

In this study, we investigated miRNA-based designs for

expressing multiple artificial miRNAs from a single lentiviral

vector. By testing different mouse and chicken miRNAs, different

hairpins, and different numbers of miRNAs in the same lentiviral

vector, we showed that the chicken miR126-based design supports

robust expression of artificial miRNAs and efficient knockdown of

target genes both in transiently transfected cells and stably

transduced cells (Figure 3c,d). To express multiple miRNAs from

a single vector, previously described methods rely on inserting

multiple miRNA stem-loop cassettes within the 59 and 39 flanking

sequence of pre-miRNAs. Here, we show that in the miR126-

based lentiviral vector, miRNA stem-loop expression cassettes can

be placed on both ends of the flanking sequences of pre-miRNA

and still maintain efficient processing to produce RNAi activity.

Efficient processing of three stem loops interspersed with two

flanking sequences suggests that the flanking sequences facilitate

stem-loop recognition, perhaps by recruiting factors that enhance

stem-loop processing, rather than a context-specific structural role.

Furthermore, our results show that the miR126-based design can

be transcribed by either RNA Pol II or Pol III and the resulting

miRNAs can be processed to exert RNAi activity. In addition,

miR126-based design are also efficiently expressed and processed

in mammalian cells. Together, these results suggest that the

miR126-based design is novel and efficient for expression and

processing of artificial miRNAs for RNAi activity.

MicroRNAs have a dynamic range of expression, extending

from ,1 copy per cell to .10,000 copies per cell. We show that

endogenous gga-miR21 is highly active in the DF-1 cells while

gga-miR126 is not (Figure 2b). In a reverse correlation, artificial

miRNA transcribed from miR126-based design produced potent

RNAi activity while that from miR21-based design did not. This

result suggests that the high level of endogenous miRNA

expression may interfere with the processing of artificial miRNAs

that have identical structures. Perhaps design of artificial miRNAs

based on a less abundant miRNA would be a better choice,

luciferase activities (means 6 SD, n = 3). (c) Inhibition of luciferase activity by NP, PB1 or PA miRNAs in stably transduced DF-1. DF-1 cells were
transduced with pLB2-PB1-NP or pLB2-PB1-NP-PA lentivirus at an MOI of 0.1. Transduced cells (.95% GFP-positive) were transfected with reporter
plasmid with NP, PB1 or PA target sequences. Luciferase activity was measured 48 hrs after transfection. Shown are relative Renilla luciferase
activities (means 6 SD, n = 3). (d–f) Detection of NP, PB1 and PA siRNAs by small RNA Northern blotting. Total RNA was isolated from DF-1 cells
that were either transiently transfected with pLB2-PB1-NP-PA lentiviral vector or stably transduced with pLB2-PB1-NP-PA lentivirus. 6 mg RNA from
transfected cells (lane 1) or 15 mg of RNA from stably transduced cells (lane 2) were fractionated by electrophoresis on a 15% poly-acrylamide gel.
Following transfer, the blots were hybridized with NP, PB1 or PA specific probes and imaged. U6 RNAs were also probed as a loading standard.
Molecular weight markers, U6 RNA, and NP, PB1 or PA siRNAs are indicated. Note, the processed PB1 miRNA ran slightly slower than NP and PA
miRNAs.
doi:10.1371/journal.pone.0022437.g004

Figure 5. Inhibition of influenza virus production in transduced Vero cells expressing multiple artificial anti-influenza miRNAs. Vero
cells were transduced with pLB2-NP, pLB2-PB1-NP, pLB2-PB1-NP-PA, and CPGM (Control) lentiviruses and selected with puromycin to establish
transduced cells (.95% GFP-positive). (a) The transduced cells were transfected with the indicated reporter plasmids to determine inhibition of
luciferase activity. Shown are relative Renilla luciferase activities (means 6 SD, n = 3). (b) Stably transduced cells were infected with PR8 virus at an
MOI of 0.01. 48 hour after infection, the supernatants were collected and assayed for virus titer (PFU) by plaque assay on MDCK cells. Shown are
average (means 6 SD, n = 3) virus titers per milliliter supernatants. * P,0.001 by two way t-test.
doi:10.1371/journal.pone.0022437.g005

Novel miRNA Expression Vectors

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22437



provided that the minor miRNA could be efficiently processed in

the cells of interest.

Our results also shed light on miRNA processing in general.

