
ARTICLE

Correspondence between neuroevolution and
gradient descent
Stephen Whitelam 1✉, Viktor Selin2, Sang-Won Park1 & Isaac Tamblyn2,3,4✉

We show analytically that training a neural network by conditioned stochastic mutation or

neuroevolution of its weights is equivalent, in the limit of small mutations, to gradient descent

on the loss function in the presence of Gaussian white noise. Averaged over independent

realizations of the learning process, neuroevolution is equivalent to gradient descent on the

loss function. We use numerical simulation to show that this correspondence can be

observed for finite mutations, for shallow and deep neural networks. Our results provide a

connection between two families of neural-network training methods that are usually con-

sidered to be fundamentally different.

https://doi.org/10.1038/s41467-021-26568-2 OPEN

1Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA. 2Department of Physics, University of Ottawa,
Ottawa, ON K1N 6N5, Canada. 3 National Research Council of Canada, Ottawa, ON K1N 5A2, Canada. 4 Vector Institute for Artificial Intelligence, Toronto,
ON M5G 1M1, Canada. ✉email: swhitelam@lbl.gov; isaac.tamblyn@uottawa.ca

NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26568-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26568-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26568-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26568-2&domain=pdf
http://orcid.org/0000-0002-0086-6803
http://orcid.org/0000-0002-0086-6803
http://orcid.org/0000-0002-0086-6803
http://orcid.org/0000-0002-0086-6803
http://orcid.org/0000-0002-0086-6803
mailto:swhitelam@lbl.gov
mailto:isaac.tamblyn@uottawa.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications

In broad terms there are two types of method used to train
neural networks, divided according to whether or not they
explicitly evaluate gradients of the loss function. Gradient-

based methods include the backpropagation algorithm1–8. The
non-gradient-based methods (sometimes called “black box”
methods) include stochastic processes in which changes to a
neural network are proposed and accepted with certain prob-
abilities, and encompass Monte Carlo9,10 and genetic
algorithms11–13. Both gradient-based and non-gradient-based
methods have been used to train neural networks for a variety of
applications, and, where comparison exists, perform similarly
well14–17. For instance, recent numerical work shows that sto-
chastic evolutionary strategies applied to neural networks are
competitive with explicit gradient-based methods on hard
reinforcement-learning problems16.

Gradient-based- and non-gradient-based strategies are differ-
ent in implementation and are sometimes thought of as entirely
different approaches18. Here, we show that the two sets of
methods have a fundamental connection. We demonstrate ana-
lytically an equivalence between the dynamics of neural-network
training under conditioned stochastic mutations, and under
gradient descent. This connection follows from one identified in
the 1990s between the overdamped Langevin dynamics and
Metropolis Monte Carlo dynamics of a particle in an external
potential19,20. In the limit of small Monte Carlo trial moves, those
things are equivalent. Similarly, we show here that a single copy
of a neural network (a single individual) exposed to parameter
mutations that are accepted probabilistically is equivalent, in the
limit of small mutation size, to gradient descent on the loss
function in the presence of Gaussian white noise. The details of
the resulting dynamics depend on the details of the acceptance
criterion, and encompass both standard- and clipped gradient
descent. Such a mutation scheme corresponds to the simple limit
of the set of processes called “neuroevolution”13,16,21–23. This
connection demonstrates explicitly that optimization without
access to gradients can, nonetheless, enact noisy gradient descent
on the loss function.

In simple gradient descent, equivalent to noise-free over-
damped Langevin dynamics, the parameters (weights and biases)
x of a neural network evolve with training time according to the
prescription _x ¼ �α∇UðxÞ. Here, α is a learning rate, and∇U(x)
is the gradient of a loss function U(x) with respect to the network
parameters. Now consider a simple neuroevolution scheme in
which we propose a mutation x→ x+ ϵ of all neural-network
parameters, where ϵ is a set of independent Gaussian random
numbers of zero mean and variance σ2. Let us accept the proposal
with the Metropolis probability min 1; e�βΔU

� �
. Here, β is a

reciprocal temperature, and ΔU is the change of the loss function
under the proposal. This is a Metropolis Monte Carlo algorithm,
a Markovian dynamics that constitutes a form of importance
sampling, and a common choice in the physics literature9,10,24. In
physical systems, β is inversely proportional to the physical
temperature, and we consider finite values of β in order to make
contact with that literature. However, in the context of training a
neural network it is interesting to consider the zero-temperature
limit β=∞, where mutations are accepted only if the loss does
not increase. That regime is not normally considered in particle-
based simulations.

