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Abstract: Several virus-induced models were used to study the underlying mechanisms of multiple
sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus
(TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating
disease. In this review, the innate and adaptive immune responses to TMEV are discussed to
better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs),
macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-
presenting cells (APCs) are the major cell populations permissive to viral infection and involved
in cytokine production. The levels of viral loads and cytokine production in the APCs correspond
to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV
infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB
activation, which is required for TMEV replication. These activation signals further amplify the
cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and
prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines
induced after viral infection, IFN α/β plays an essential role in the downstream expression of
costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection
facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1β play
critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens.
These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory
cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and
cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral
and self-antigens, which preferentially stimulate Th17 responses.

Keywords: virus; demyelination; inflammation; Th cells; FoxP3+CD4+ T cells

1. Theiler’s Virus-Induced Demyelinating Disease as an Infectious Model of
Multiple Sclerosis

Multiple sclerosis (MS) is an immune-mediated neurological disease characterized by
demyelination in the white matter of the brain and spinal cord [1]. Although the cause of
MS is unknown, infectious agents may be involved in the initial infliction of tissue damage,
leading to autoimmunity. A possible viral association is suggested by epidemiological
studies [2,3] and by the detection of viral antigens and virus-specific antibodies in the
majority of MS patients [4–7]. Several autoimmune and virus-induced models have been
used to study the underlying mechanisms of this disease [8–12]. Among virus-induced
models, Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination provides
an excellent infectious model because of the similarities in the pathogenesis [9,10,13,14].
In addition, Theiler’s virus appears to be an emerging human virus group, called Saffold
virus, which infects greater than 90% human populations [15–17]. Therefore, it is possible
that MS is triggered by a combination of genetic prevalence and nonspecific bystander
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chronic viral infections resulting in the development of skewed pathogenic T cell types
reactive to viral and self-antigens.

TMEV is a common enteric pathogen in mice and belongs to the family of picor-
navirus [18,19]. Two major subgroups of TMEV have been identified based on varying
biological characteristics such as neurovirulence and antigenicity. The first subgroup of
TMEV includes GDVII and FA viruses, which cause rapid and fatal encephalitis. The sec-
ond subgroup, known as Theiler’s original viruses, includes the BeAn8386 and DA strains.
Intracerebral inoculation of Theiler’s original viruses into susceptible mice causes a bipha-
sic neurological disease [13,19–21]. Mice exposed to TMEV orally do not develop clinical
symptoms and show reduced demyelinating disease after intracerebral inoculation of the
virus, suggesting the infection route is important for the pathogenesis [22]. In fact, TMEV
infection is spread widely via the fecal–oral route among wild mouse populations, yet these
infected mice rarely develop clinical disease [23]. The early, acute phase displays flaccid
limb paralysis and degeneration of neurons (poliomyelitis). The late phase exhibits chronic,
inflammatory demyelination [20,21]. The BeAn strain, in contrast to the DA strain, is
known to induce a clinically undetectable level of the early phase disease although it mani-
fests as a severe late phase disease [13,20]. TMEV infection is also known to induce epilepsy
and myocarditis depending on the injection sites and/or mouse strains [24,25]. However,
this review focuses on the induction of demyelinating disease. Several hypotheses have
been proposed to explain virus-induced demyelination. These include: (1) “bystander”
damage of myelin [26,27] as a consequence of the host immune response against TMEV
antigens; (2) induction of autoimmunity (via epitope spreading) to myelin proteins released
by viral damage to the CNS [14,28,29]; and/or (3) induction and propagation of pathogenic
antiviral and anti-self-immune responses by chronic overstimulations via pathogen pattern
recognition receptors [14,30].

SJL/J (SJL) mice (H-2s) represent a prototypical susceptible mouse strain and C57BL/6
(B6) mice (H-2b) represent a prototypical resistant mouse strain against both viral persis-
tence and the development of demyelinating disease [31,32]. Genetic studies of suscep-
tibility to TMEV-induced demyelinating disease (TMEV-IDD) indicated that one of the
important susceptibility loci is linked in the H-2D gene complex, suggesting the association
with H-2D-restricted CD8+ T cell response [33,34]. However, CD8+ T cells generated in re-
sponse to TMEV BeAn strain in susceptible SJL mice are restricted with the H-2K locus [35].
F1 (H-2b/s) of B6 and SJL mice are relatively resistant to TMEV-IDD and preferentially
develop H-2Db-restricted CD8+ T cells of resistant B6 mice, not the H-2Ks-restricted CD8+

T cells of susceptible SJL mice [27,36,37]. However, B6.S mice, similar to B10.S mice bear-
ing H-2s, are relatively resistant to TMEV-IDD, indicating that other background genes
may play a critical role in determining the susceptibility [38]. The major mouse strains
used, susceptibility to TMEV, and their MHC and the background genes are shown in
Table 1. The association with background genes is consistent with the previous genetic
study indicating that TMEV persistence level in the central nervous system (CNS) is asso-
ciated with non-MHC-linked genes on chromosomes 10, 14 and 18 [39–41]. In addition,
TMEV persistence in the CNS appears to play an important role in the pathogenesis
of demyelination [42–48]. However, the level of antiviral immunity is critical for the
pathogenesis of demyelinating disease rather than the viral persistence levels as shown
with TMEV-capsid transgenic mice, which are immunologically tolerant to the capsid
antigens [49]. Therefore, it appears that viral persistence facilitates the production of con-
tinuous inflammatory cytokines and the consequent lasting pathogenic T cell responses
for the development of TMEV-IDD. In this review, levels and types of innate and adaptive
immune responses to TMEV will be analyzed in conjunction with the viral load to better
understand the pathogenic mechanisms of virus-induced demyelinating disease.
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Table 1. Properties of major mouse strains and transgenic mice used in this review.