Both the secondary structure of the pre-miRNA stem-loop and

flanking sequences play important roles in RNAi processing. We

compared identical shRNA hairpins cloned into different miRNA

contexts. The miR21-NP-shRNA was able to generate functional

RNAi but miR126-NP-shRNA was not (Figure 3c). The difference

between the two constructs was merely the flanking sequences

surrounding the hairpin, suggesting that the flanking sequences

play an important role in guiding shRNA processing. It is

interesting to speculate how the loop sequence and miRNA

flanking sequences may cooperate to regulate miRNA processing.

The anti-influenza siRNA sequences we used here target

conserved regions of the influenza genome and have been shown

to potently inhibit virus production in cultured cells [25]. In this

study, the transduced cells expressing an artificial miRNA against NP

alone (the most abundant protein in the virus) did not significantly

inhibit virus production. Unlike synthetic siRNA delivery in which

cells have significant amounts of siRNA incorporated into RNAi

machinery before infection, transduced cells with NP miRNAs alone

did not provide enough protection against influenza viruses.

However, significant inhibition was observed in transduced cells

expressing two or three different anti-influenza miRNAs, suggesting

that simultaneous targeting of different genes of influenza provides

better protection against influenza infection. The natural reservoirs of

influenza viruses are aquatic birds and the viruses are frequently

transmitted from wild species to domestic birds. Upon adaptation to

an intermediate host such as pig, the new virus can acquire the ability

to infect humans and cause severe diseases. Most of the influenza

epidemics and pandemics have been traced to avian sources [26].

One way to prevent transmission of new viruses from avian species to

human is to introduce anti-influenza siRNAs that target conserved

region of influenza virus genes to domestic birds so as to render them

resistant to influenza infection [27]. Development of lentiviral vectors

that express multiple anti-influenza siRNAs provides the first step

towards this goal.

Materials and Methods

Vector construction
Maps, sequences and cloning information for the pLB2

lentiviral vector are available online (Addgene http://www.

addgene.org/). Endogenous chicken miRNAs with ,200 bp

flanking sequences were PCR cloned into NotI and EcoRI site

of the pLB2 lentiviral vector right after puro-2A-GFP. Primers for

PCR are listed in Table 1. Sequences encoding miR21-NP,

miR21-NP-shRNA, miR126-NP and miR126-NP-shRNA with 59

and 39 flanking sequences (Figure S3) were synthesized and cloned

into pUC-57 shutter vector by GenScript (New Jersey). The inserts

were released with Not I and Pme I digestion and cloned into the

Figure 6. Inhibition of luciferase activity in non-chicken cells by miRNAs expressed from the miR126-based lentiviral vector. (a)
Inhibition of luciferase activity in 293T, MDCK, MEF and Vero cells. Cells were co-transfected with pLB2-PB1-NP-PA lentiviral vector (450 ng) and the
appropriate reporter plasmid (50 ng). Luciferase activity was measured 48 hrs later. Shown are relative Renilla luciferase activities (means 6 SD, n = 3).
(b) Inhibition of luciferase activity by miR126-NP transcribed from the U6 promoter. DF-1 cells were co-transfected with either pLL3.7-NP or pLB2-NP
lentiviral vector plus the reporter plasmid. Luciferase activity was assayed 48 hrs later. Shown are relative Renilla luciferase activities (means 6 SD,
n = 3).
doi:10.1371/journal.pone.0022437.g006

Table 1. Sequences of PCR primers for endogenous chicken
miRNAs cloning.

gga-miR21 Fwd 59-GCACAGCGGCCGCCAAACACAAGGGAGGC-39

gga-miR21 Rev 59-GCGAATTCGATGGAGCTTTAAGAGATGC-39

gga-miR126 Fwd 59-GCACAGCGGCCGCGGTGGCTAGAGAAGGACTG-39

gga-miR126 Rev 59-GCGAATTCGAGGGAGTTTCTTAGGCTG-39

gga-miR140 Fwd 59-GCACAGCGGCCGCGGTGCTGTGTGGCAC-39

gga-miR140 Rev 59-GCGAATTCCAAAAATCTAGCTGCATG-39

gga-miR451 Fwd 59-CACAGCGGCCGCGGATATCATCATATACTGTAAGTTCAC-39

gga-miR451 Rev 59-CGAATTCCTGTGCCATCTCTGATTTTAC-39

doi:10.1371/journal.pone.0022437.t001
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pLB2 vector. Following bacterial transformation, 3 to 4 bacterial