Our main results can be summarized as follows. When β ≠∞
the weights of the network evolve, to leading order in σ, as _x ¼
�ðβσ2=2Þ∇UðxÞ plus Gaussian white noise. Averaged over
independent realizations of the learning process, this form of
neuroevolution is therefore equivalent to simple gradient descent,
with learning rate βσ2/2. In the limit β=∞, where mutations are
accepted only if the loss function does not increase, weights under

neuroevolution evolve instead as _x ¼ �ðσ= ffiffiffiffiffi
2π

p Þj∇UðxÞj�1∇UðxÞ
plus Gaussian white noise, which corresponds to clipped gradient
descent on U(x)25. Note that conditioning the acceptance of
neural-network parameter mutations on the change of the loss
function for a single copy of that network is sufficient to enact
gradient descent: a population of individuals is not required.

In this paper, we use the term “neuroevolution” to refer to a
sequence of mutation steps applied to the parameters of a single
copy of a neural network and accepted probabilistically. In
general, neuroevolutionary algorithms encompass a broader
variety of processes, including mutations of populations of
communicating neural networks16 and mutations of network
topologies21,26,27. Similarly, the set of procedures for particles
that can be described as “Monte Carlo algorithms” is large, and
ranges from local moves of single particles—roughly equivalent
to the procedure used here—to nonlocal moves and moves of
collections of particles24,28–31. The dynamics of those
collective-move Monte Carlo algorithms and of the more
complicated neuroevolutionary schemes21,26,27 do not corre-
spond to simple gradient descent. Here, we demonstrate a
correspondence between one member of this set of algorithms
and gradient descent, the implication being that, given any
potentially complicated set of neuroevolutionary methods, it is
enough to add a simple mutation-acceptance protocol in order
to ensure that gradient descent is also approximated. The
neuroevolution-gradient descent correspondence is similar to
the proofs that neural networks with enough hidden nodes can
represent any smooth function32: it does not necessarily suggest
how to solve a given problem, but provides understanding of
the limits and capacity of the tool and its relation to other
methods of learning.

Our work provides a rigorous connection between gradient
descent and what is arguably the simplest form of neuroevolution.
It complements studies that demonstrate a numerical similarity
between gradient-based methods and population-based evolu-
tionary methods16,17, and studies that show analytically that the
gradients approximated by those methods are, under certain
conditions, equivalent to the finite-difference gradient33–35.

The paper is structured as follows. We summarize the
neuroevolution-gradient descent correspondence in section
“Results”, and derive it in section “Methods”. Our derivation uses
ideas developed in ref. 20 to treat physical particles, and applies
them to neural networks: we consider a different set-up (in effect,
we work with a single particle in a high-dimensional space, rather
than with many particles in three-dimensional space) and pro-
posal rates, and we consider the limit β=∞ that is rarely con-
sidered in the physics literature but is natural in the context of a
neural network. We can associate the state x of the neural net-
work with the position of a particle in a high-dimensional space,
and the loss function U(x) with an external potential. The result is
a rewriting of the correspondence between Langevin dynamics
and Monte Carlo dynamics as a correspondence between the
simplest forms of gradient descent and neuroevolution. Just as the
Langevin-Monte Carlo correspondence provides a basis for
understanding why Monte Carlo simulations of particles can
approximate real dynamics31,36–41, so the neuroevolution-
gradient descent correspondence shows how we can effectively
perform gradient descent on the loss function without explicit
calculation of gradients. The correspondence holds exactly only in
the limit of vanishing mutation scale, but we use numerics to
show in section “Numerical illustration of the neuroevolution-
gradient descent correspondence” that it can be observed for
neuroevolution done with finite mutations and gradient descent
enacted with a finite timestep. We conclude in section
“Conclusions”.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2

2 NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

Results
In this section, we summarize the main analytic results of this
paper. These results are derived in section “Methods”.