Mouse Strains Background Genes MHC Susceptibility Th Epitopes CTL Epitopes

SJL SJL H-2s Yes
VP272−86, 3D21−36,

VP324−37,
VP1233−250

VP3159−166,
VP3173−181,
VP111−20

C57BL/6 (B6) B6 H-2b No VP2206−220,
VP425−38, VP2121−130

B10.S B10 H-2s No/weak
VP272−86, 3D21−36,

VP324−37,
VP1233−250

VP3159−166,
VP3173−181,
VP111−20

B6.S B6 H-2s No/weak
VP272−86, 3D21−36,

VP324−37,
VP1233−250

VP3159−166,
VP3173−181,
VP111−20

(SJLxB6)F1 SJL + B6 H-2s/H-2b No/weak
VP2206−220,
VP425−38,

VP272−86, 3D21−36

VP2121−130,
VP3159−166,
VP3173−181,
VP111−20

Transgene Background Genes MHC Susceptibility Th Epitopes CTL Epitopes

VP2-TCR-Tg SJL H-2s >Yes >>>VP272−86,
<<VP3159−166,

VP3173−181,
VP111−20

TMEV P1-Tg SJL H-2s No 3D21−86

TMEV P2/P3-Tg SJL H-2s Yes
VP272−86,
VP324−37,

VP1233−250

VP3159−166,
VP3173−181,
VP111−20

2. Factors Affecting Permissiveness to TMEV Infection
2.1. Antigen-Presenting Cells

Many different cell types are permissive to TMEV infection, including neurons, oligo-
dendrocytes, microglia, and astrocytes in the CNS, and dendritic cells, macrophages, and
B cells of peripheral and infiltrating populations [30,50–53]. Non-professional antigen-
presenting cells (APCs) in the CNS of TMEV-infected SJL mice, such as microglia and astro-
cytes, are capable of presenting antigens to both TMEV- and CNS autoantigen-specific T cell
hybridomas and clones [54–56]. Furthermore, microglia and/or infiltrating macrophages
in the CNS are a major cell population supporting viral persistence during chronic in-
fection [56–58]. Virus replication is significantly higher in microglia from naïve SJL mice
and the viral load is also greater in microglia from TMEV-infected SJL mice, compared
to those cells from B6 mice [59]. In addition, differentiated/activated macrophages or
astrocytes are much more permissive to TMEV infection/replication, providing the source
of viral persistence in the CNS [60–62]. Consequently, the cytokine production level in
microglia from SJL mice is higher compared to those from B6 mice. However, the levels
of costimulatory molecule expression, and the ability to stimulate allogeneic T cells, are
significantly lower in TMEV-infected SJL mice than in B6 mice [38,63]. These differences
in the intrinsic properties of antigen-presenting cells for viral infection, replication and
resulting innate cytokine production are likely to contribute to viral persistence, cellular
infiltration to the CNS and consequent development of demyelinating disease. Moreover,
these APCs, including macrophages/microglia, dendritic cells, and B cells in the CNS and
periphery, appear to play additional important roles in stimulating T cells associated in the
pathogenesis [30,63–65].

Further studies using B6.S mice, which carry the H-2s with the resistant C57BL/6
background genes, are free from TMEV-IDD and display lower viral loads in the spinal cord
compared to susceptible SJL mice [38]. Interestingly, viral infectivity and/or replication in
glia and antigen-presenting cells (APCs) from TMEV-IDD resistant B6.S, B6, and F1(B6XSJL)
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mice are significantly lower compared to these SJL cells [37,59]. In vitro studies using APCs
from B6.S and SJL mice show that TLR2, 3, 4, and 7-mediated signaling augment viral infec-
tion leading to the preferential differentiation of the pathogenic Th17 cell type in susceptible
SJL mice [38,66]. Microglia and macrophages from susceptible SJL mice produce higher
levels of IL-6 and IL-1 after TMEV infection compared to those cells from either B6, B6.S,
or B10.S [67–69]. These observations indicate that the level of viral infectivity/replication
controlled by non-MHC genes plays a critical role in the pathogenesis of chronic viral
diseases. Taken together, these results strongly suggest that the viral replication levels
in APCs critically affect the induction of protective vs. pathogenic Th cell types via the
signaling of pattern recognition receptors for innate immune responses (Figure 1).
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Figure 1. Permissiveness of antigen-presenting cells to Theiler’s murine encephalomyelitis virus
(TMEV) infection correlates with susceptibility to the pathogenesis of demyelinating disease. (A) Sus-
ceptibility of antigen-presenting cells to TMEV infection/replication is directly associated with the
development of chronic demyelinating disease. The elevated viral infection/replication leads to
elevated inflammatory cytokine production (such as IL-6 and IL-1) which favors stimulation of
pathogenic Th17 response over protective Th1 response. (B) Levels of Th17 determine the develop-
ment of TMEV-induced demyelinating disease. Genetically resistant B6 mice induce strong Th1 and
weak Th17 responses to TMEV infection. However, B6 mice receiving LPS develop strong Th17 and
reduced Th1 responses, and become susceptible to TMEV-induced demyelination [48]. Susceptible
SJL mice develop strong Th17 and weak Th1 responses. Injection of SJL mice with anti-IL-17A
antibodies prevents the development of TMEV-induced demyelinating disease [65].

2.2. Role of Innate Immunity Associated with TMEV Infection
2.2.1. Critical Roles of Pattern Recognition Receptors (TLRs and MDA-5)

Mouse microglia express mRNA for TLR1–9 [58]. In addition, TLR stimulation acti-
vates the expression of MHC class II and costimulatory molecules, enabling the microglia
to efficiently activate CD4+ T cells [58]. Infection of many different glial cells (neurons,
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microglia, oligodendrocytes, and astrocytes) and professional antigen-presenting cells
(macrophages, dendritic cells, and B cells) with TMEV activates the production of various
cytokines via TLR2, 3, 4, and 7 [30,38,70–72]. TMEV contains a single RNA genome recog-
nized by TLR7 and the dsRNA intermediate by TLR3, and consequently TMEV infection
activates NF-κB, AP-1, and IRFs, resulting in the production of various cytokines. These
signals lead to further activation of NF-κB and increased production of various inflam-
matory cytokines such as IL-1β, IL-6, and IFNα/β, which augment the development of
the pathogenic Th17 cell type [30,38,63,65,73]. In addition, the melanoma differentiation-
associated gene 5 (MDA5) also recognizes viral messages leading to the activation of
NF-κB and preferentially promotes the production of IFNα/β [74]. Interestingly, NF-κB
signaling is necessary for viral replication and the expression of Bcl-2 and Bcl-xL, which
prevent TMEV-induced cellular apoptosis extending viral replication and cytokine produc-
tion [61,75]. Activation of chemokine and cytokine genes by TMEV is largely independent
of the IFNαβ pathway and partly dependent on the dsRNA-dependent protein kinase
(PKR) and MAP kinase pathways [73,76]. Interestingly, the activation of NF-κB is necessary
for TMEV infection/replication [61] and, thus, the pattern recognition receptor-mediated
cellular activation also serves as a mediator of viral persistence (Figure 2).
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Figure 2. TMEV infection leads to release of a single stranded RNA genome and double stranded
RNA replication intermediates in the endosome. The single RNA genome is recognized by TLR7, and
the dsRNA intermediate, by TLR3. The TLR signaling activates NF-κB, AP-1 and IRFs, which in turn
result in the production of various cytokines. MDA5 also recognizes viral messages leading to NF-κB
activation. These activations lead to the additional expression and activation of TLR2/4, further
activating NF-κB. The amplified NF-κB signaling promotes TMEV replication and the expression of
Bcl-2 and Bcl-xL, which prevent virus-induced cellular apoptosis, increasing viral replication and
cytokine production.
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2.2.2. NLRP3 Inflammasome

