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With their categorical requirement for host ribosomes to
translate mRNA, viruses provide a wealth of genetically
tractable models to investigate how gene expression is
remodeled post-transcriptionally by infection-triggered
biological stress. By co-opting and subverting cellular
pathways that control mRNA decay, modification, and
translation, the global landscape of post-transcriptional
processes is swiftly reshaped by virus-encoded factors.
Concurrent host cell-intrinsic countermeasures likewise
conscript post-transcriptional strategies to mobilize criti-
cal innate immune defenses. Here we review strategies
andmechanisms that control mRNA decay,modification,
and translation in animal virus-infected cells. Besides set-
tling infection outcomes, post-transcriptional gene regu-
lation in virus-infected cells epitomizes fundamental
physiological stress responses in health and disease.

Responses to environmental and physiological stress
demand swift, coordinated remodeling of the genome-
wide expression landscape. Such abrupt adaptation pro-
voked by stimuli that upset homeostasis is often con-
trolled post-transcriptionally by mRNA decay and
translation. As a powerful, genetically tractablemodel, vi-
rus infection provides a window to interrogate howmam-
malian cells react to biological stress and identify how
virus gene products shape host cell responses by accentu-
ating or subverting them. Indeed, virus-encoded effectors
interact with cellular targets to regulate virus and host
gene expression post-transcriptionally and determine in-
fection outcomes. Virus mRNAs are absolutely reliant
on host ribosomes and compete for them with cellular
mRNAs. Similarly, differential mRNA accumulation reg-
ulated in part by RNAmodification and decay is exploited
by viruses to complete their reproductive cycle and by

host immune defenses to limit virus replication. Besides
revealing fundamental mechanisms regulating gene ex-
pression and infection biology, viruses provide insight
into human disease. Here, we review molecular interac-
tions between select animal viruses and their hosts that
regulate mRNA decay, modification, and translation,
highlighting developments pertaining to genome-wide
changes and stress responses.

Synopsis of virus genome structure and reproductive
strategies

Viruses are obligate intracellular parasites unable to repro-
duce outside of host cells. Within eukaryotic hosts, virus-
es replicate in the cell cytoplasm or nucleus. Not all
infections cause clinical disease, and outcomes vary de-
pending on host, cell type, and immune status. Although
acute infection results in virus reproduction and often
host cell destruction, persistent infections exhibiting
chronic or episodic virus production may endure over
the host’s lifetime. Viruses are classified by genome struc-
ture and replication strategies, each of which influences
how viral mRNAs engage and impact cellular post-tran-
scriptional regulatory pathways.

Composed of single- or double-stranded (ds) DNA or
RNA, virus genome structures and sizes are diverse, rang-
ing from ≤10 kb for small RNA or DNA viruses to >200
kb for the largest human DNA viruses. Still bigger mega-
base genomes exist for DNA viruses that infect Acantha-
moeba (Schulz et al. 2017). RNA virus genomes are
composed of single or multiple nucleic acid segments.
Even large genomes maximize coding capacity by using
proteases to generatemultiple polypeptides fromone single
ORF, overlapping ORFs, and frameshifting (Atkins et al.
2016; Jan et al. 2016; Penn et al. 2020). Virus genome struc-
ture impactsmRNAbiogenesis. Single-strand RNAviruses
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with genome polarity identical to that of mRNA [(+)-strand
RNA viruses], with the exception of retrovirus virion RNA
inside incoming virus particles, are translated upon infec-
tion, whereas those with opposite polarity [(−)-strand
RNA viruses] or dsRNA genomes require a virus-encoded
RNA-dependent RNA polymerase (RdRp) to produce
mRNA. Following reverse transcription of their (+)-strand
RNA genome and chromosomal integration, retrovirus
mRNA biogenesis requires the host RNA polymerase II
(RNAPII) and associated processing factors. While nucle-
ar-replicatingDNAviruses also rely on hostmRNAbiogen-
esis and processing factors, poxviruses such as vaccinia
virus (VacV) replicate in the cytoplasm and encode viral
functions for transcription, capping, and 3′ end processing.
While mRNA biogenesis and genome replication strate-

gies vary, virus reproduction and protein synthesis are con-
tingent on host ribosomes. Virusesmay interfere with host
protein synthesis by diverse mechanisms, ranging from
near-global inhibition called host shutoff, which often
involves destabilizing host mRNAs or inactivating transla-
tion factors, to triaging which host mRNAs are translated.
Besides fostering virus mRNA translation, host shutoff re-
stricts antiviral immune responses including interferon
(IFN) production, which antagonizes virus reproduction
and spread. Host antiviral effectors, many of which are in-
duced by IFN, similarly target RNA stability and protein
synthesis to suppress virus replication. Accordingly, post-
transcriptional control of host cell-intrinsic immune de-
fenses and virus reproduction is often achieved by regulat-
ing mRNA translation, modification, and decay.

Shaping the infected cell mRNA landscape

Evading, co-opting, or supplementing the host RNA decay
machinery with viral factors remodels infected cell
mRNA composition. Deadenylation-dependent decay is
the canonical mechanism for bulk mRNA turnover
whereby the stabilizing 3′-terminal poly(A) tail of most
cellular mRNAs is degraded by deadenylase complexes
CCR4–NOT and PAN2/3 (Heck and Wilusz 2018). Once
shortened to preclude binding of cytoplasmic poly(A)-
binding protein (PABP), an RNA-decapping complex is re-
cruited, comprised of enzyme Dcp2, Dcp1, and decapping
enhancer proteins (Fig. 1A). Upon protective m7G cap re-
moval, the cellular 5′–3′ exonuclease Xrn1 degrades
mRNAs bearing an exposed 5′ monophosphate (Fig. 1A).
Alternatively, the RNA exosome complex can degrade
deadenylated RNAs 3′–5′. Deadenylase recruitment by se-
quence-dependent binding of discrete RNA-binding pro-
teins (RNA-BPs), such as the AU-rich element (ARE) BP
tristetraprolin (TTP) or microRNAs, targets specific
mRNAs for decay. Conversely, RNA-BPs that impede de-
cay promoting factor binding stabilize specific mRNAs
(Fukao and Fujiwara 2017).

Antiviral roles for mRNA decay and viral defensive lines

To evade the host RNA decay machinery, virus RNAs
contain structures that impede degradation and sequenc-

es that recruit stabilizing RNA-BPs (Fig. 1A). Viruses also
manipulate stabilizing and destabilizing host factor
availability. Most viral RNAs possess a 5′ m7G cap and
poly(A) tail akin to cellular mRNAs or features that pro-
tect them from exonucleases. m7G caps are added to
RNAPII transcribed viral mRNAs by the cellular capping
machinery in the nucleus (most DNA viruses and retro-
viruses), adjoined by viral capping enzymes (poxviridae
and many RNA viruses), or acquired by excising a short
5′-terminal fragment from host mRNAs (“cap snatch-
ing”) that in turn primes virus RdRp-directed transcrip-
tion (orthomyxoviridae [e.g., influenza], arenaviridae,
and bunyaviridae [e.g., Lassa fever virus]). Alternatively,
a viral protein (VPg) covalently attached to (+)-sense virus
genomes (caliciviridae and picornaviridae) can protect
the RNA 5′ end (Decroly and Canard 2017). Unusually,
two copies of liver-specific cellular microRNA miR-122
bind to a 5′ sequence in the (+)-sense hepatitis C virus
(HCV) RNA genome, blocking Xrn1-mediated decay
and promoting translation (Henke et al. 2008; Li et al.
2013). HCV replication further requires DEAD-box
RNA helicase eIF4A2, which interacts with the virus
replicon in a mIR122-dependent manner and is critical
for gene regulation by microRNAs (Ahmed et al. 2018;
Wilczynska et al. 2019).
Distinct tactics preserve poly(A) 3′ tails, which are add-

ed by the nuclear host machinery (most DNA viruses), by
viral poly(A) polymerases (poxviridae), or by transcription
of a poly(U) template (e.g., paramyxoviridae, rhabdoviri-
dae, and orthomyxoviridae). Viral poly(A) tail stability
may be enhanced by non-A nucleotide incorporation to
slow deadenylation, so-called “mixed tailing,” promoted
by virus-encoded sequences (Fig. 1A; Hyrina et al. 2019;
Kim et al. 2020). Following recognition of stem–loops in
hepatitis B virus (HBV) RNAs and human cytomegalovi-
rus (HCMV) noncoding (nc) RNAs by the cellular RNA-
BP ZCCHC14, recruitment of TENT4 noncanonical
poly(A) polymerases allows non-A nucleotide incorpora-
tion (often Gs) into viral poly(A) tails (Kim et al. 2020).
HCMV also up-regulates cytoplasmic polyadenylation
machinery, extending virus and cellular mRNA poly(A)
tails (Batra et al. 2016). While flaviviride, bunyaviridae,
and arenaviridae encode a 3′-terminal stem–loop to block
exonucleases, an RNA 3′-terminal sequence bound by ro-
tavirus protein NSP3 (Fig. 1A) stimulates translation and
likely protects from exosome action (Brinton et al. 1986;
Meyer and Southern 1993; Deo et al. 2002; Geerts-Dimi-
triadou et al. 2012; Gratia et al. 2015).
To disrupt RNA decay, viruses obstruct host factor