Consider a neural network with N parameters (weights and
biases) x= {x1,…, xN}, and a loss U(x) that is a deterministic
function of the network parameters. The form of the network
does not enter the proof, and so the result applies to neural
networks of any architecture (we shall illustrate this point
numerically by considering both deep and shallow nets). The loss
function may also depend upon other parameters, such as a set of
training data, as in supervised learning, or a set of actions and
states, as in reinforcement learning; the correspondence we shall
describe applies regardless.

Gradient descent. Under the simplest form of gradient descent,
the parameters xi of the network evolve according to numerical
integration of

dxi
dt

¼ �α
∂UðxÞ
∂xi

: ð1Þ

Here, time t measures the progress of training, and α is the
learning rate3–7.

Neuroevolution. Now consider training the network by neuroe-
volution, defined by the following Monte Carlo protocol.

1. Initialize the neural-network parameters x and calculate the
loss function U(x). Set time t= 0.

2. Propose a change (or “mutation”) of each neural-network
parameter by an independent Gaussian random number of
zero mean and variance σ2, so that

x ! x þ ϵ; ð2Þ
where ϵ= {ϵ1,…, ϵN} and ϵi � N ð0; σ2Þ.

3. Accept the mutation with the Metropolis probability
min 1; e�β½UðxþϵÞ�UðxÞ�� �

, and otherwise reject it. In the
latter case we return to the original neural network. The
parameter β can be considered to be a reciprocal
evolutionary temperature.

4. Increment time t→ t+ 1, and return to step 2.

For finite β, and in the limit of small mutation scale σ, the
parameters of the neural network evolve under this procedure
according to the Langevin equation

dxi
dt

¼ � βσ2

2
∂UðxÞ
∂xi

þ ξiðtÞ; ð3Þ

where ξ is a Gaussian white noise with zero mean and variance σ2:

ξiðtÞ
� � ¼ 0; ξiðtÞξjðt0Þ

D E
¼ σ2δijδðt � t0Þ: ð4Þ

Eq. (3) describes an evolution of the neural-network parameters
xi that is equivalent to gradient descent with learning rate
α= βσ2/2 in the presence of Gaussian white noise. Averaging over
independent stochastic trajectories of the learning process
(starting from identical initial conditions) gives

d xi
� �
dt

¼ � βσ2

2
∂UðxÞ
∂xi

; ð5Þ

which has the same form as the gradient descent equation (1).
Thus, when averaged over many independent realizations of the
learning process, the neuroevolution procedure 1–4, with finite β,
is equivalent in the limit of small mutation scale to gradient
descent on the loss function.

In the case β=∞, where mutations are only accepted if the loss
function does not increase, the parameters of the network evolve

according to the Langevin equation

dxi
dt

¼ � σffiffiffiffiffi
2π

p 1
j∇UðxÞj

∂UðxÞ
∂xi

þ ηiðtÞ; ð6Þ

where η is a Gaussian white noise with zero mean and variance
σ2/2:

ηiðtÞ
� � ¼ 0; ηiðtÞηjðt0Þ

D E
¼ σ2

2
δijδðt � t0Þ: ð7Þ

The form (6) is different to (3), because the gradient in the first

term is normalized by the factor j∇UðxÞj ¼
ffi
∑N

i¼1 ð∂UðxÞ=∂xiÞ2
q

,

which serves as an effective coordinate-dependent rescaling (or
vector normalization) of the timestep, but (6) nonetheless
describes a form of gradient descent on the loss function U(x).
Note that the drift term in (6) is of lower order in σ than the
diffusion term (which is not the case for finite β). In the limit of
small σ, (6) describes an effective process in which uphill moves
in loss cannot be made, consistent with the stochastic process
from which it is derived.

Averaged over independent realizations of the learning process,
(6) reads

d xi
� �
dt

¼ � σffiffiffiffiffi
2π

p 1
j∇UðxÞj

∂UðxÞ
∂xi

: ð8Þ

The results (3) and (6) show that training a network by making
random mutations of its parameters is, in the limit of small
mutations, equivalent to noisy gradient descent on the loss
function.