TLR-mediated signaling leads to the polymerization of the node-like receptor protein
3 (NLRP3) inflammasome, resulting in the activation of caspase-1 and the subsequent
production of IL-1β and IL-18 [77–79]. The MDA-5 signaling also promotes the activa-
tion of NLRP3 [80,81]. Consequently, TMEV infection induces strong NLRP3 inflamma-
some and downstream prostaglandin E2 (PGE2) signaling in dendritic cells (DCs) and
macrophages/microglia from susceptible SJL mice compared to the cells from resistant
B6 mice [82]. Inhibition of PGE2 signaling using AH23848, an inhibitor of PGE2 receptor,
decreases pathogenesis of TMEV-IDD and viral loads in the CNS, indicating the pathogenic
role of PGE2 [82]. Furthermore, administration of IL-1β renders resistant B6 mice per-
missive to the development of TMEV-IDD, consistent with that the NLRP3 activation
plays an important role in the pathogenesis [48,82]. The presence of a high IL-1β level
elevates the pathogenesis by preferentially promoting the development of pathogenic Th17
responses [83]. These results suggest that the NLRP3 inflammasome signaling contributes
to the pathogenesis of TMEV-induced demyelinating disease (Figure 2).

2.2.3. Initial Chemokines and Cytokines

Viral and bacterial infections result in the production of chemokines and cytokines,
which further activate additional cytokine and chemokine gene expression, promoting cel-
lular infiltration and subsequent induction of adaptive immune responses [84–86]. Various
chemokines and cytokines are produced in the CNS of mice after viral infections, including
TMEV [87–92]. TMEV infection upregulates various chemokine gene expressions in glial cells
and other antigen-presenting cells as early as 1–3 h after infection [51,93]. The infection of
primary glial cells, including astrocytes and microglia, results in the activation of chemokine
genes (CXCL1, CXCL2, CXCL10, CCL2, CCL3, CCL4, CCL5, CCL7, and CCL12) that are
important in the initiation of an inflammatory response [93–95]. These results suggest that
glial cells play critical roles in the development of, or protection from, TMEV-induced,
immune-mediated inflammatory disease. Treatment with anti-CCL2 antibodies results
in a significant decrease in the clinical disease progression, decreased CNS inflammation,
and reduced viral load in the CNS [96]. This study suggests a protective role of CCL2
in the development of TMEV-IDD. In contrast to CCL2, both the lack of CXCL1 during
TMEV infection and the excessive presence of this chemokine promote the pathogenesis of
demyelinating disease. Therefore, a balance in the level of CXCL1 during TMEV infection
is critically important in controlling the pathogenesis of demyelinating disease, although
the level of CXCL1 produced is significantly higher in cells from susceptible SJL mice
compared to that in cells from resistant BALB/c or B6 mice [95,97].

Proinflammatory cytokines, such as IL-1β, IL-6, IFNα/β, and TNFα, produced
upon TMEV infection via TLR-mediated signals, further upregulate the production of
chemokines [67,70,73,98]. In addition, TMEV infection upregulates the production of fibrin
deposition, different adhesion molecules such as ICAM and VCAM, and endothelin-1
associated with blood–brain barrier permeability and cellular infiltration, which appear to
participate in the pathogenesis of demyelinating disease [56,99–102]. TNF-α also appears
to play an important pathogenic role in the development of TMEV-IDD because higher
numbers of TNF-α producing cells are found in TMEV-infected susceptible mice [103].
However, TNF-α may also play a protective role because the absence of TNF-α worsens
the pathology in TMEV-infected mice [104]. The signaling by NLRP3 inflammasome leads
to the production of IL-1β and PEG2 [105]. TMEV infection activates NLRP3 via TLR
signaling [82]. IL-1 and other inflammatory cytokines produced after TMEV infection
are greater in susceptible mice compared to resistant mice [67]. A high IL-1 level plays a
pathogenic role by elevating pathogenic Th17 responses, whereas a lack of IL-1 signals pro-
motes viral persistence in the spinal cord due to insufficient T cell activation by elevating
the production of inhibitory cytokines and regulatory molecules [48,83]. The inhibition of
virus-induced PGE2 signaling results in decreased pathogenesis for TMEV-IDD, suggesting
that the excessive activation of the NLRP3 inflammasome leading to the PGE2 signaling
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contributes to the pathogenesis [82]. The excessive PEG2 levels may prevent the T cell
killing of target cells by inhibiting CD95L expression [106] and type I INF production [82].
TMEV infection upregulates the expression of PD-1 and PDL-1 in the CNS via type I IFN
signaling in conjunction with the presence of IL-6 signaling [107,108].

TMEV infection results in the production of relatively high levels of Type I IFNs
in various cell types from susceptible mice [73,109,110]. Type I IFNs stimulate T cell
responses after TMEV infection by activating the expression of costimulatory molecules
on APCs [30,63,111–113]. IFN-IR KO mice develop rapid fatal encephalitis accompanied
with greater viral load and infiltration of immune cells of the CNS compared to the wild
type mice [113]. The less efficient stimulation of virus-specific T cells in IFN-IR KO mice is
attributable to the poor expression of costimulatory molecules on APCs. However, IFN-I
also controls cellular infiltration to the CNS and shapes local T cell immune responses and B
cell activation [30,63,113]. SJL DCs infected with TMEV induce rapid production of several
different Type I IFNs (IFN-α1, IFN-α2, IFN-α4, IFN-α5, IFN-α6, IFN-α7, IFN-α9, IFN-α11,
IFN-αβ, and IFN-β), and a type II IFN (IFN-γ) [63]. TMEV-infected DCs from susceptible
mice produce higher levels of type I IFNs and IFN-γ compared to virus-infected DCs from
resistant mice. The difference in the production of IFNs contributes to the significantly
different virus-induced apoptosis, inhibition of development, and function of DCs [63].
The antiviral effect of Type I IFNs on TMEV replication is rather narrowly limited to just
before viral infection. Therefore, the presence of high levels of Type IFNs in susceptible
SJL mice may not necessarily be beneficial in controlling viral loads in the TMEV-induced
demyelinating disease.