function using structured RNA and/or by perturbing
their localization (Fig. 1A). Proteases encoded by porcine
reproductive and respiratory syndrome virus (PRRSV),
poliovirus (PV), and coronavirus (CoV) cleave decapping
activator Dcp1a (Dougherty et al. 2011; Tao et al. 2018;
Zhu et al. 2020). PV also induces degradation of deadeny-
lase PAN3 and exonuclease Xrn1 and disrupts processing
bodies (P-bodies), cytoplasmic sites enriched for RNA de-
cay proteins (Dougherty et al. 2011). During rotavirus in-
fection, Nsp1 degrades PAN3, both Xrn1 and Dcp1a are
relocalized from the cytoplasm to nucleus (Bhowmick
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et al. 2015), and additional host decay proteins are relo-
calized to cytoplasmic inclusions (Dhillon and Rao
2018; Dhillon et al. 2018). Similarly, adenovirus (Ad)
relocalizes decay proteins including Xrn1 to cytoplasmic
aggresomes (Greer et al. 2011). Degrading or sequestering
these host mRNA decay effectors is expected to slow vi-
ral and cellular RNA turnover in infected cells, but has
not been fully examined. In a different approach, a struc-
tured 3′ UTR in flavivirus (+)-sense RNA genomes limits
complete 5′–3′ digestion by Xrn1 (Pijlman et al. 2008).
Short, noncoding subgenomic flavivirus RNAs (sfRNAs)
accumulate as a result (Silva et al. 2010; Chapman et al.
2014a,b), functionally sequestering XRN1, as demon-
strated by global host mRNA stabilization in HCV-in-
fected cells (Moon et al. 2015). While expected to
extend flavivirus RNA genome longevity, how host
mRNA dysregulation contributes to infection pathogen-
esis remains unknown.

Host mRNA quality control pathways that ensure tran-
scripts bearing mutations or processing errors and spuri-
ous transcripts are destroyed also dispose of viral RNAs.
RNA viruses with sequentially arranged ORFs are subject
to nonsense-mediated decay (NMD), which targets tran-
scripts that have a long distance between a stop codon
and the poly(A) tail, and can restrict virus replication
(Popp et al. 2020; May and Simon 2021). With long 3′

UTR-containing RNAs vulnerable to NMD, retroviral
RNA elements in Moloney murine leukemia virus
(MMLV) andRous sarcomaviruspreventNMDmachinery
detection and cleavage, respectively (Weil and Beemon
2006; Hogg and Goff 2010). The cellular helicase UPF1,
which is required for NMD target recognition (Rao et al.
2019), is down-regulated by human immunodeficiency vi-
rus 1 (HIV-1) and inhibited by human T-lymphotropic vi-
rus type 1 (HTLV-1) protein tax (Mocquet et al. 2012;
Nakano et al. 2013). Zikavirus (ZIKV), Semliki forest virus

BA

C D

Figure 1. Viral strategies to oppose and promote mRNA decay. (A) Inhibition of cellular proteins that effect 5′–3′ mRNA decay can be
achieved by protection fromdecapping by cap binding proteins (VPg) and obstruction of the exonuclease Xrn1 bymiRNAs andRNA struc-
ture (sfRNA). 3′ end decay is similarly opposed by recruitment of viral proteins and formation of RNA structure, and “mixed tailing” can
also inhibit poly(A) tail deadenylation by CCR4–NOT. Both 5′ and 3′ targeting cellular mRNA decay proteins may be degraded or relocal-
ized during infection. (B) Viruses inhibit OAS/RNase L and ZAP antiviral cellular RNA decay pathways using diverse strategies. Recog-
nition of dsRNA by OAS is blocked by viral dsRNA-BPs. Viral phosphodiesterases (PDEs) degrade second messenger 2-5A. RNase L
activation can also be blocked by viral proteins, up-regulated cellular negative regulator ABCE1, or viral RNA structures. ZAP recognition
of virus RNA (vRNA) is evaded by CG suppression, viral ZAP-binding proteins, and ZAP cleavage by virus proteases. (C ) Viral proteins
stimulate mRNA decay via multiple modalities. They can contain direct enzymatic activity such as mRNA decapping and endonucleo-
lytic cleavage, which may be cap-proximal. In contrast, coronavirus nsp1 binds the 40S ribosome and, although no direct nucleolytic ac-
tivity has been identified, effects mRNA cleavage in infected cells, leading to speculation that it recruits a host decay enzyme. (D) Viral
RNAPAMPs are directly controlled by viral dsRNA-specific exonucleases orU-specific endonucleases that, by limiting the potential for 5′

(−)-strand poly(U) sequences to complex with A-rich sequences, prevent dsRNA formation.
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(SFV), andCoVcapsidproteins also interactwithUPF1and
can antagonize NMD (Fontaine et al. 2018; Wada et al.
2018; Gordon et al. 2020; Contu et al. 2021).
Multiple antiviral host RNA decay pathways are en-

coded by IFN-stimulated genes (ISGs). Oligo adenylate
synthetases (OASs) 1, 2, and 3 bind and are activated
by dsRNA, a pathogen-associated molecular pattern
(PAMP) generated by RNA virus replication or from com-
plementary transcripts of opposing DNA virus genome
strands. Activated OAS produces 2′–5′ oligo adenylate
(2-5A), which stimulates latent RNase L (Fig. 1B), an
endoribonuclease that broadly attacks mRNA and rRNA
to inhibit translation and promote apoptosis. Viral coun-
termeasures (Fig. 1B) include shielding dsRNA from
OAS detection by deploying dsRNA-BPs such as herpes
simplex virus 1 (HSV-1) Us11 (Sànchez and Mohr 2007),
HCMV TRS1 and IRS1 (Marshall et al. 2009), VacV E3L
(Chang et al. 1992), influenza virus A (IAV) NS1 (Min
and Krug 2006), and reovirus σ3 (Imani and Jacobs 1988).
Downstream from OAS activation, CoV and rotavirus
phosphodiesterases cleave 2-5A to prevent RNase L acti-
vation (Zhao et al. 2012; Zhang et al. 2013; Thornbrough
et al. 2016; Goldstein et al. 2017), while Theiler’s murine
encephalomyelitis virus L∗ protein inhibits RNase L acti-
vation by blocking 2-5A binding (Sorgeloos et al. 2013;
Drappier et al. 2018), and PV RNA elements competitive-
ly inhibit RNase L (Han et al. 2007; Townsend et al. 2008).
In contrast, EMCV and HIV up-regulate ABCE1 (Marti-
nand et al. 1998, 1999), a host RNase L BP that prevents
activation by 2-5A (Bisbal et al. 1995), turning an endoge-
nous RNase L regulator against the host.
Zinc finger antiviral protein (ZAP) is an ISG-encoded

RNA-BP with a preference for GC-rich sequences and
thus functions to detect “nonself” RNA (Takata et al.
2017). ZAP activity has been ascribed to translational in-
hibition and RNA decay in RNA virus infections, the lat-
ter linked to RNA exosome recruitment (Guo et al. 2007)
and the host endonuclease KHNYN (Ficarelli et al.
2019). CG dinucleotide suppression in HIV-1 and
HCMV genomes, mimicking mammalian DNA ge-
nomes, is a tactic to resist ZAP (Fig. 1B; Takata et al.
2017; Lin et al. 2020; Gonzalez-Perez et al. 2021). Where-
as IAV protein PB2 inhibits RNA binding by ZAP (Tang
et al. 2017), ZAP is cleaved by PRRSV and enterovirus
A71 (EV-A71) proteases (Xie et al. 2018; Zhao et al.
2020) and sequestered by VacV protein C16 (Peng et al.
2020). ZAP is expressed as long (L) and short (S) isoforms,
both of which contain RNA recognition motifs but differ
in intracellular localization and RNA targeting (Schwerk
et al. 2019; Kmiec et al. 2021). ZAP-S also binds to the
SARS-CoV-2 programmed ribosomal frameshifting
(PRF) RNA element to inhibit PRF, which is essential
for RdRp and nonstructural protein production (Zimmer
et al. 2021).
Last, ISG20 possesses 3′–5′ exoribonuclease activity in

vitro (Nguyen et al. 2001) and suppresses RNA virus rep-
lication (Espert et al. 2003; Zhou et al. 2011). Antiviral
action in vivo, however, relies more on ISG20 inhibiting
viral mRNA translation and modulating ISG expression
than RNA decay (Weiss et al. 2018; Wu et al. 2019).