Writing _UðxÞ ¼ _x � ∇UðxÞ, using (3) and (6), and averaging
over noise shows the evolution of the mean loss function under
neuroevolution to obey, in the limit of small σ,

_UðxÞ� � ¼ � βσ2

2 ð∇UðxÞÞ2 if β≠1
� σffiffiffiffi

2π
p j∇UðxÞj if β ¼ 1

(
; ð9Þ

equivalent to evolution under the noise-free forms of gradient
descent (5) and (8).

In section “Numerical illustration of the neuroevolution-
gradient descent correspondence” we illustrate numerically the
correspondence described here, and show that it can be observed
numerically for non-vanishing mutations and finite integration
steps. In section “Methods” we detail the derivation of the
correspondence.

Discussion
Numerical illustration of the neuroevolution-gradient descent
correspondence. In this section, we demonstrate the
neuroevolution-gradient descent correspondence numerically.
We consider single-layer neural networks for the cases of infinite
and finite β, and a deep network for the case of infinite β.

Shallow net, β =∞. In order to observe correspondence
numerically, the neuroevolution mutation scale σ must be small
enough that correction terms neglected in the expansion leading
to (25) and (55) are small. The required range of σ is difficult to
know in advance, but straightforward to determine empirically:
below the relevant value of σ, the results of neuroevolution will be
statistically similar when scaled in the manner described below.

We consider a simple supervised-learning problem in which we
train a neural network to express the function f 0ðθÞ ¼ sinð2πθÞ
on the interval θ∈ [0, 1). We calculated the loss using K= 1000
points on the interval,

UðxÞ ¼ 1
K

∑
K�1

j¼0
f xðj=KÞ � f 0ðj=KÞ
� �2

; ð10Þ

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

where

f xðθÞ ¼ ∑
M�1

i¼0
x3iþ1 tanhðx3iþ2θ þ x3iþ3Þ ð11Þ

is the output of a single-layer neural network with one input
node, one output node, M= 30 hidden nodes, and N= 3M
parameters xi. These parameters are initially chosen to be
Gaussian random numbers with zero mean and variance
σ20 ¼ 10�4. The correspondence is insensitive to the choice of
initial conditions, and we shall show that it holds for different
choices of initial network.

We performed gradient descent with learning rate α= 10−5.
We chose the learning rate arbitrarily, and verified that the results
of gradient-descent simulations were unchanged upon a changing
learning rate by a factor of 10 and 1/10. We used Euler
integration of the noise-free version of Eq. (6), updating all
weights xi at each timestep tgd= 1, 2,… according to the
prescription

xiðtgd þ 1Þ ¼ xiðtgdÞ �
α

j∇UðxÞj
∂UðxÞ
∂xi

; ð12Þ

where

∂UðxÞ
∂xi

¼ 2
K

∑
K�1

j¼0
f xðj=KÞ � f 0ðj=KÞ
� � ∂f xðj=KÞ

∂xi
; ð13Þ

and

∂f xðθÞ
∂xi

¼
tanhðθxiþ1 þ xiþ2Þ if i ;mod 3 ¼ 1

θxi�1 sech
2ðθxi þ xiþ1Þ if imod 3 ¼ 2

xi�2 sech
2ðθxi�1 þ xiÞ if imod 3 ¼ 0:

8><
>:

We did neuroevolution following the Monte Carlo procedure
described in section “Neuroevolution”, in the limit β=∞, i.e., we
accepted only moves that did not increase the loss function. We
chose the mutation scale

σ ¼ λα
ffiffiffiffiffi
2π

p
; ð14Þ

where λ is a parameter. According to (6) and (12), this
prescription sets the neuroevolution timescale tevol to be a factor
λ times that of the gradient-descent timescale. Thus, one
neuroevolution step corresponds to λ integration steps of the
gradient descent procedure. In figures, we compare gradient
descent with neuroevolution as a function of common (scaled)
time t= αtgd= αλtevol.