IL-6 and IL-1β play particularly important roles in the pathogenic T cell responses
in the development of TMEV-induced demyelinating disease [65,83,113]. In addition, the
IL-1β signal amplifies IL-6 production and activates CD4+ T cell expansion [48,114]. IL-6
participates in initiating and amplifying the pathogenesis of TMEV-induced demyelinating
disease. In fact, mice lacking IL-6 signaling fail to develop demyelinating disease following
TMEV infection [65,75]. However, the effect of IL-6 could be different depending on the
TMEV strains because SJL mice receiving IL-6 prior to TMEV DA infection are free from the
disease [115]. In addition, the presence of IL-6 is essential for the survival of mice infected
with other viruses, such as influenza virus or lymphocyte choriomeningitis virus [116,117].

3. Role of Virus-Specific Adaptive Immunity in TMEV-Induced Demyelination
3.1. CD4+ T Cells
3.1.1. Early Studies of CD4+ T Responses

The demyelination induced after TMEV-inoculation is immune-mediated based on early
study results indicating that the treatment of mice with anti-thymocyte, anti-Ia (MHC class II),
or anti-CD4 antibodies delays the onset of disease [118–120], and that the level of the delayed-
type hypersensitivity response specific for viral antigens correlates with the course of clinical
signs of disease [27]. During chronic TMEV infection, susceptible mice display prolonged T cell
immune responses toward viral antigens [13,121,122]. The association between susceptibility
to TMEV-induced demyelinating disease (TMEV-IDD) and the MHC [34,121], in addition
to the T cell receptor (TCR) β-chain genes [123,124], further supports involvement of T cell
responses in the pathogenesis. Moreover, many studies have suggested that the CD4+ Th
response is pathogenic in susceptible mice [125–127]. Alternatively, some studies indicate
that CD4+ T cells confer protection from disease [128–130]. However, these early studies
potentially include different CD4+ T cell subpopulations, including Th1, Th17, and Treg
cells, which are functionally different. I-As restricted CD4+ T cell epitopes of TMEV in
susceptible SJL mice have been identified: one major (VP272–86) and two minor (VP1233–244,
VP324–37) epitopes on capsid proteins and one predominant epitope (3D21–36) on RNA
polymerase [126,131–133]. Similarly, two predominant I-Ab-restricted epitopes in resistant
B6 mice have been found in the capsid region [134]. A diagram displaying the CD4+ T
cell (I-As and I-Ab) and CD8+ T cell epitopes (H-2Ks and H-2Db) of TMEV BeAn is shown
in Figure 3.
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3.1.2. Utilization of Virus-Specific CD4+ T Cell Receptor Transgenic Mice

As CD4+ T cells include several subpopulations (Th1, Th17, and Treg), which have
distinct functions in the development of antiviral immunity and inflammatory diseases,
the availability of naïve undifferentiated virus-specific CD4+ T cells is critically important
for investigating CD4+ T cell differentiation during TMEV infection. TCR transgenic
mice specific for a major CD4+ T cell epitope (VP272–86) of TMEV restricted with I-As

(018030, SJL.Cg-Tg (TcraTcrbVP2) 1 Bkim/J from the Jackson Laboratory) have been used
to investigate the differentiation of CD4+ T cell types during viral infection [65,136]. CD4+

T cells from VP272–86-specific TCR-Tg mice in the absence of TMEV infection can be the
source of naïve CD4+ T cells and the T cell differentiation could be investigated in the
presence of virus-infected APCs (Figure 4). The differentiation of CD4+ T cell types were
investigated by comparing T cell development in TMEV-infected TCR-Tg mice with those
infected with UV-inactivated TMEV. The differentiation was also investigated following the
adoptive transfer of CFSE-labeled naïve VP2 TCR-Tg CD4+ T cells into SJL mice followed
by TMEV infection [136]. Alternatively, the differentiation of naïve TCR-Tg CD4+ T cells
has been investigated in vitro in the presence of TMEV-infected DCs or UV-inactivated
TMEV-infected DCs [65].
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Figure 4. Utilization of TMEV VP272–86-specific TCR-Tg mice in analyzing the development of CD4+ T cell subpopulations
during TMEV infection [65,136]. These signals induce the production of IL-1, IL-6, IFNα/β, and TGF-β, which promote
elevated induction of pathogenic FoxP3+ T-reg, Th17, and Tc17. Furthermore, IL-6 and IL-17, in addition to Tim and PDL-1,
synergistically inhibit protective CD8+ T lymphocytes (CTL) function [107]. IFNα/β inhibits Th1 responses and elevates
the expression of costimulatory molecules on antigen-presenting cells (APCs), which in turn promotes the induction of Th17
responses [63,113].

3.1.3. Involvement of Th1 Cells

TMEV-specific Th1 cells producing IFN-γ mediate lysis of the virus-infected glial cells
in a Fas-dependent mechanism [137]. Preimmunization of SJL mice with capsid-epitope
peptides significantly increased capsid-specific CD4+ T cell numbers in the CNS during
the early stages of viral infection [138]. These preimmunized mice delay the development
of demyelinating disease in SJL mice, suggesting a protective role of capsid-reactive Th1
cells. Genetically resistant mice with deficiencies in the IFN-γ or its receptor genes fail
to clear TMEV and develop extensive demyelinating disease [139,140]. Similarly, the
intraperitoneal (i.p.) injection of susceptible mice with an IFN-γ-neutralizing monoclonal
antibody (mAb) or of mice deficient in the Type I IFN receptor significantly accelerates
the onset of disease [112,141,142]. The treatment of mice with anti-IFN-γ mAb does not
reduce the delayed-type hypersensitivity (DTH) response to the virus and does not produce
significant effects in the clinical course of disease, suggesting that DTH response may not
reflect their Th1 response [141]. However, intracerebral administration of recombinant
IFN-γ significantly accelerates the onset of TMEV-induced disease and the enhancing effect
of IFN-γ is abrogated with treatment with anti-IFN-γ mAb [141]. Therefore, the level
of IFN-γ appears to play a key role in the TMEV-induced inflammatory response and
the perturbation of this cytokine may alter the course of demyelinating disease. IFN-γ
is produced by natural killer (NK) cells, and CD4+ and CD8+ T cells, and thus, the effect
of IFN-γ may not entirely reflect the function of the CD4+ T cell population. In addition,
the presence of IFN-γ receptors on the CNS glia suggests the importance of the target
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cells in the function of IFN-γ during TMEV-induced demyelination [143]. The effects of
preimmunization and tolerization with individual epitopes indicate that capsid-specific
CD4+ T cells are protective, whereas viral RNA polymerase (3D21–36)-specific CD4+ T cells
exacerbate the development of TMEV-induced demyelinating disease [133]. These results
suggest the location and abundance of Th1 responses also play a role in the protection from
the pathogenesis of TMEV-induced demyelinating disease.