Proviral roles for mRNA decay—viruses on the offensive

To ensure translational dominance, some virus mRNAs
rely on their sheer abundance comparedwith hostmRNAs,
rather than specificcis-elementsor trans factors, to compet-
itively acquire ribosomes (Bercovich-Kinori et al. 2016; Fin-
kel et al. 2021). By encoding endoribonucleases that
accelerate RNA decay (Fig. 1C), Kaposi’s sarcoma-associat-
ed herpesvirus (KSHV) andHSV reduce infected cellmRNA
abundance (Glaunsinger and Ganem 2004; Pheasant et al.
2018; Friedel et al. 2021). Broad targeting of host and viral
mRNAs is observed, the latter facilitating sharp temporal
transitions in virus gene expression (Pasieka et al. 2008).
The HSV-1 virion host shutoff endonuclease (vhs) is target-
ed tomRNAs by associatingwith translation initiation fac-
tors eIF4H and eIF4A (Doepker et al. 2004; Feng et al. 2005;
Page and Read 2010), although spliced mRNAs are tran-
siently protected from vhs cleavage until exon junction
complex removal by the first round of translation (Sadek
and Read 2016). A loose target consensus sequence was
found for the KSHV endoribonuclease sox as well as a
RNA element that protects select host immune mRNAs
from decay (Gaglia et al. 2015; Muller and Glaunsinger
2017). Besides its shrewd use by segmented, (−)-sense
RNAviruses to acquire 5′ ends, cap snatching results in de-
capitated host transcript decay (Fig. 1C). The endoribonu-
clease is provided by virus RdRp components (IAV PA
protein and bunyavirus large “L” protein). During IAV PA
translation, a ribosomal frameshift generates a second
endoribonuclease, PA-X (Fig. 1C), to further enforce host
shutoff (Jagger et al. 2012; Bavagnoli et al. 2015; Chaimayo
et al. 2018). PA-X interactswith hostmRNAprocessing fac-
tors and preferentially targets splicedmRNAs (Gaucherand
et al. 2019).
VacV uses a distinct tactic by encoding two mRNA

decapping enzymes (D9 andD10) (Fig. 1C) produced at dif-
ferent times during infection, each of which contains a
nudix hydrolase motif similar to that found in cellular
Dcp2 (Parrish and Moss 2007; Parrish et al. 2007). While
Dcp2 is active within a complex of decapping-enhancing
proteins needed for mRNA targeting, D9 and D10 require
no additional proteins for activity and contribute to global
host shutoff (Parrish and Moss 2007; Parrish et al. 2007).
Viral transcripts are not immune to D9 and D10 (Liu
et al. 2015), and whether these enzymes show any target
selectivity remains unknown.
Although discovered as host shutoff effectors that pro-

mote virus mRNA ribosome access, viral mRNA decay
enzymes unexpectedly control immunogenic viral
dsRNA accumulation. In addition to limiting protein syn-
thesis (via OAS/RNase L), dsRNA stimulates IFN produc-
tion and antiviral ISG expression (Liu and Gack 2020).
Attenuated replication and hyperactivation of host de-
fenses associated with dsRNA accumulation occur during
infectionwith virusmutants deficient for VacV decapping
enzymes (Liu et al. 2015), IAV PA-X (Jagger et al. 2012;
Hayashi et al. 2015; Rigby et al. 2019), and HSV-1 vhs
(Strelow and Leib 1995; Pasieka et al. 2008; Burgess and
Mohr 2018; Dauber et al. 2019). Instead of destabilizing
RNA globally, other viruses focus their RNA decay
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enzymes on virus RNAs detected as PAMPs (Fig. 1D).
CoVs deploy a ribonuclease endoU that degrades (−)-sense
viral RNA bearing 5′-U tracts copied from (+)-strand poly
(A) tails (Kindler et al. 2017; Hackbart et al. 2020), while
Lassa fever virus (LASV) NP has 3′–5′ exoribonuclease ac-
tivity that degrades dsRNA (Qi et al. 2010; Hastie et al.
2011; Mateer et al. 2020). Viruses lacking these proteins
accumulate dsRNA and replicate poorly.

Viruses also disrupt targeted decay pathways. The gen-
erally destabilizingAU-rich element (ARE)-BPAUF1 is se-
questered by a ncRNA (EBER1) produced by Epstein-Barr
virus (EBV), a herpesvirus subfamily member, and this is
proposed to extend virus RNA half-life (Lee et al. 2012).
AUF1 is degraded by picornaviruses, and while it directly
binds picornaviral RNA, its capacity to inhibit infection
has been linked to mRNA translation and stability
(Rozovics et al. 2012; Cathcart et al. 2013; Wong et al.
2013). Conversely, RNA virus genomes recruit stabilizing
ARE-BP HuR (also known as ELAVL1) (Sokoloski et al.
2010; Nadar et al. 2011; Shwetha et al. 2015).

Host decay enzymes can be co-opted to play proviral
roles too. Xrn1 is required by VacV to degrade decapped
mRNA and suppress accumulation of dsRNA from com-
plementary viral transcripts (Burgess and Mohr 2015;
Liu and Moss 2016). A similar role for Xrn1 is likely in
Sindbis virus (SINV) and IAV-infected cells as enhanced
IFN induction and impaired virus replication are observed
in Xrn1 knockout cells (Garcia-Moreno et al. 2019; Liu
et al. 2021). The SKI complex, an RNA helicase cofactor
of the cytosolic exosome, stimulates CoV and IAV replica-
tion (Weston et al. 2020), possibly via interactions with vi-
rus dsRNABPs (IAVNS1 andMERSORF4a) that suppress
IFN signaling (Niemeyer et al. 2013; Ayllon and García-
Sastre 2015). Although endonucleolytic activity has not
been found in vitro, CoV Nsp1 reportedly promotes host
mRNA decay (Fig. 1C), suggesting an unidentified host
endoribonuclease may be needed (Kamitani et al. 2009;
Nakagawa and Makino 2021). Finally, viruses repurpose
host decay factors. RNA (+) strand viruses including
HCV conscript the Lsm1–7 complex, which usually stim-
ulatesmRNAdecapping, to promote virusmRNA transla-
tion and RNA replication (Díez et al. 2000; Scheller et al.
2009; Jungfleisch et al. 2015).

Although infection changes host and viral RNA decay
dynamics, the secondary impact on RNA-BP availability
and activity is poorly understood. Broad RNA destabiliza-
tion reduces the abundance of RNAs targeted by RNA-
BPs, while virus RNA (vRNA) accumulation qualitatively
alters the pool of RNA-bound versus available RNA-BPs.
RNA decay triggered by viral endonucleases perturbs tran-
scription and nuclear RNA processing, the latter resulting
in part from nuclear accumulation of normally cytoplas-
mic PABP (Kumar and Glaunsinger 2010; Abernathy
et al. 2015). HuR sequestration by SINV destabilizes host
HuR-regulatedmRNAs (Barnhart et al. 2013), and appropri-
ation of RNA-BPs that regulate ISG mRNA translation by
dengue virus (DENV) limits the IFN response (Bidet et al.
2014). New RNA–protein interactome approaches high-
light the impact of RNA-BPs sequestered by vRNA during
RNA virus infection, including SARS-CoV-2, yielding new

avenues for investigation (Flynn et al. 2021; Kamel et al.
2021; Lee et al. 2021; Schmidt et al. 2021; Iselin et al. 2022).

Targeting decay and translation by RNA modification

N6-adenosine methylation (m6A) can alter gene expres-
sion post-transcriptionally and is the most widespread in-
ternal mRNA base modification in eukaryotes (Zaccara
et al. 2019; He and He 2021). The m6A epitranscriptomic
landscape is shaped by rival activities of a methyltransfer-
ase writer core complex (METTL3 catalytic subunit,
METTL14, and WTAP) that installs m6A on nascent
mRNA cotranscriptionally and “eraser” demethylases
FTO and ALKBH5, which remove m6A marks in vitro
(Jia et al. 2011; Zheng et al. 2013; Liu et al. 2014; Ke
et al. 2017; Rosa-Mercado et al. 2017). Deposition of
m6A byMETTL3/14 occurs largely at consensus DRACH
(D=A,G,T; R=A,G; andH=A,C,U)motifs, only a fraction
of which are modified (He and He 2021). While detected
throughout transcripts, m6A is enriched within terminal
exons near stop codons and poly(A) signals (He and He
2021). Recognition of m6A-modified sites by “reader”
RNA-BPs, including YTH domain-containing proteins in
the cytoplasm (YTHDF1, YTHDF2, and YTHDF3) or nu-
cleus (YTHDC1), differentially recruits effector proteins
that impact RNA nuclear processing and export and
mRNA stability and translation (Zaccara et al. 2019; He
and He 2021). YTHDF1,2,3 bind to the same RNAs and
act redundantly to regulate RNA decay (Lasman et al.
2020; Zaccara and Jaffrey 2020).

Virus mRNAs are m6A-modified (Williams et al. 2019),
and the major ways by which host m6A modification and
recognition components post-transcriptionally regulate
virus gene expression and replication are summarized in
Table 1. Replication of many RNA viruses (HIV, IAV, hu-
man metapneumovirus [HMPV], respiratory syncytial
virus [RSV], PV, EV71, and CoVs) was stimulated by
METTL3/14 and reduced by m6A demethylases. In some
but not all cases, specific m6A sites and readers have
been identified that are required for protein expression,
replication, and pathogenesis (Kennedy et al. 2016; Tiru-
muru et al. 2016; Lichinchi et al. 2016a; Courtney et al.
2017; Hao et al. 2019; Xue et al. 2019; Han et al. 2020;
Yao et al. 2020). The nuclear reader YTHDC1 regulates
HIV alternate splicing, while m6A recognition by cyto-
plasmic YTHDF2,which promotes decay ofm6A-contain-
ing host mRNAs, stabilized virus transcripts. Thus,
sequence context of YTHDF2m6A recognition influences
transcript fate (Tsai et al. 2021). Remarkably,m6Awas de-
tected in RNA genomes of viruses that replicate exclu-
sively in the cytoplasm (RSV, HMPV, PV, EV71, ZIKV;
HCV, DENV,West Nile virus [WNV], and yellow fever vi-
rus [YFV]), including seasonal and pandemic CoVs, whose
reproduction was suppressed by depletion of METTL3 or
YTHDF1,3 cytoplasmic m6A readers (Burgess et al.
2021; Li et al. 2021). METTL3 catalytic activity was fur-
ther required for efficient CoV RNA synthesis, protein ac-
cumulation, and replication (Burgess et al. 2021). Further
work is needed to identify the specific m6A modification
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sites in virus RNAs and host RNAs that might influence
CoV replication. In contrast, METTL3/14 restricted
HCV protein expression and virus reproduction without
changing RNA replication, whereas FTO stimulated
HCV protein expression (Gokhale et al. 2016; Gonzales-
van Horn and Sarnow 2017). ZIKV reproduction was also
repressed by METTL3/14 and stimulated by FTO and
ALKBH5 (Lichinchi et al. 2016b). How nuclear host m6A
modification components accumulate in the cytoplasm
and how they recognize virus RNA remain outstanding
questions. One exciting possibility involves association
with METTL3 with a virus RdRp (Hao et al. 2019).
Interfering with METTL3 also reduced gene expression