In Fig. 1(a) we show the evolution of four individual weights
under neuroevolution (using mutation scale λ= 1/10) and
gradient descent (weights are distinguishable because they always
have the same initial values). The correspondence predicted
analytically can be seen numerically: individual neuroevolution
trajectories (gray) fluctuate around the gradient descent result
(black), and when averaged over individual trajectories the results
of neuroevolution (green) approximate those of gradient descent.
In Fig. 1(b) we show the individual and averaged values of the
weights of neuro-evolved networks at time t= 10 compared to
those of gradient descent. In general, the weights generated by
averaging over neuroevolution trajectories approximate those of
gradient descent, with some discrepancy seen in the values of the
largest weights. In Fig. 1(c) we show the loss under neuroevolu-
tion and gradient descent. As predicted by (9), averaged
neuroevolution and gradient descent are equivalent.

In Supplementary Fig. 1 we show similar quantities using a
different choice of initial neural network; the correspondence
between neuroevolution and gradient descent is again apparent.

In Fig. 2(a) we show the time evolution of a single weight of the
network under gradient descent and neuroevolution, the latter for
three sizes of mutation step σ. As σ increases, the size of

fluctuations of individual trajectories about the mean increase, as
predicted by (6). As a result, more trajectories are required to
estimate the average, and for fixed number of trajectories (as used
here) the estimated average becomes less precise. In addition, as σ
increases, the assumptions underlying the correspondence
derivation eventually break down, in which case the neuroevolu-
tion average will not converge to the gradient descent result even
as more trajectories are sampled.

In Fig. 2(b) we show the mean-squared difference of the
parameter vector of the model under gradient descent and
neuroevolution,

ΔðtÞ � 1
N

∑
N

i¼1
xgradienti ðtÞ � xevolutioni ðtÞ� �	
2

: ð15Þ

Here, N is the number of network parameters; xgradienti ðtÞ is the
time evolution of neural-network parameter i under the gradient
descent equation Eq. (12); and xevolutioni ðtÞ� �

is the mean value of
neural-network parameter i over the ensemble of neuroevolution
trajectories. The smaller the neuroevolution step size, the smaller
is Δ(t), and the closer the neuroevolution-gradient descent
correspondence.

In Supplementary Fig. 2 we show the evolution with time of the
loss for different mutation scales (the left-hand plot is a
reproduction of Fig. 1(c)). The trend shown is similar to that of
the weights in Fig. 2.

Deep net, β=∞. One feature of the correspondence derivation is
that the architecture of the neural network does not appear. As
long as the loss U(x) is a deterministic function of the neural-
network parameters x, correspondence between gradient descent
and neuroevolution will be observed if the mutation scale is small
enough (it is likely that what constitutes “small enough” does
depend on neural-network architecture, as well as the problem
under study. The required mutation scale can be determined
empirically, even without access to gradient-descent results: when
correspondence holds, the results of neuroevolution simulations
will be statistically similar, when scaled as we have described).

To demonstrate invariance to architecture we repeat the
previous comparison, now using a deep neural network (we train
the net to reproduce the target function f 0ðθÞ ¼ sinðπθÞ on the
interval θ∈ [− 1, 1]). The network has 8 fully-connected hidden
layers, each 32 nodes wide, and 7489 total parameters. As before
we use tanh activations on the hidden nodes, and have one input
node and one output.

Results are shown in Fig. 3. In panel (a) we show the evolution
of two parameters of the network, under gradient descent and for
neuroevolution with step-size parameter λ= 1/10 [see (17)]. As
for the shallow net, the correspondence is apparent. Neuroevolu-
tion averages (green lines) are taken over 100 trajectories. In
panel (b) we show the loss, for gradient descent and two different
neuroevolution step-size parameters. As expected, the correspon-
dence is more precise for smaller λ. As before, for large enough λ
the correspondence breaks down: see Supplementary Fig. 3.

In Fig. 4 we show all parameters of the deep net at training
time t= 5, under the two dynamics. We show the results of
gradient descent in black, and independent neuroevolution
trajectories in gray. As predicted analytically, the neuroevolution
results fall either side of the gradient-descent result, and the
network constructed by averaging over independent neuroevolu-
tion trajectories (green) is essentially identical to the network
produced by gradient descent.

In Fig. 5, we illustrate the dynamics of learning and the scale of
the loss function by showing a comparison between the target
function f 0ðθÞ ¼ sinðπθÞ and the net function fx(θ). We show the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2

4 NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

latter at three different training times, for gradient descent and
neuroevolution trajectories.