3.1.4. Role of Th17 Cells

Th17 cells producing IL-17, which are a distinct subset of CD4+ T cells, are involved
in the pathogenesis of various autoimmune diseases [144–147]. Th17 cells preferentially
develop in an IL-6-dependent manner after TMEV infection [65,75]. The presence of IL-6 is
necessary for the development of Th17 responses and the pathogenesis of TMEV-IDD as
shown with IL-6 KO mice [75]. Th17 cells promote the pathogenesis of chronic demyeli-
nating disease by increasing viral persistence via upregulating antiapoptotic molecules
and blocking target cell killing by cytotoxic T cells. Administration of the neutralizing
antibody against IL-17 augments viral clearance and prevents the pathogenesis of TMEV-
induced demyelinating disease [65]. The presence of IL-6 further synergistically enhances
the antiapoptotic function of IL-17 function, which further facilitates the TMEV persistence
in the CNS [75]. Conversely, IL-17 may also further induce IL-6, which amplifies the
IL-17/IL-6 cytokine circuit [148]. The association of Th17 responses to the pathogenesis of
TMEV-induced demyelinating disease has been confirmed using Th17-biased RORγt Tg
mice with the B6 background, which render the development of TMEV-IDD with elevated
Th17 responses, in contrast to the control B6 mice [149]. Using isolated DCs infected with
live TMEV and UV-inactivated TMEV, it has been demonstrated that the development of
Th17 cells is dependent on DCs infected with live TMEV producing various innate immune
responses [65]. Thus, these results indicate a pathogenic role of Th17 cells in persistent
TMEV infection and the pathogenesis of associated chronic inflammatory demyelinating
diseases (Figure 4).

3.1.5. Participation of FoxP3+ Regulatory T Cells

High levels of FoxP3+CD4+ T cells are present in the CNS of virus-infected mice as
early as 3 d after viral infection [150,151]. The early induction of FoxP3+CD4+ T cells may
depend on the function of the TCR2-mediated signal [152,153] upregulated after TMEV
infection [72]. When FoxP3+CD4+ T cells were removed, viral loads in the CNS and the
development of clinical signs were significantly reduced in susceptible SJL mice [150],
but not in resistant C57BL/6 mice [154]. These results suggest that the presence of a
high level of FoxP3+CD4+ T cells promotes the pathogenesis of demyelinating disease.
However, as much as a two-fold higher proportion of FoxP3+CD4+ T cells in the CNS
of virus-infected SJL mice displaced CD25lo [136]. Thus, FoxP3+CD4+ T cells in the CNS
may require further activation to be functional regulatory T cells [155–157]. High levels
of CD25-FoxP3+CD4+ T cells were also observed in chronic hepatitis B virus-infected
patients [158] and patients with systemic lupus [159]. CD25loFoxP3+CD4+ T cells may lose
FoxP3 expression and undergo trans-differentiation into pathogenic Th17 cells [160,161].
Therefore, it is conceivable that some or most of the CD25loFoxP3+CD4+ T cells may be
converted into pathogenic Th17 cells under the environment of abundant cytokines such
as IL-6 and IL-1β in the CNS of TMEV-infected mice [65,83,136].

In many chronic viral infections, including TMEV, FoxP3+CD4+ T cells appear to
contribute to the pathogenesis by inhibiting protective T cell function and consequently
promoting viral persistence [150,162]. In contrast, FoxP3+CD4+ T cells may be beneficial in
controlling acute viral infections [163,164]. CD25loFoxP3+CD4+ T cells do not appear to
display regulatory function [157]. After activation of CD25loFoxP3+CD4+ T cells in vitro
under experimental conditions with various cytokines and peptides [156,165,166], up to
60% of CD4+ T cells bear FoxP3 and CD25hi [136]. The TMEV VP2-specific FoxP3+CD4+

T cells activated in vitro inhibit the production of IFN-γ but not IL-17 by VP2-specific
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CD4+ T cells [136]. In contrast, activated epitope-specific FoxP3+CD4+ T cells in MHV-
infected mice efficiently inhibit the proliferation of the same epitope-specific CD4+ T
cells [151]. The previous studies indicating the inhibition of proliferation of Th cells
utilized FoxP3+CD4+ T cells generated in vivo from TMEV-infected mice [150]. In addition,
MHV-specific FoxP3+ CD4+ T cells were stimulated in vitro with anti-CD3 and anti-CD28
antibodies instead of using the epitope peptide [151]. Therefore, activating antigens for
FoxP3+ CD4+ T cells and Th cells, in addition to the heterogeneity of target Th cells
during the inhibition assays, may be important. TMEV-infected mice treated with ex
vivo-generated FoxP3+ Tregs at an early stage of viral infection worsened the clinical signs,
whereas the mice treated with the Tregs at a later stage decreased immune cell recruitment
in the CNS [167]. Nevertheless, VP2 epitope-specific FoxP3+CD4+ T cells preferentially
inhibited the production of IFN-γ, but not IL-17, by the same epitope-reactive Th cells [136].
As virus-reactive IFN-γ-producing Th1 cells are protective but IL-17-producing Th17 cells
inhibit Th1 development and cytotoxic T cell function [65,168], FoxP3+CD4+ T cells together
with Th17 cells may promote the pathogenesis of TMEV-induced demyelinating disease in
an epitope-dependent manner (Figure 5).
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Figure 5. Interactions of adaptive immune responses to TMEV and autoantigens in susceptible mice.
Infection of susceptible mice with neurotropic TMEV induces excessive levels of innate immune
cytokines, including type I IFNs, IL-6, and IL-1, which promote inflammatory Th17 responses from
FoxP3+ T-reg cells over protective Th1 responses, leading to high viral loads in the CNS. Various
glias and antigen-presenting cells (APCs), including B cells, are permissive to the viral infection
and participate in the innate immune responses. FoxP3+ T cells and Th17 cells are involved in
the inhibition of protective CD8+ T cell function, which further elevates the viral persistence and
pathogenesis of demyelination. B cells are also activated and stimulated to produce elevated levels of
antibodies. Such high viral loads and innate cytokines, in addition to adaptive immune responses in
the CNS, lead to CNS tissue damage releasing sequestered autoantigens.