of nuclear-replicating DNA viruses SV40, Ad, HBV, and
herpesviruses, which produce m6A-containing mRNAs
(Lavi and Shatkin 1975; Moss et al. 1977; Hesser et al.
2018; Imam et al. 2018; Tsai et al. 2018). Reader YTHDF2
is needed for SV40 replication andm6A acceptor site abla-
tion reduced virus reproduction (Tsai et al. 2018). By bind-
ing to YTHDF2, ISG20 is recruited to m6A-containing
HBV transcripts and stimulates their decay (Imam et al.
2020). Nuclear m6A-interacting factors concentrated at
sites of nascent Ad RNA synthesis and METTL3 loss re-
duced late gene expression by deregulating viral RNA pro-
cessing and reducing splicing efficiency (Price et al. 2020).
How specific virus m6A acceptor sites impact the spec-
trumof discrete alternatively spliced isoforms remainsun-
answered. The m6A pathway becomes progressively less
important for HSV-1 gene expression over time, as the vi-
rus ICP27 protein redistributes nuclear methyltransferase
components into the cytoplasm, reducing RNAmodifica-
tion on host and virus mRNAs (Srinivas et al. 2021). This

could represent another way HSV-1 limits host RNA pro-
cessing, as most late virus RNAs do not contain introns.
EBV transcriptome m6A modification stimulated viral la-
tent gene expression in part bymRNAstabilization and re-
pression of lytic genes via YTHDF1-stimulated RNA
decay (Lang et al. 2019; Xia et al. 2021). While most lytic
KSHV transcripts were m6A-modified (Tan et al. 2018),
thehostm6Amachinerywas shown tohaveacomplexpro-
viral and antiviral impact on viral gene expression depend-
ing on cell type (Hesser et al. 2018). By binding to a m6A-
modified hairpin within the KSHV ORF50 mRNA, which
encodes a potent virus regulatory protein (Baquero-Perez
et al. 2019), the host Tudor SND1 protein stabilizes
ORF50 mRNA and is essential for KSHV early gene
expression.
Host antiviral immune defenses, including IFNB1 tran-

script accumulation and ISG expression (Table 1), are reg-
ulated by m6A (Shulman and Stern-Ginossar 2020;
McFadden andHorner 2021). METTL3/14 depletion stim-
ulated IFNB1 accumulation and inhibited DNA (HCMV
and Ad) and RNA (VSV and IAV) virus reproduction,
whereas ALKBH5 depletion restricted IFNB1 accumula-
tion and stimulated HCMV reproduction (Rubio et al.
2018; Winkler et al. 2019). Cellular m6A modification
components also regulate IFNB1 mRNA accumulation
in uninfected cells exposed to dsDNA (Rubio et al. 2018).
This established that responses to nonmicrobial dsDNA
in uninfected cells, which shape host immunity and con-
tribute to autoimmune disease, are regulated by enzymes
controlling m6A epitranscriptomic changes. Indeed,
IFNB1mRNAism6A-modified at specific sites,which reg-
ulates IFNB1 mRNA decay in HCMV-infected cells and

Table 1. Key ways in which host m6A modification components influence virus replication

Cellular process Role of m6A machinery Virus

mRNA splicing m6A recognition by nuclear reader YTHDC1 regulates alternative virus
mRNA splicing

HIV, Ad

Regulates host mRNA splicing DENV, WNV, ZIKV, HCV

mRNA decay Reader YTHDF2 stabilizes virus transcripts and promotes host mRNA
decay

HIV

Reader Tudor SND1 stabilizes virus ORF50 mRNA KSHV
Reader YTHDF1 stimulates lytic mRNA decay and promotes latent gene
expression

EBV

Site-specific m6A modification of IFNB1 by METTL3/14 mRNA promotes
RNA decay

HCMV, Ad, IAV, VSV

YTHDF2 recruits ISG20 to m6A-containing virus mRNA and stimulates
decay

HBV

Gene expression METTL3/14 stimulates virus gene expression and replication RNA viruses: HIV, IAV, HMPV,
RSV, PV, EV71, CoVs

DNA viruses: SV40, Ad, KSHV
Virus protein expression restricted by METTL3/14 and stimulated by FTO
or ALKBH5

HCV, ZIKV

Site-specific modification of virus mRNA and readers required for protein
expression, replication, and pathogenesis

IAV, HIV, EV71, RSV, SV40

METTL3/14 and YTHDF1 reader recognition of m6A stimulates translation
of some ISG-encoding mRNAs

VSV

YTHDF1,2,3 cleavage by virus protease restricts ISG expression EV71
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IFNB1 mRNA biogenesis and decay in uninfected,
dsDNA-treated cells (Rubio et al. 2018; Winkler et al.
2019). The m6A reader YTHDF3, together with eIF4G2
and PABPC1, stimulates FOXO3 mRNA translation, the
product of which negatively regulates ISG transcription
and stimulated VSV replication (Zhang et al. 2019).
Many ISG mRNAs are m6A-modified, and this reportedly
stimulates translation of a subset (McFadden et al. 2021).
Indeed, YTHDF1,2,3 are cleaved by EV71 2a protease,
and this has been proposed to antagonize ISG expression
in infected cells (Kastan et al. 2021). Reduced m6A on
mRNA encoding α-ketoglutarate dehydrogenase promot-
ed RNA decay, limiting metabolite (itaconate) accumula-
tion required for VSV replication (Liu et al. 2019b). Virus-
induced alterations to host transcript m6A content influ-
ences their splicing or translation and regulates infection
by Flaviviridae members DENV, WNV, ZIKV, and HCV
(Gokhale et al. 2020).

Cytosine methylation and acetylation at C5 (m5C) and
N4 positions (ac4C) regulate retrovirus reproduction
(Squires et al. 2012; Li et al. 2017; Arango et al. 2018).
MLV genomic RNAmodification bym6A andm5C stimu-
late virus replication (Courtney et al. 2017; Eckwahl et al.
2020).HIV-1 transcripts containm5C, and interferingwith
m5C nuclear methyltransferase NSUN2 dysregulated
HIV-1mRNAalternative splicing, correlatedwith reduced
virus mRNA ribosome recruitment, and inhibited virus
replication (Courtney et al. 2019). Similarly, ac4C en-
hanced mRNA translation and stability (Arango et al.
2018) and was detected on genomic HIV-1 virion RNA
(McIntyre et al. 2018). Disrupting ac4CHIVmRNA accep-
tor sites without altering coding content reduced virus
geneexpression, and reducing expressionofN-acetyltrans-
ferase 10 (NAT10), which installs ac4C, inhibited HIV-1
replication by increasing RNA decay (Tsai et al. 2020).
The extent to which other RNA modifications (McIntyre
et al. 2018;Wiener and Schwartz 2021) impact virus repro-
duction is an exciting research direction, potentially ex-
posing new ways gene expression is shaped post-
transcriptionally by physiological stress.

Appropriating host ribosomes in virus-infected cells

Mechanisms and regulation of 40S ribosome loading
on virus mRNAs

All viral mRNAs must capture cellular ribosomes. This
begins with 40S recruitment, a necessary, regulated trans-
lation initiation step. It is coordinated in eukaryotes by ini-
tiation factors (eIFs) that assemble a specialized
ribonucleoprotein complex on themRNA5′ end to engage
40S loadedwithmethionine-charged initiator tRNA (met-
tRNAi). Recognition of m7G-capped virus mRNAs typi-
cally relies on the host cap-binding protein eIF4E, which
together with the large scaffold eIF4G1 and the RNA heli-
case eIF4A forms a heterotrimeric complex called eIF4F
(Pelletier and Sonenberg 2019). Association of eIF3-bound
40S with eIF4F via binding to eIF4G1 enables 40S loading
onto m7G-capped mRNA. Diverse virus strategies pre-
serve cellular eIF4F accessibility and activity and subvert

host defenses that curtail eIF4F activity (Fig. 2). To stimu-
late virus capped mRNA translation, repressive host
eIF4E-binding protein family members including 4E-BP1
are inactivated. By interacting with eIF4E, 4E-BP1 stoi-
chiometrically restricts eIF4E binding to eIF4G1. Accord-
ingly, 4E-BP1 represses cap-dependent translation by
limiting eIF4E binding to eIF4G and preventing (1) eIF4F
assembly and (2) 40S loading onto capped mRNAs (Pellet-
ier and Sonenberg 2019). Phosphorylation of 4E-BP1 by the
Ser/Thr kinase mTORC1 liberates eIF4E from the 4E-BP1
repressor and allows tuning of cap-dependent translation
to physiological cues that regulate mTORC1 (Fig. 2). The
latter can be subverted to constitutively stimulate anabol-
ic programs such asprotein synthesis and restrict catabolic
outcomes such as autophagy during acute infection and
lytic virus growth (Rubio and Mohr 2019). Alternatively,
it can be harnessed to balance whether an infection re-
mains latent or lytic reproduction ensues, as interfering
with 4E-BP1 inactivation by mTORC1 stimulates latent
HSV-1 genomes in neurons to reactivate and commence
their reproductive lytic cycle (Kobayashi et al. 2012b; Hu
et al. 2019). As transient mTOR inhibition in axons stim-
ulates reactivation (Kobayashi et al. 2012b), differential
mRNA translation localized within axons is possibly
required. Identifying thesemRNAswill further ourmech-
anistic understanding of howHSV sustains and transitions
out of latency in neurons.