clones from each vector were picked and plasmid DNA were

purified and sequenced. The sequences of the inserts from all the

clones were 100% correct. The miR126-PB1 cassette was cloned

into Not I and Swa I sites at the 59 end of flanking sequence of

pLB2-NP lentiviral vector. The miR126-PA cassette was cloned

into the Pme I site at the 39 end of the flanking sequences

(Figure 4a). Sequences of these anti-influenza artificial miRNA

cassettes are listed in Table 2. To construct pLL3.7-NP, the

termination signal (TTTTTT) was added to the 39 end of

miR126-NP and one T was added to the 59 end of miR126-NP in

order to reconstitute the U6 promoter. The cassette was cloned

into the HpaI and XhoI site in pLL 3.7 vector. To construct

psicheck-2 reporter plasmids, about 30 bp NP, PB1 and PA

endogenous influenza sequences (Table 3) were cloned into

multiple cloning sites of the psicheck-2 dual luciferase reporter

plasmid (Promega) following manufacturer’s instruction.

Cell culture
DF-1, Vero, MDCK cells (obtained from ATCC), primary

MEF and 293T [21] were cultured in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal calf serum, penicillin

(100 U/ml) and streptomycin (100 mg/ml).

Dual Luciferase Assay
Co-transfection experiments were performed in 24-well plates.

16105 cells were seeded per well in 500 ml medium. 24 hr later,

50 ng psicheck-2 reporter plasmid and 450 ng lentiviral vector or

pUC-18 were co-transfected with 1.5 ml TransITH-LT1 Reagent in

50 ml according to manufacturer’s instruction (Mirus). 48 hrs later,

firefly and Renilla luciferase activities were analyzed with the

Dual-Luciferase reporter assay system (Promega).

Small RNA Northern Blot
Total cellular RNAs were extracted from transduced cells or

transient transfected cells with the mirVana miRNA isolation kit

(Ambion) according to the manufacturer’s protocol. For northern

blot analysis, RNAs were separated on a 15% polyacrylamide

denaturing gel, electro-transferred to Hybond-N membrane (Amer-

sham Bioscience, Piscataway, NJ) and crosslinked to the membrane

using UV light at a wavelength of 254 nm (1200 mJ6100). The

membrane was probed with c-32P-labled LNA oligonucleotide

probes (LNA position underlined) NP: 59- GGATCTTATTTCT-

TCGGAGACAA-39, PB1: 59-TGAAGATCTGTTCCACCATT-

GAA-39 PA: 59-GCAATTGAGGAGTGCCTGATTAA-39. Sig-

nals were detected using a phosphorimager (Molecular Dynamics).

Lentivirus production and transduction
293T cells were cultured to 80% confluency in 175 cm2 culture

flask. Lentiviruses were produced by co-transfection of lentiviral

vector plasmid (16 mg) and packing plasmids D8.9 (8 mg) and VSVg

(8 mg) with 96 ml TransITH-LT1 and 3.2 ml OptiMEM (Gibco

BRL) into 293T cells. On the second day, medium was replaced

with fresh medium. On the third day, supernatant was collected and

cellular debris was removed by low-speed centrifugation. The

supernatant was filtered through a 0.45 mm low-protein binding

membrane (Pall Life Science). To concentrate the virus, supernatant

was ultra-centrifuged at 25,000 rpm for 90 minutes. Supernatant

was removed and the virus was resuspended in 100 ml medium

overnight. The aliquots of virus solution were stored at 280uC.

Note, compared to the viral titer with single miRNA cassette, the

viral titers dropped 2–4 fold when lentiviral vector had with two and

three miRNA cassettes (Figure S4).

56105 DF-1 or Vero cells were seeded in 6-well plates 24 hour

before transduction. Concentrated lentiviruses were add to the

medium with 8 mg/ml polybrene and spun at 2500 rpm at 32uC
for 90 mins. Two days after lentivirus infection, 5–10 mg/ml

puromycin was add to the medium. About 10 to 14 days post-

infection, cells were analyzed for GFP by flow cytometry. If the

percentage of GFP-positive cells was below 90% after puromycin

selection, cells were further enriched by cell sorting to reach

.95% GFP+ cells.