3.2. Roles of CD8+ T Cells in the Pathogenesis of TMEV-IDD
3.2.1. Role of Tc1

As demyelination is closely linked to viral persistence [42–44], TMEV-specific cytotoxic
CD8+ T cells producing IFN-γ and perforin (Tc1) are likely to play an important role in
protection and/or resistance [39,169,170]. TMEV-specific cytotoxic CD8+ T lymphocytes
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(CTL) appear to damage virus-infected, myelin-producing oligodendrocytes and other cell
types [171–174]. Many investigations further confirmed the role of Tc1 cells by antibody-
mediated CD8+ T cell depletion [175], and using Class I deficient mice [176–178]. Rodriguez
and his colleagues proposed that CD8+ T cells are necessary for the manifestation of
clinical symptoms using the DA strain of TMEV [169,173]. However, β2M-deficient or
perforin-deficient mice on a resistant background are susceptible to both demyelination and
clinical disease [170,176–178]. Furthermore, β2M-deficient mice with the susceptible SJL
background displayed similar exacerbation of TMEV-IDD [179]. These results indicated
a protective role of CD8+ T cells in the development of TMEV-induced demyelinating
disease in both resistant and susceptible mice. Moreover, the presence of a high level
of CTL in resistant mice and a low level in susceptible mice [180], and the resistance to
TMEV-IDD in susceptible mice adoptively received CD8+ T cells [181], further support
the protective function of CTL. In resistant B6 mice, the majority (50% to 70%) of CNS-
infiltrating CD8+ T cells recognize VP2121–130 [182,183], and two minor populations (<10%)
react with VP2165–173 and VP3110–120 capsid epitopes [184] based on the production of
IFN-γ (Figure 3). Similarly, CNS-infiltrating CD8+ T cells of virus-infected SJL mice react
with one predominant (VP3159–166,) and two subdominant capsid epitopes (VP3173–181, and
VP111–20) [35]. During the early stages of viral infection, a lower level of virus-specific
CD8+ T cells in SJL mice was observed [184]. In addition, the resistance of (B6xSJL)F1
mice is associated with a higher level of the initial virus-specific H-2b-restricted CD8+ T
cell responses compared to the H-2s-restricted CD8+ T cell responses [37]. These results
further suggest that Tc1 cells play an important protective role in preventing TMEV-
IDD by clearing viral loads from the CNS. There is, however, a possibility that certain
CD8+ T cell populations play a pathogenic role, perhaps depending on epitope-reactivity
or cytokine production, in TMEV-induced demyelination [171–173,185]. Similar CTL-
mediated immunopathology was reported with the lymphochoriomeningitis virus (LCMV)
and Coxsackie B virus in mice [186–188].

3.2.2. Role of Tc17

Chronic inflammation promotes the induction of IL-17-producing CD8+ cells with re-
duced cytolytic function [189,190]. Therefore, it is conceivable that a subset of CD8+ T cells
producing IL-17 may be associated with the pathogenesis of TMEV-IDD. To investigate the
possible epitope-dependent function of CD8+ T cells in the protection and/or pathogenesis, a
single amino acid substitution was introduced into the predominant viral epitope (VP3159–166)
and/or a subdominant viral epitope (VP3173–181) of susceptible SJL/J mice by site-directed
mutagenesis altering a single amino acid within the epitopes [191]. The resulting variant
viruses (substituted at N160V, P179A, and N160V/P179A) failed to induce CD8+ T cell re-
sponses in the respective epitopes. TMEV (N160V and N160V/P179A) viruses, deficient
in the predominant CD8+ T cell epitope, do not induce demyelinating disease [191]. The
CD8+ T cells specific for the predominant VP3159–166 epitope identified by reactivity with the
tetramers containing VP3159–166 showed strong cytolytic activity and produced high levels of
IFN-γ. In contrast, VP3173–181-specific CD8+ T cells produced higher levels of transforming
growth factor beta, interleukin-22 (IL-22), and IL-17 mRNA, and exhibited minimal cyto-
toxicity. Therefore, it is conceivable that differences in the functional avidity toward their
cognate epitopes and/or the type of cytokines produced may affect the function of CD8+ T
cell populations in an epitope-dependent manner. IFN-γ producing VP3159–166-specific CD8+

T cells with high cytolytic function, in contrast to low-cytolytic VP3173–181-specific CD8+ T
cells, may be necessary to initiate the pathogenic process by destroying infected neurons
and/or releasing sequestered autoantigens followed by Tc-17- and Th17-mediated inhibition
of cytolytic function promoting viral persistence. Thus, both Th17 and Tc1 populations reac-
tive to TMEV epitopes may cooperatively participate in the pathogenesis of virally induced
demyelinating disease in an epitope-dependent manner [191].



Int. J. Mol. Sci. 2021, 22, 5254 13 of 25

3.3. Role of B Cells in the Development of TMEV-IDD
3.3.1. Anti-TMEV Antibody Responses

The major neutralizing antibody epitopes of TMEV reside on VP1, and these epitopes
may also be involved in virus-binding to cellular receptors [192,193]. The antibodies
found in the spinal fluids of TMEV-infected mice [194] and in MS patients [195] displayed
relatively limited heterogeneity. Furthermore, B cells producing antibodies to VP1 and
VP2 proteins are detectable in the demyelinating lesions [196]. The plasma cells producing
anti-TMEV antibodies were found primarily in perivascular infiltrates and in the meninges
of the CNS parenchyma [197].