Many DNA and RNA virus effectors co-opt host PI3-
kinase–Akt–mTORC1 signaling in part to antagonize 4E-
BP1 and stimulate translation of capped virus mRNAs
(Fig. 2). Herpesviruses, adenoviruses, poxviruses, para-
myxoviruses, and orthomyxoviruses (IAV) constitutively
stimulate mTORC1 during their lytic reproductive cycle
(O’Shea et al. 2005; Werden et al. 2007; Moorman et al.
2008; Walsh et al. 2008; Arias et al. 2009; Chuluunbaatar
et al. 2010; Hale et al. 2010; Kuss-Duerkop et al. 2017;
Zhan et al. 2020). By mimicking the cellular kinase Akt,
the HSV-1 Ser/Thr kinase Us3 inactivates the host tuber-
ous sclerosis complex (TSC) via directly phosphorylating
TSC2 on Akt target sites (Chuluunbaatar et al. 2010).
Us3 further disrupts host AMPK-dependent responses to
energy insufficiency by preventing TSC2-dependent
mTORC1 inhibition by AMPK (Vink et al. 2017). Addi-
tionally, Us3 uncouples mTORC1 activation from amino
acid sufficiency signals (Vink et al. 2018). Both of these
functions enable sustainedmTORC1 activation and virus
replication during physiological stress. Inactivation of 4E-
BP1 is accompanied by virus-induced eIF4F assembly,
which proceeds via distinct mechanisms. The HSV-1
ICP6 protein N terminus interacts with the eIF4G N ter-
minus, enhances eIF4E binding to eIF4G, and stimulates
virusmRNAtranslation (WalshandMohr2006).While cy-
toplasmic PABP availability in HSV-1-infected cells is
reduced by its nuclear accumulation, the viral ICP27
RNA-binding protein stimulates 40S recruitment in a
PABP- and eIF4G-dependent manner. By recruiting PABP,
which in turn interacts with eIF4G, ICP27 stimulates
translation of capped mRNAs, imitating a mechanism
used by cellular RNA-BP Dazl (deleted in azoospermia-
like) (Smith et al. 2017). In contrast, eIF and PABP
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abundance increases upon infectionwith HCMV, a related
herpesvirus froma distinct subfamily. UnlikeHSV-1 infec-
tion,host protein synthesis proceeds, and the genome-wide
translational landscape is remodeled by HCMV. Differen-
tially translated cellular mRNAs have been identified
that stimulate virus growth or host defenses (McKinney
et al. 2014; Tirosh et al. 2015). RNA structure remodeling
among regulated host genes in part confers HCMV infec-
tion responsiveness (Mizrahi et al. 2018) along with
mTORC1 activation by the viral UL38 protein, which
stimulates cap-dependent translation of mRNAs contain-
ing a terminal oligopyrimidine (TOP) sequence element in-
cluding PABP (McKinney et al. 2012, 2014). Reduced eIF4F
assembly and virus growth were observed by interfering
with HCMV-induced PABP1 accumulation (McKinney
et al. 2012). By raising PABPabundance,HCMVovercomes
anunexpectedhost antiviral response that increases PABP-
interacting protein 2 (Paip2) levels, which inhibits PABP
binding to eIF4G and poly(A) RNA (McKinney et al.
2013). PABP is also targeted in SARS-CoV-1/2 replicon
transfected cells by nsp3,which interactswith PABP-inter-
acting protein-1 (Paip1) and 40S/80S ribosomes to enhance

virus but not host protein synthesis (Lei et al. 2021). In lieu
of controlling eIF abundance,DNAviruses that replicate in
the cytoplasm (VacV and ASFV) sequester eIF4E, eIF4G,
and PABPwithin and around discrete replication compart-
ments (RCs) to increase their effective local concentration
(Katsafanas andMoss2007;Walshetal. 2008;Castellóet al.
2009; Zaborowska et al. 2012). Cells infected with mam-
malian orthoreovirus, a dsRNA virus, also accumulate
eIFs in cytoplasmic RCs (Desmet et al. 2014). How these
factors concentrate within specific cytoplasmic regions is
unknown and might informmechanisms underlying local
mRNA translation.
The host eIF4G-associated Ser/Thr kinase Mnk-1,

which is activated by ERK and p38, influences infected
cell protein synthesis by phosphorylating eIF4E. Binding
of eIF4E to eIF4G delivers Mnk-1 to its substrate eIF4E,
stimulating eIF4E S209 phosphorylation (Fig. 2). Situated
near the eIF4E cap-binding pocket, S209 phosphorylation
weakened cap binding affinity, (Scheper et al. 2002;
Zuberek et al. 2004; Slepenkov et al. 2006), possibly accel-
erating cap release during initiation. The mechanism un-
derlying how eIF4E phosphorylation regulates translation

Figure 2. Controlling cap-dependent 40S ribosome
loading in virus-infected cells. Sampling extracellular
and intracellular cues (growth factor, nutrients, O2,
and energy) allows 40S ribosome loading onto capped
mRNAs to be responsive to changing environmental
and physiological conditions, including virus infec-
tion. Receptor tyrosine kinase (RTK) signaling
through PI3-kinase (PI3-K) and PDK1 stimulates Akt
phosphorylation (T308 and S473). Once activated,
Akt represses the tuberous sclerosis complex (TSC1/
2), which results in Rheb-GTP accumulation and
mTORC1 activation. Physiological stress (energy,
O2, or nutrient insufficiency) prevents mTORC1 acti-
vation. The translational repressor 4E-BP1 regulates
the availability of the cap-binding protein eIF4E.
Hyperphosphorylation and inactivation of 4E-BP1 re-
leases eIF4E, which interacts with eIF4G and the
DEAD-box helicase eIF4A to assemble themultisubu-
nit eIF4F complex on m7G-capped mRNA. Regulated
eIF4F assembly controls eIF3-bound 40S loading onto
cappedmRNA.Virus-encodedeffectors that stimulate
(green) or repress (red) the indicatedhost factors to con-
trol 40S loading and translation initiation are shown.
(SV40) Simian virus 40, (calici) calicivirus, (noro) noro-
virus, (entero) enterovirus, (rhino) rhinovirus.
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of a subset of mRNAs involved in proliferation, circadian
rhythms, stress response, inflammation, and memory for-
mation remains elusive (Furic et al. 2010; Herdy et al.
2012; Cao et al. 2015; Bramham et al. 2016; Proud 2019).
Many viruses (large DNA viruses, CoV, and flavi, noro,
and paramyxo viruses) promote eIF4E phosphorylation by
stimulating ERK and/or p38, which activatesMnk1 (Mizu-
tani et al. 2004; Walsh and Mohr 2004, 2006; Walsh et al.
2005, 2008; Royall et al. 2015; Roth et al. 2017; Proud
2019; Zhan et al. 2020), which stimulates translation of vi-
rus mRNAs (Walsh and Mohr 2004) and mRNA encoding
the NF-κB inhibitor IκB (Herdy et al. 2012). Mnk1 recruit-
ment by eIF4F is regulated by eIF3 subunit e, and eIF4E
phosphorylation is eIF3e-dependent, consistent with
eIF4F assembly preceding eIF4E phosphorylation. It further
illustrates howmodifying a cap recognition complex in re-
sponse to eIF3-bound 40S loading regulatesmRNA transla-
tion. (Walsh and Mohr 2014). Although how eIF4E
phosphorylation influences selective mRNA translation
is unknown, RNA binding activities displayed by eIF3 sub-
units (Hinnebusch 2006) could play a role. Reduced IκB
mRNA translation, NF-κB activation, and IFN production
result when unphosphorylated eIF4E accumulates in in-
fected cells (Ad and many RNA viruses) (Jan et al. 2016).
At late times in Ad-infected cells, binding of Ad 100K to
eIF4G displaces Mnk1 and results in unphosphorylated
eIF4E accumulation (Cuesta et al. 2004), which correlates
with reduced host cell mRNA translation while allowing
high-level virus mRNA translation via a cap-dependent,
noncanonical ribosome shuntingmechanismdiscussed be-
low. Exiting virus latency is also stimulated by eIF4F as-
sembly and eIF4E phosphorylation, as inhibiting the
eIF4E kinase Mnk1 reduced accumulation of the KSHV
transactivator RTA needed for lytic replication (Arias
et al. 2014). Thus, whether latent infection persists or pro-
ductive, lytic reproduction is triggered can be determined
by critical cell signaling pathways (MAPK and PI3K–Akt–
mTOR) that regulate translation.