Influenza virus infection and titration
56105 Vero cells were seeded in a 6-well plate. 24 hours later,

cells were infected with PR8 virus at an MOI of 0.01 at room

temperature for one hour. After the viral solution was removed,

3 ml of DMEM medium containing 0.3% BSA, pen/strep and

4 mg/ml trypsin was added to each well. To determine viral titer

by plaque forming unit (PFU) assay, MDCK cells were seeded at

0.56106 cells/well in 6 well plates in DMEM (10% FBS, 100 U/

mL pen/strep, 2 mM glucose) and allowed to grow to single-layer

confluence overnight. Media was aspirated from the wells, and

200 mL of virus-containing samples serially diluted 10-fold in PBS

were added onto cells. After one hour incubation with periodic

shaking, cells were covered with 2 mL of semi-solid 2% agar/

media solution to restrict viral particle spread to cell-to-cell

contacts. Plaques were counted after 3 days. Assay was performed

in triplicates.

Supporting Information

Figure S1 Lentiviral vector-mediated inhibition of re-
porter gene expression is sequence specific. DF-1 cells

were co-transfected with either pLB2-NP (a) or pLB2-PB1-NP (b)

lentiviral vectors (450 ng) and NP, PB1 or PA psicheck-2 reporter

plasmids (50 ng) and luciferase activity was measured 48 hrs later.

Shown are relative Renilla luciferase activities (means 6 SD,

n = 3).

(TIF)

Figure S2 Flanking sequences do not improve process-
ing of miR126-NP. (a) Schematic diagram of lentiviral vectors:

Table 2. Sequences of anti-influenza artificial miRNA
cassettes.

miR126-NP 59–GCTGGTGACGGGTTCTTATTTCTTGGGAGACACGCTGTGACAC-
TTCAAACTTGTCTCCGAAGAAATAAGATCCTGTGGTCAGCA-39

miR126-PB1 59–GCTGGTGACGTGTAGATCTGTTCCTCCATTGACGCTGTGACAC-
TTCAAACTTCAATGGTGGAACAGATCTTCATGTGGTCAGCA-39

miR126-PA 59–GCTGGTGACGGCTATTGAGGAGTGGCTGATTACGCTGTGACAC-
TTCAAACTTAATCAGGCACTCCTCAATTGCTGTGGTCAGCA-39

Sequences targeting influenza virus are in bold.
doi:10.1371/journal.pone.0022437.t002

Table 3. Endogenous influenza sequences cloned into the
psicheck-2 dual luciferase reporter as the targets for anti-
influenza shRNAs and artificial miRNAs.

psicheck-2-NP 59-GAAGGATCTTATTTCTTCGGAGACAAGC-39

psicheck-2-PB1 59-ATGAAGATCTGTTCCACCATTGAAGAGC-39

psicheck-2-PA 59-AGCAATTGAGGAGTGCCTGATTAATGATCCCTG-39

doi:10.1371/journal.pone.0022437.t003
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backbone, pLB2-NP, pLB2-ScrA-NP, and pLB2-ScrA-NP-ScrB.

miR126-PB and miR126-PA cassettes were replaced with

miR126-ScrA and miR126-ScrB (b), respectively. The scrambled

sequences A and B (in blue) used here do not target influenza

genome. (c) Vero cells were transduced with pLB2-NP, pLB2-

ScrA-NP and pLB2-ScrA-NP-ScrB and sorted for GFP-positive

cells (.95%). The transduced cells were transfected with the NP

reporter plasmid and luciferase activity was measured 48 hrs later.

Shown are relative Renilla luciferase activities (means 6 SD,

n = 3). (d) Stably transduced Vero cells were infected with PR8

virus at MOI of 0.01. 48 hrs after infection, the supernatants were

collected and assayed for virus titer by plaque assay on MDCK

cells. These results demonstrate that inclusion of flanking

sequences does not enhance anti-NP activity by improving

processing of miR126-NP.

(TIF)

Figure S3 Complete sequences of miR21-NP, miR126-
NP, miR-NP-shRNA and miR126-NP-shRNA. NP miRNA

and NP shRNA sequences are in blue. Not I and Pme I restriction

enzyme sites are underlined.

(PDF)

Figure S4 Comparison of viral titer between lentiviral
vectors with single, double and triple miRNA cassettes.
293T cells were infected with lentiviruses made from lentiviral

vectors with single, double and triple miRNA cassettes. The viral

titer dropped 3.8 folds when a second miRNA cassette was added

into the pLB2 lentiviral vector and dropped another 2 folds when

a third miRNA cassette was added. pLB2-NP (1.26108 TU/mL),

pLB2-PB1-NP (3.26107 TU/mL) and pLB2-PB1-NP-PA (1.66
107 TU/mL). Shown are transduction unit/mL (means 6 SD,

n = 5).

(TIF)
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