Antibodies from TMEV-infected mice also recognize several linear epitopes of 13–15
amino acid peptides or recombinant proteins representing the capsid proteins, and some
of these antibodies display varying degrees of virus neutralization accompanying the
protection from demyelinating disease development [122,198–200]. Anti-TMEV antibody
responses during the early stage of viral infection play a protective role [49,201,202]. In
addition, treatment of mice with the monoclonal anti-CD20 antibody accelerate the patho-
genesis of TMEV-induced demyelinating disease, suggesting a protective role of the B
cells [203]. However, antibodies to viral determinants appear to play a relatively minor
role in the protection of mice from the pathogenesis of demyelinating disease compared to
CD4+ Th1 and CD8+ T cells [122,201,202].

3.3.2. B Cells as a Viral Reservoir and Their Role in T Cell Activation

An earlier study suggested that B cells are not permissive to TMEV infection [204].
However, a recent study showed as much as 40% of primary B cells in susceptible SJL mice
are permissive to TMEV infection and replication [30]. TMEV-infected B cells expressed
elevated levels of an activation marker, CD69. In addition, the expression of MHC class
II and costimulatory molecules was upregulated in the infected B cells, accompanied
by elevated levels of antigen-presenting function and antibody production [30]. The
upregulation of these B cell activation markers induced with TMEV infection was replicated
with the treatment of B cells with TLR ligands for TLR2, TLR3, TLR4, TLR7, and TLR9,
suggesting that B cell activation after TMEV infection is associated with TLR signals [30].
These results are consistent with the previous findings that various TLR-mediated signals
activate B cells to function as an important professional APC type involved in the activation
of Th cell types [205–207]. The innate responses via TLRs following TMEV infection appear
to trigger excessive production of IFN-α/β, IL-6, IL-1, and PGE2 in B cells of susceptible
mice [30,208–210]. These innate immune responses following TMEV infection also activate
B cells to produce antibodies and facilitate elevated T cell responses [30]. In addition,
these cytokines may, in turn, further enhance the viral persistence by inhibiting apoptosis
of TMEV-infected B cells and protective Th1 cell responses, while enhancing pathogenic
Th17 responses [65,82] (Figure 5). Furthermore, TMEV-infected B cells form a germinal
center-like structure with close proximity of T cells in the CNS, which may promote the
induction of pathogenic T cells, such as Th17 and FoxP3+ Treg, recognizing not only viral
determinants but also autoantigens [30].

4. Development of Autoimmune Responses during TMEV-IDD

Early studies indicated that antibody responses to self-antigens including myelin basic
protein (MBP) in the CNS were induced during chronic infection with TMEV [28,30,211].
Similarly, Th cell responses to myelin-associated autoantigens in the CNS were also previ-
ously identified during chronic infection with TMEV [14]. In addition, TMEV-infected SJL
mice displayed a CD8+ cytotoxic T cell population apparently recognizing both viral deter-
minant and autoantigen capable of causing CNS degeneration [212]. Thus, chronic TMEV
infection appears to induce various antibody, CD4+ T cell, and CD8+ T cell responses
to CNS autoantigens. It has previously been proposed that the presence of molecular
mimicry between viral determinants and autoantigens leads to the cross-reactive antibody
and T cell responses following TMEV infection [213]. Alternatively, it is possible that
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sequestered autoantigens to the CNS may be released following TMEV-induced tissue
damage and these released autoantigens induce such autoreactive antibody and CD4+ T
cell responses [30,214]. However, rapidly accelerated production of the same autoanti-
bodies was observed in systemic lupus erythematosus-prone mice, such as NZBWF1 and
BXSB male mice, following infection with TMEV or Coxsackie virus [30]. These results
strongly suggest that the autoimmune responses induced after TMEV infection reflect
virus-induced TLR-mediated polyclonal activation of pre-existing autoimmune cells in a
high frequency. In fact, ligands of various TLRs lead to the activation of B cells and T cells
similar to TMEV infection [30]. The potential role of these autoimmune responses in the
development of TMEV-induced demyelinating disease is not yet clear. As virus-reactive T
cell responses are necessary to induce TMEV-induced demyelinating disease [49,55,65,191],
the initial immune-mediated tissue damages of virus-infected cells may be a prerequisite
for the pathogenesis of disease. Nevertheless, these autoimmune responses may participate
in further damaging the related tissues and some may be involved in the protection, as
previously suggested [215–217].

5. Shaping Adaptive Immune Responses by Innate Immunity after TMEV Infection
5.1. Excessive Innate Immunity Initiates the Pathogenesis of TMEV-IDD

The cytokine levels produced after TMEV infection are significantly greater in the
glial cells and APCs of susceptible SJL mice than in those of resistant mice [38,59,67].
TLR-mediated signaling plays an important role in the induction of innate cytokine re-
sponses [30,70–72]. In particular, TMEV infection induces the high levels of IL-1β, IL-6,
IFNα/β, and TNFα via TLR-mediated signals in cells from susceptible mice compared to
those from resistant mice [67,70,73]. Treatment of susceptible mice with poly IC, a ligand
of TLR3, prior to TMEV infection exacerbates disease development, whereas this treatment
after viral infection decreases the disease development [66]. Excessive levels of cytokines
such as IL-6 and IL-1β produced via TLR3 signaling prior to viral infection hinder the
induction of protective IFN-γ-producing CD4+ and CD8+ T cell populations. Treatment
of resistant B6 mice with LPS, a ligand of TLR4, or IL-1β, caused the mice to develop
TMEV-induced demyelinating disease [48]. Similarly, susceptible SJL mice infected with
a low pathogenic strain of TMEV developed a full-blown demyelinating disease after
treatment with LPS [218]. Therefore, the excessive production of IL-6 and IL-1β appears to
be mainly responsible for the development of demyelinating disease via preferential differ-
entiation of pathogenic Th17 cells [65,83]. In addition, DCs treated with UV-inactivated
TMEV predominantly induce protective Th1 responses in vitro, whereas DCs infected
with live TMEV preferentially mount pathogenic Th17 responses [65]. The initial status of
virus-specific CD4+ T cell differentiation appears to play an important role in the patho-
genesis of disease, because adoptive transfer of VP2-primed VP2-TCR-Tg CD4+ T cells into
naive SJL mice, in contrast to the naïve T cells, provides protection from TMEV-induced
demyelinating disease [136]. In addition, IL-6 and IL-17, which are the cytokines produced
by Th17, synergistically promote the survival of virus-infected cells by preventing cellular
apoptosis and CTL-mediated cytolysis [75]. Furthermore, upregulated production of IL-6
results in the expression of higher levels of PD-1 and PDL-1, which inhibit CTL function
of CD8+ T cells [107]. In addition, poly IC-pretreated mice displayed elevated PDL-1 and
regulatory FoxP3+ CD4+ T cells in the CNS, whereas poly IC-post-treated mice expressed
reduced levels of PDL-1 and FoxP3+ CD4+ T cells [66,107]. A high level of IL-1β, which
amplifies IL-6 production [48,114], elevated pathogenic Th17 responses [83]. However,
the lack of IL-1 signals promoted viral persistence due to insufficient T cell activation [83].
Therefore, the timing and balance of IL-1 signaling must be important for the protection
from TMEV-induced demyelinating disease.