Once loaded onto capped mRNA, 40S-containing com-
plexes search for the AUG start codon by translocating
along the 5′ UTR in an ATP-dependent process termed
“scanning” (Merrick and Pavitt 2018). Ribosome shunting
cis-elements that mediate nonlinear 40S translocation,
whereby a 5′ UTR section is bypassed and scanning re-
sumed downstream, have been identified in virus (Ad,
HPV, and HBV) and host (hsp70) mRNAs (Kwan and
Thompson 2019). Shunting supports initiation on capped
mRNAs, which typically requires 5′ UTR unwinding by
eIF4A, when initiation is suppressed by stress such as
heat shock or infection that interferes with eIF4F. Ad
100K protein facilitates shunting by binding to the 5′ non-
coding region of virus late mRNA (called the tripartite
leader) and eIF4G, which in turn enhances PABP and 40S
loading (Xi et al. 2004). A different cis-element surround-
ing the AUG codon mediates translation initiation on
leaderless mRNAs (TILM) that are capped and have very
short or no 5′ UTRs. HPV E6 oncoprotein expression
uses TILM-directed initiation, which requires the cap
structure, eIF4E, andeIF4A1andcoulddriveE6production
by cancer cells (García et al. 2021).

While eIF4E stimulates translation, a related host cap
recognition protein, 4EHP, directs transcript-specific re-
pression. Up-regulation of miR34a, which targets IFNB1,
in RNA virus-infected cells, results in 4EHP-dependent
translational repression of IFNβ (Zhang et al. 2021). Be-
sides demonstrating 4EHP’s role in translational silencing
and cell-intrinsic immunity, this illustrates how distinct
cellular cap-binding proteins manipulate infection
outcomes.

In lieu of stimulating eIF4F, certain viruses obstruct
eIF4F, which restricts host cap-dependent translation to
achieve host shutoff and requires alternative strategies to
initiate translation on virus mRNAs. Many RNA viruses
that replicate in the cytoplasm rely on cis-elements
termed internal ribosome entry sites (IRESs) to load 40S
subunits onto viral mRNA in a cap-independent manner
(Jaafar and Kieft 2019; Stern-Ginossar et al. 2019). IRES-di-
rected initiation allows virus mRNAs to evade host
defenses that repress cap-dependent translation, such as
4E-BP1; prevent synthesis of host antiviral proteins; and
ensure selective virus mRNA translation proceeds while
host protein synthesis is impaired. Comprised of stable
and dynamic RNA structures that form 40S high-affinity
ligands, IRESs are classified by structure, initiation factor
requirements, and initiation mechanism (Jan et al. 2016;
Johnson et al. 2017; Jaafar and Kieft 2019; Stern-Ginossar
et al. 2019; Arhab et al. 2020). Type 1 and 2 IRESs are larger
and require nearly all eIFs except eIF4E. IRES transacting
factors (ITAFs) that remodel RNA structure are also re-
quired. Initiation by type 1 or 2 IRESs depends on binding
to full-length eIF4G (EMCV) or an eIF4G fragment lacking
the N-terminal eIF4E-binding domain (PV) that interacts
with eIF4A. Whereas type 1 IRESs recruit 40S upstream
of coding regions and scan to locate the start codon, type
2 IRESs secure the initiation complex to the start codon
without scanning (Yu et al. 2011a; Sweeney et al. 2014).
Structurally similar to type 1 and 2 IRESs, the hepatitis
A virus (HAV) type 3 IRES requires eIF4E binding to
eIF4G, which increases IRES binding and stimulates
eIF4A unwinding (Avanzino et al. 2017). Despite needing
all eIF4F subunits unlike other IRESs, HAV RNAs are
not capped, precluding a role for cap recognition by
eIF4E. Somehow, eIF4E binding to eIF4G stimulates
high-affinity binding of eIF4G to the HAV IRES and facili-
tates IRES structural remodeling (Avanzino et al. 2017).
This could involve eIF4E altering eIF4G conformation or
impacting the interaction of eIF4F with the HAV IRES
(Ali et al. 2001; Borman et al. 2001). Type 4 IRESs (HCV
and CSFV) directly bind 40S and eIF3, displacing eIF3
from its normal position on 40S, altering 40S conforma-
tion, and positioning the AUG without scanning (Spahn
et al. 2001; Siridechadilok et al. 2005; Hashem et al.
2013; Quade et al. 2015). The HCV IRES also associates
with the40S subunit of a translating80S ribosomewithout
disrupting protein synthesis, and this captured 40S is like-
ly hijacked for subsequent IRES-directed initiation
(Yokoyama et al. 2019). Delivery of met-tRNAi either by
eIF2 or by eIF2A or eIF2D enables IRES function during
physiological stress when canonical eIF2-mediated deliv-
ery is impaired (discussed later). Uniquely dependent on
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DDX29, which likely remodels a stem– loop that seques-
ters the initiating AUG, the aichivirus (AV) type 5 IRES
eIF4G-binding domain is structurally distinct from type
1 and 2 IRESs (Yu et al. 2011b). In contrast, dicistroviruses
suchasCrPVcontain two IRESs.The5′ UTR IRES requires
eIF3 but docks very differently with 40S subunits com-
pared with type 4 IRESs (Neupane et al. 2020). The CrPV
intergenic region (IGR) type 6 IRES, however, does not re-
quire eIFs for 40S binding and 80S assembly, can initiate
translation from a non-AUG codon (Wilson et al. 2000;
Muhs et al. 2015; Murray et al. 2016), and repositions
some ribosomes to bypass 12 codons and resume +1 frame
translationat anon-AUGcodon (Kerr et al. 2018).Dicistro-
virus IGR IRESs share similar structures consisting of a ri-
bosome recruitment domain and a smaller domain
containing pseudoknot I (PK I). Unlike canonical initia-
tion, where the ribosome P-site is occupied byMet-tRNAi

and elongator tRNAs load into theA-site, the IGR IRESPK
I-containing domain docks into the P-site. While CrPV
IRES codon–anticodon mimicking PK initially occupies
the ribosome A-site, 40S rotation and eEF2-dependent
translocation into the P-site are required to expose the A-
site for elongation to commence (Costantino et al. 2008).
By imitating an intermediate ribosomal state with hybrid
tRNAs, IRES PK I from Israeli acute paralysis virus
(IAPV) within the A-site blocks eIF1/eIF1A binding and
promotes 60S joining followed by codon translocation to
the P-site in a related elongation factor recruitment strat-
egy (Costantino et al. 2008; Acosta-Reyes et al. 2019). A
simplermechanismused byHalastavi árva virus positions
the IRES PK into the P-site, averting the need for eEF2-me-
diated translocation prior to commencing decoding
(Abaeva et al. 2020).
Besides stimulating selective virus mRNA translation,

IRES-directed translation proceeds when viral functions
inhibit cap-dependent 40S loading. Thus, by subverting
normal host translation regulatory circuits, viruses im-
pose a potent host shutoff where virus IRES-mediated
translation proceeds while host protein synthesis is sup-
pressed (Fig. 2). Hypophosphorylated 4E-BP1 in PV- or
EMCV-infected cells limits eIF4E binding to eIF4G, inhib-
iting eIF4F assembly (Gingras et al. 1996). By cleaving
eIF4G to sever the eIF3- and eIF4A-binding segment
from the N-terminal eIF4E-binding fragment, PV 2A pro-
teinase selectively disables eIF4E-dependent 40S loading
onto host capped transcripts (Gradi et al. 1998). Inhibition
of host cap-dependent translation was better correlated
with virus proteinase cleavage of eIF4G3 (formerly eIF4-
GII) rather than eIF4G1 (formerly eIF4GI), although
eIF4G3 was less sensitive to 2A cleavage than eIF4G1
(Gradi et al. 1998). Cleavage of eIF4G by PV or group A rhi-
novirus 2A protease is stimulated by eIF4E (Aumayr et al.
2017; Avanzino et al. 2017). The 3C proteinase produced
by PV and EMCV also cleaves host PABP1 (Rivera and
Lloyd 2008; Kobayashi et al. 2012a). Finally, EV71 infec-
tion stimulates cellular microRNA miR-141 expression
to diminish eIF4E levels and curb host protein synthesis
(Ho et al. 2011).
Using a termination–reinitiation mechanism (Kron-

stad et al. 2013, 2014; Royall and Locker 2016), some vi-

ruses express multiple proteins from a polycistronic
transcript. Following upstream ORF translation, a termi-
nation upstream ribosomal binding site (TURBS) in cali-
civirus RNAs retains 40S post-termination. TURBS
promote reinitiation at a nearby AUG or non-AUG co-
don via 18S rRNA base pairing (Luttermann and Meyers
2014; Royall and Locker 2016). Reinitiation in vitro re-
quires eIF2, eIF1, and eIF1A but not eIF3 (Zinoviev
et al. 2015).

Preserving initiator tRNA loading onto 40S subunits
and subverting the integrated stress response

By detecting nutrient insufficiency, proteostasis deficien-
cies, and virus infection, the integrated stress response
(ISR) allows mammalian cells to re-establish homeostasis
by reprogramming gene expression (Costa-Mattioli and
Walter 2020). Once new protein synthesis initiation is ar-
rested by stress, specialized mRNA translation produces
proteins required to implement a new transcription pro-
gram that restores homeostasis. Virusmodels have illumi-
nated how translation initiation is globally repressed by
stress and the fundamental importance of this process to
innate immune responses.
FourmammalianSer/Thr kinases, each activated by dis-

crete physiological stressors, can globally inhibit protein
synthesis by preventing 40S ribosomes from acquiring
met-tRNAi required to initiate translation from most
mRNAs (Fig. 3). This is achieved by phosphorylating the
α subunit of eIF2, a heterotrimeric initiation factor that as-
sembles and delivers a ternary complex (TC) comprised of
eIF2•GTP•met-tRNAi to the 40S subunit. Upon AUG
start codon recognition byTC-loaded 40S,GTP hydrolysis
stimulated by eIF5 promotes 60S joining and translation
elongation. Recycling eIF2•GDP into the active, GTP-
bound form requires the guanine nucleotide exchange fac-
tor (GEF) eIF2B (Fig. 3). Phosphorylated eIF2, however,
binds eIF2Bwith high affinity and inhibits its GEF activity
(Fig. 3). Initiation is arrested as eIF2B is present in limiting
amounts, allowing small changes in phospho-eIF2 to have
large effects onprotein synthesis (Jan et al. 2016;Adomavi-
cius et al. 2019; Stern-Ginossar et al. 2019). Phosphoryla-
tion of eIF2α also induces stress granule formation—
cytoplasmic foci containing mRNA, RNA-BPs, eIFs, and
40S RPs whose roles in infection have been reviewed (Mc-
Cormick and Khaperskyy 2017; Gaete-Argel et al. 2019).
While all eIF2α kinases may impact infection biology,

the dsRNA-activated protein kinase PKR is a universal
threat to animal viruses and a critical component of
cell-intrinsic immune responses. Constitutively present
but not activated, PKR is one of a suite of IFN-induced pro-
teins needed to establish an antiviral state refractory to vi-
rus reproduction. PKR is activated by dsRNA and also by a
protein, PACT (Stern-Ginossar et al. 2019). To neutralize
PKR, viruses may produce dsRNA BPs to camouflage
dsRNA from cellular sensors, degrade PKR as in Rift Val-
ley fever virus (RVFV)-infected cells (Mudhasani et al.
2016), encode PKR inhibitory proteins, or produce a
ncRNA (AdVA-RNA) that associates with PKR to prevent

Viral supervision of RNA decay and translation

GENES & DEVELOPMENT 117



kinase dimer formation needed for activity (Fig. 3; Jan
et al. 2016; Stern-Ginossar et al. 2019). Similarly, dsRNA
regions within host circular (circ) RNAs have been pro-
posed to bind PKR and prevent its activation. Signifi-
cantly, synthetic dsRNA exposure or EMCV infection
triggeredOAS/RNase L activation and rapid circRNAdeg-
radation (Liu et al. 2019a).

Combinatorial tactics incorporating multiple viral ef-
fectors shield eIF2 from attack by other eIF2α kinases ac-
tivated by stresses distinct from dsRNA. HSV-1 (γ34.5)
and African swine fever virus (DP71L) encode a protein
phosphatase 1α (PP1α) regulatory subunit, which engages
the cellular PP1 catalytic subunit (PP1c) and broadly coun-
teracts eIF2α kinases by dephosphorylating phospho-eIF2α
(Rojas et al. 2015; Barber et al. 2017). Specific eIF2α kinase
antagonists including the HSV-1 Us11 dsRNA BP, which
inhibits PKR, and glycoprotein B,which restricts PERKac-
tivation, synergizewith the γ34.5 PP1α regulatory subunit
to limit eIF2α phosphorylation via discrete mechanisms.
Using the viral eIF2α pseudosubstrate K3L (Sood et al.
2000; Seo et al. 2008) and the dsRNABP E3L, which limits
PKR activation, poxviruses also restrict eIF2α phosphory-
lation using independent effectors. Viral eIF2α kinase an-
tagonists also inhibit multiple kinases, like HCMV
TRS1, which inhibits PKR and HRI (Vincent et al. 2017).
Cellular p58IPK induction by stress also reportedly pre-
vents PKR, PERK, and GCN2 activation (Roobol et al.
2015).

The extent of genome coding capacity and deployment
of viral antagonists to preserve eIF2 activity emphasizes
its importance in the virus reproductive cycle. Mutant vi-
ruses lacking functions to challenge host dsRNA-respon-
sive defenses such as PKR are often hypersensitive to
IFN, are attenuated (Mulvey et al. 2004; White and Jacobs
2012; Liu et al. 2015), and display an altered host range
(Haller et al. 2014; Carpentier et al. 2016; Peng et al.
2016; Cao et al. 2020; Park et al. 2021). Host eIF2α kinase

activation may at times benefit virus replication. By pro-
moting type I IFN receptor degradation, which precludes
IFN responses (Liu et al. 2009), activation of unfolded pro-
tein response and PERK in infected cells supports HCV
and VSV replication. Conversely, RNA viruses CrPV and
SINV dispense with any eIF2 requirement by relying on
cis-elements that direct eIF2-independent initiation (Wil-
son et al. 2000; Spahn et al. 2004; Kerr et al. 2016; Sanz
et al. 2019). How cellular proteins and RNA structures
regulate and contribute to eIF2-independent initiation
in CrPV- and SINV-infected cells remains actively
investigated.

A distinctive mechanism that attacks eIF2B•phospho-
eIF2 interaction dynamics, an integral ISR feature, was
identified in RNA virus-infected cells. While unrelated
in sequence or predicted structure, the beluga whale
CoV (Bw-CoV SW1) multifunctional AcP10 protein and
the AiVL protein (Fig. 3) encoded by human aichivirus, a
picornavirus that infects the GI tract, prevent phospho-
eIF2 from binding to the eIF2B GEF (Rabouw et al.
2020). Both viral factors, however, did not interfere with
eIF2B binding to unphosphorylated eIF2 (Rabouw et al.
2020). This enables AiVL and AcP10 to antagonize the
ISR. In contrast, nonstructural protein s (NSs), encoded
by the arthropod transmitted sandfly fever Sicilian virus,
associates with and modifies eIF2B such that the NSs–
eIF2B complex resists inhibition by phospho-eIF2 (Wuerth
et al. 2020). Future studies are needed to reveal how NSs
association with eIF2B subunits achieves this and wheth-
er any host cell factor is capable of a related feat.

Ribosomal proteins and quality control processes
regulate infected cell protein synthesis

While long considered as invariant mRNA decoding ma-
chines, ribosome composition and ribosome protein (RP)
abundance and stoichiometry in different cells and tissues

Figure 3. Viral strategies to preserve initia-
tor tRNAloadingonto40Ssubunits. (Leftpan-
el) eIF2 is a GTP-binding initiation factor
comprised of three subunits (α, β, and γ) that
loads eIF3-bound 40S with Met-tRNAi. After
recruitment of mRNA containing eIFs and
AUG identification, eIF5-dependent GTP
hydrolysis is followed by60S joining and initi-
ation, and subsequent 80S-mediated elonga-
tion. The GEF activity of the eIF2B
pentamer–dimer recycles inactive eIF2•GDP
to the active GTP-bound form. S51 eIF2α
phosphorylation precludes initiation by asso-
ciatingwith and inhibiting eIF2B, obstructing
GDP-GTPexchange. eIF2αphosphorylation is
controlled by four eIF2α kinases, each activat-
ed by distinct biological stress, and PP1cwith
its cognate constitutive (CrEP) or inducible
(GADD34) regulatory subunit. Virus-encoded
functions that antagonize (red) host eIF2α ki-
nases, stimulate PP1, or support translation
despite phospho-eIF2 accumulation (green)
are indicated. (aa) Amino acid.
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may be heterogeneous and can regulate gene expression
(Shi et al. 2017). Indeed, ribosome catalytic activity toler-
ates loss of several RPs, and specific RP requirements have
been identified for discrete host mRNAs (Xue et al. 2015).
Individual RPs also shape host responses to infection by
regulating MHC class I peptide generation (Wei et al.
2019). Post-translational modifications (PTMs) of RPs
and rRNAs and association with noncanonical RPs accen-
tuate ribosome heterogeneity. Recent attention has fo-
cused on how virus infection impacts ribosomes and
their role in regulating, as opposed to executing, protein
synthesis (Fig. 4).
To translate their mRNAs, viruses may be more reliant

on RPs that are not essential for bulk host protein synthe-
sis. Virus IRESs require a different RP subset from tran-
scripts that rely on cap-dependent initiation (Fig. 4).
Structurally and functionally diverse IRESs require eS25
(RPS25) for 40S–IRES complex formation (Landry et al.
2009). Largely dispensable for cap-dependent translation,
eS25 sits within the ribosomal E-site with a projection ex-
tending toward the P-site. CrPRV IRES binding to 40S re-
quires eS25, as does an ensuing, stabilizing conformation
change (Walters et al. 2020). Ribosome shunting also re-
quires eS25 (Hertz et al. 2013). Host 40S RP RACK1 con-
tributes to PV, EMCV, CrPV, and HCV IRES-mediated
translation (Majzoub et al. 2014; LaFontaine et al. 2020).
Insufficient RACK1 levels reduced PV plaque size and im-
paired virion release (LaFontaine et al. 2020). The HCV
IRES binds to eL20 (RPL18A) and uS7 (RPS5) (Dhar et al.
2006), the latter required for IRES function (Fukushi
et al. 2001; Bhat et al. 2015). Tethered to IRESs by binding
to DDX3, eL13 (RPL13) stimulates translation from