5.2. Viral Load and Persistence

Both immune response and viral persistence in the CNS appear to play an important
role in the pathogenesis of demyelination [45–48]. The level of anti-TMEV immunity, rather



Int. J. Mol. Sci. 2021, 22, 5254 15 of 25

than the viral persistence level, is important for the pathogenesis of demyelinating disease,
as shown with P1-transgenic mice (Table 1) which are immunologically tolerant to all of
the capsid proteins of TMEV [49]. The P1 region of TMEV encodes the major CD4+ and
the CD8+ T cell epitopes (Figure 3). Despite the drastically increased viral loads in the
CNS, SJL P1-Tg mice developed significantly reduced antiviral immune responses and
less severe demyelinating disease, suggesting that TMEV persistence is required but not
sufficient to induce the disease [49]. Therefore, the level of pathogenic T-cell immunity to
viral capsid epitopes clearly contributes to the development of demyelinating disease in
SJL mice. These results are consistent with the contribution of certain CD8+ T cell and Th17
responses to the pathogenesis of TMEV-induced demyelination [65,191].

The cellular activation status affects the levels of TMEV infection and/or replication,
and the increased viral loads in turn elevate the level of inflammatory responses in a
continued loop [61]. TMEV replication in infected cells is dependent on the activation
of NF-κB and partially MAP kinase. In addition, treatment of macrophages with LPS, a
strong inducer of innate cytokine responses, increases viral replication, and persistence
in the CNS, leading to the pathogenesis of demyelination [48,59,61,218]. Several TLRs
are associated with the production of inflammatory cytokines via activation of NF-κB
following TMEV infection [48,67,70,73,98]. In addition, the activation of NF-κB is required
for TMEV infection and replication [61]. Furthermore, the initial proinflammatory cy-
tokines, such as TNF-α, IL-6, and IL-1, produced in virus-infected cells may further activate
NF-κB in adjacent cell populations to facilitate enhanced TMEV infection and replication
(Figure 2). Due to the reduction of TLR-mediated signals by blocking TLR activation
or NF-κB activation during viral infections, these signals are likely associated with the
pathogenesis of demyelinating disease [61,66,73,219]. In addition, TMEV infections and
replications are greater in cells of susceptible mice than in cells of resistant mice, and lead
to the production of excessive cytokines and TLR signals promoting the pathogenesis of
demyelinating disease [67,70,73].

5.3. Relevance of TMEV-IDD in Understanding Other Chronic Viral Inflammatory Diseases

The significance of the TMEV system as an infectious model for MS is manifold.
TMEV-induced demyelination [9,10,13,14] serves as an excellent infectious model for the
following reasons: (1) wildtype isolates from infected mice, without attenuation, result in
chronic demyelinating disease; (2) chronic pathological involvement is limited to the white
matter of the CNS; (3) myelin breakdown is directly related to the clinical symptoms such
as gait spasticity and urinary incontinence; (4) demyelination is primarily associated with
cell-mediated immune responses; (5) strong autoimmunity to myelin antigens is induced
following the initial demyelination by virus-specific T cells [14,30]. Susceptible SJL mice
preimmunized with viral peptides or UV-inactivated TMEV prior to viral infection prefer-
entially mount protective CD4+ T cell (Th1) type responses, which in turn subsequently
prevent the development of pathogenic Th17 cell responses [65,127]. The development of
early protective T cell and/or antibody responses reduces the viral load and the consequent
pathogenesis. The ratio between the protective antiviral immune responses and the level of
viral load has an inverse relationship for the development of TMEV-induced demyelinating
disease [136]. Therefore, excessive production of initial inflammatory cytokines due to the
high viral load, reflecting high permissiveness and viral replication in susceptible mice,
appears to play a pivotal role in the pathogenesis of TMEV-induced demyelinating dis-
ease [38]. The increased cytokine production and viral load are facilitated by TLR-mediated
signals, including NF-κB activation, because the reduction of these signals by blocking TLR
activation or NF-κB activation during viral infections hinders the pathogenesis of demyeli-
nating disease [61,66,73,219]. Therefore, inhibition of either TLR signals or inhibitors of
NF-κB may be helpful in controlling the development of TMEV-induced demyelinating
disease. It is also interesting to note that the presence of antiviral cytokines such as type
I IFNs by exposing TLR ligands prior to viral infection could inhibit the development of
TMEV-induced demyelinating disease [63]. In addition, the reduction of IL-6 or IL-17A in
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genetically modified mice or by treating mice with anticytokine antibodies prevents the
development of TMEV-induced demyelination [63,65,75,83]. Therefore, functional inhibi-
tion of key inflammatory cytokines, such as IL-6, IL-1β, and/or IL-17, which are critical
for the development of pathogenic T cell responses and viral persistence, may prevent the
pathogenesis of TMEV-induced demyelinating disease.

The pathogenic mechanisms of TMEV-IDD discussed above may be applicable to
many other chronic inflammatory diseases associated with viral infections. For example,
infections with closely related viruses, such as Coxsackie viruses are known to induce
various chronic organ-specific immune-mediated inflammatory diseases in animals and
humans [220]. It may also be applicable to the pathogenesis of other RNA viruses, such
as Corona viruses, which also induce various neurological symptoms and autoimmune-
like diseases, including cytokine storms linked to excessive production of innate immune
responses [221,222]. Such excessive innate immune responses by chronic viral infections
may also be associated with the pathogenesis of systematic lupus erythematosus [30].
Therefore, the TMEV-IDD system with well-defined pathogenic mechanisms may provide
valuable information in understanding other virus-induced inflammatory diseases.
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