FMDV, SVV, and CSFV IRESs with minimal impact on
host translation (Han et al. 2020).
While not essential for cellular and IRES-driven transla-

tion, eL40 (RPL40) is needed for cap-dependent translation
of VSV, rabies, andmeasles transcripts (Lee et al. 2013). P1
(RPLP1) and P2 (RPLP2) bind 60S to form the ribosomal
stalk, which is anchored by uL10 (RPLP0) and needed for
DENV, YFV, and ZIKV replication, but dispensable for
host translation (Camposet al. 2017). P1/P2mitigates ribo-
some pausing on DENV RNA (Campos et al. 2020), and
DENV NS1 protein interacts with and relocalizes eL18
(RPL18), eL20, and uL30 (RPL7), although how this influ-
ences translation is unclear (Cervantes-Salazar et al.
2015). While some virus mRNAs require specific RPs dis-
pensable for general host translation, the extent to which
diverse viruses might rely on discrete individual RPs or
combinatorial RP subsets to differentially impact virus
mRNA translation in varied cell types, tissues, or host/
vector systems remains unknown and ripe for investiga-
tion. In contrast, protein synthesis in HSV1-infected com-
pared with uninfected cells is far less dependent on host
RPs. Under conditions where RP insufficiency limits
translation and ribosome availability, the HSV-1 late pro-
teinVP22cosedimentswith initiating andelongating ribo-
somes, promotes polysome accumulation, and enforces
translation (Vink et al. 2021). How VP22 compensates for
RP insufficiency, which could support protein synthesis
despite cell type and stress-inducedRPvariations, requires
further study.
While it remains conceivable although unproven that

virus mRNA translation might rely on a ribosome subpo-
pulation with a specific RP stoichiometry, virus infection
can modify ribosomes to impart selectivity for specific
transcripts. One way host ribosomes are modified is
through virus-encoded, ribosome-associated proteins.
IAVNS1protein associateswith ribosomes and stimulates
initiation on mRNAs, except those with a dicistrovirus
IGR IRES (Panthu et al. 2017). By triaging which tran-
scripts access ribosomes, SARS-CoV-1/2 Nsp1 promote
host shutoff and virus protein synthesis (Huang et al.
2011; Lokugamage et al. 2015). SARS-CoV-1Nsp1 inhibits
cap-dependent and IRES-mediated translation by binding
40S via interactions with uS3 (RPS3), uS5 (RPS2), and
18S rRNAhelix h18, and preventing 60S joining (Kamitani
et al. 2009).Moreover,Nsp1 locks the 40S into aconforma-
tion that prevents mRNA loading and preinitiation com-
plex formation by binding eIF1 and eIF3j (Thoms et al.
2020; Yuan et al. 2020; Lapointe et al. 2021). The Nsp1 C
terminus occupies the mRNA entry channel, inhibiting
translation by preventing most host mRNAs, including
those encoding immune defenses, from entering ribo-
somes (Schubert et al. 2020). The SL1 hairpin within the
virus mRNA 5′ UTR interacts with and displaces Nsp1
(Shi et al. 2020; Mendez et al. 2021; Tidu et al. 2021)
from the entry channel to selectively enable CoV mRNA
translation. Not all host transcripts are excluded from ri-
bosomes by Nsp1, as translation of mRNAs containing 5′

TOP elements is stimulated (Rao et al. 2021). Further
study is needed to discernwhether thismechanism shares
similarity to the one used by CoV mRNAs.

40S 

60S 

Intrasubunit Solvent 

eL40 

P1/P2 

eL18 
uL30 eL13 

eL20 

uL24 

RACK1 

uS5 

eS25 
uS7 

Figure 4. Ribosome proteins (RPs) that regulate translation in
virus-infected cells. The figure depicts solvent and intrasubunit
surfaces of 40S and 60S subunits with ribosomal RNA (gray)
and RPs (tan). Highlighted RPs represent RPs important for virus
IRES-mediated translation (green) or proviral functions (pink), or
post-translationally modified during viral infection (blue). (Ribo-
some structure derived fromPDB entry 4v88; figure based on data
from Ben-Shem et al. [2011]).
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Another way virus infection (VacV, HSV-1, and VSV)
modifies ribosomes is through RP and ribosome-associat-
ed protein PTM,which could regulate infected cell protein
synthesis (DiGiuseppe et al. 2020). The VacV protein ki-
nase B1R phosphorylates uS5, a 40S RP located near the
mRNA entry channel (Fig. 4), enabling VacV protein syn-
thesis (Banham et al. 1993; Beaud et al. 1994; DiGiuseppe
et al. 2020). By stimulating RACK1 (Fig. 4) phosphoryla-
tion, VacV remodels ribosome transcript selectivity. The
resulting negative charge on RACK1 Ser/Thr residues
within an extended loop increases the swivel motion of
the 40Shead domain and broadens the translational capac-
ity of the human ribosome, enabling preferential transla-
tion of viral mRNAs containing A-rich 5′ UTRs (Jha
et al. 2017; Rollins et al. 2021). Finally, ubiquitin foldmod-
ifier (UFM1) conjugation to uL24 (RPL26) (Fig. 4) is re-
quired for HAV translation (Kulsuptrakul et al. 2021).

Rather than altering core RP stoichiometry, PV, ZIKV,
and DENV remodel the host polysome-associated pro-
tein landscape. While host factors that trigger RNA
sequestration, RNA degradation, antiviral responses,
and eIFs were displaced, proteins required for proline hy-
droxylation were recruited to polysomes in ZIKV- and
DENV-infected cells. (Aviner et al. 2021) This enables
cotranslational proline hydroxylation of the viral poly-
protein, which is essential for transmembrane domain
folding and topology and is required for replication (Avi-
ner et al. 2021)

Virus mRNA translation is also regulated by ribosome
quality control (RQC) surveillance. Upon identification
of aberrant mRNAs, including those lacking in-frame
stop codons due to premature poly(A) additionwithin cod-
ing sequences, or ribosome stall-inducing translation
events, RQC triggers degradation of mRNA/nascent pro-
tein and recycles stalled ribosomes (Meydan andGuydosh
2021). Elevated protein synthesis in virus-infected cells
mayprovoke ribosomestalling or stress responses resolved
by RQC. Themultifunctional host protein ABCE1, which
also inhibits RNase L, is needed for translation termina-
tion and ribosome recycling and in part facilitates RQC
(Anderson et al. 2019). Virus mRNA translation and repli-
cation in cells infected with (−)-strand RNA viruses (mea-
sles, mumps, and RSV) was more reliant on ABCE1 than
host mRNAs. In response to detecting stall-inducing A-
rich sequences on translating mRNA, ribosome-bound
ZNF598 E3 ubiquitin ligase triggers RQC and restricts ri-
bosome read-through by ubiquitination of select 40S RPs
(Garzia et al. 2017; Juszkiewicz and Hegde 2017; Sundara-
moorthy et al. 2017). Unexpectedly, ZNF598 E3 ligase and
uS10 (RPS20) site-specific ubiquitinationwere required for
poxvirus replication and translation of virus mRNAs,
many of which contain an unusual A-rich 5′ UTR (DiGiu-
seppe et al. 2018; Sundaramoorthy et al. 2021). Stimula-
tion of translation by ZNF598 is in contrast to its role in
80S stalling and RQC, although both might involve
ZNF598-sensing poly(A) or A-rich sequences. Instead,
ZNF598 might potentially impact scanning or possibly
be repurposed to stimulate translationbypoxviruses (DiG-
iuseppe et al. 2018). Virus infectionmight also induce ribo-
some collisions, and ZNF598-mediated RQC may rescue

stalled ribosomes and recycle the subunits to stimulate vi-
rus mRNA translation (Sundaramoorthy et al. 2021). Fur-
ther studies are needed to elucidate the underlying
mechanism. Finally, disrupting RQC stimulates cyclic
GMP–AMP synthase (cGAS), a cytosolic DNA sensor
that reportedly binds to collided ribosomes in vitro (Wan
et al. 2021). Increased cGAS activity triggers ISG expres-
sion, which restricts virus replication. One such IFN-in-
duced protein, IFIT2, is repurposed by IAV to prevent
ribosome pausing on host and virus AU-rich mRNAs
that could trigger RQC (Tran et al. 2020).

Closing thoughts

By appropriating and subverting cellular RNA decay and
modification pathways together with unconditional reli-
ance on host ribosomes, viruses remain enduring models
to probe how gene expression is controlled post-transcrip-
tionally and remodeled by physiological stress. Funda-
mental findings revealed by virus infection have
implications for post-transcriptionalmechanisms impact-
ing health and disease including roles for eIF2αkinase PKR
in tuning protein synthesis to stress responses and new
ways to subvert the ISR by phospho-eIF2α–eIF2B, the con-
trol of innate immune responses by m6A, how 40S ribo-
somes are captured by a structured RNA without
initiation factors, and how the cellular mRNA landscape
is globally remodeled during infection stress. Understand-
ing these processes offers new therapeutic possibilities to
treat virus infections. Variants of the dsRNA sensor
OAS1 are known to protect against severe COVID19
(Soveg et al. 2021; Wickenhagen et al. 2021). Inhibition
of PA endonuclease activity by baloxavir represents a first
in class new influenza antiviral (Heo 2018). SARs-CoV-2
Nsp1•40S interactionsmay also prove amenable to antivi-
ral drugdevelopment.Cellular decay factors, including the
SKI and TRAMP-like complex, and m6A modification by
METTL3 on which viruses depend but whose short-term
inhibition is tolerated by the host also present druggable
targets less likely to be overcome by virus resistance (Wes-
ton et al. 2020; Burgess et al. 2021; Ho et al. 2021; Kulsup-
trakul et al. 2021). By tinkering with functions that
regulate eIF2α phosphorylation, a safe, attenuated HSV-1
that preferentially replicates in cancer cells with impaired
cell-intrinsic immune responses was engineered (Taneja
et al. 2001). This unexpected property led to development
of an approved immunotherapeutic oncolytic virus to treat
melanoma (Ribas et al. 2017). Continued exploration of
diverse animal virus models will undoubtedly drive our
understanding of how infection and physiological stress
regulate gene expression post-transcriptionally and fuel
unanticipated future opportunities to treat a spectrum of
unmet medical needs.
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