Shallow net, finite β. In this section, we illustrate the gradient
descent-neuroevolution correspondence for finite β. We consider
the same supervised-learning problem as before, and set the
network width to 256 nodes. We did neuroevolution with the
Metropolis acceptance rate with reciprocal temperature para-
meter β= 103. This choice is arbitrary, but is representative of a
wide range of finite values of β. Finite-temperature simulations

are common in particle-based systems24. Here, temperature has
no particular physical significance, but comparing simulations
done at finite and infinite β makes the point that different choices
of neuroevolution acceptance rate result in a dynamics equivalent
to different gradient-descent protocols.

We did gradient descent using the integration scheme

xiðtgd þ 1Þ ¼ xiðtgdÞ � α
∂UðxÞ
∂xi

; ð16Þ

where α= 10−4 is the learning rate. Comparing (3) and (16), we

Fig. 1 Numerical illustration of the equivalence of gradient descent and neuroevolution in the case β=∞. a Evolution with time of 4 of the 90 weights of
the neural network (11) under the gradient descent equation Eq. (12) (black: “gradient” stands for “gradient descent”), and under neuroevolution with
mutation scale λ= 1/10 [see (14)]. Here and in subsequent panels we show 25 independent neuroevolution trajectories (gray, marked “evolution”) and the
average of 1000 independent trajectories (green, marked “ evolutionh i”). b All weights at time t= 10 under the two methods. c Loss as a function of time.

Fig. 2 The smaller the neuroevolution mutation scale, the closer the neuroevolution-gradient descent correspondence. a Time evolution of a single
neural-network weight, for three different neuroevolution mutation scales [see (14)]. b The quantity Δ(t), Eq. (15), is a measure of the difference between
networks evolved under gradient descent and neuroevolution.

Fig. 3 As Fig. 1, now for a deep neural network with eight hidden layers. Panel a shows 2 of the 7489 parameters of the network. Panel b shows the loss,
for two different neuroevolution step-size parameters [see (17)].

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

set the neuroevolution mutation scale to be

σ ¼ λ
ffiffiffiffiffiffiffiffiffiffi
2α=β

p
; ð17Þ

where λ is a parameter. Thus, one neuroevolution step
corresponds to λ integration steps of the gradient descent
procedure. In figures, we compare gradient descent with
neuroevolution as a function of common (scaled) time
t= αtgd= αλtevol.

Results are shown in Fig. 6, for step-size parameter λ= 1. In
panel (a) we show the evolution with time of two of the weights
of the network. The noise associated with neuroevolution at
this value of β is considerable: individual trajectories (gray lines)
bear little resemble to the gradient-descent result (black line).
However, the population average (green line, average of n= 1000
trajectories) shows the expected correspondence. The

correspondence is less precise than that shown previously,
because we use a larger effective step size and each trajectory is
much noisier than its infinite-β counterpart.

In Fig. 6(b) we show the loss, with line colors corresponding to
the quantities of panel (a). In addition, we show the loss of the
average network produced by neuroevolution (red line), Uð xh iÞ,
which, if correspondence holds, should be equal to UðxÞ� �

(green
line). The initial fast relaxation of the loss (the boxed region)
shows a difference between gradient descent and averaged
neuroevolution results; doing neuroevolution for smaller step-
size parameter λ= 1/10 (inset) reduces this difference, as
expected.

In panel (c) we show the parameter Δ, Eq. (15), a measure of
the difference between the average network xh i produced by
neuroevolution and the network produced by gradient descent, as

Fig. 4 Numerical illustration of correspondence for a deep net. We show all 7489 parameters xi of the deep net of Fig. 3 at training time t= 5. As
predicted analytically, the neural network created by averaging (green symbols) over a noninteracting population of neuroevolutionary processes (gray
symbols) is essentially the same network as that produced by gradient descent (black symbols). For clarity, weights are ordered by their final values under
gradient descent.

Fig. 5 Illustration of the learning dynamics. Loss versus time and comparison of the target function f0ðθÞ ¼ sinðπθÞ and the net function fx(θ) at three
different training times, for the learning dynamics of Fig. 3 (λ= 1/10 for the neuroevolution results).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2

6 NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

a function of n, the number of trajectories included in the average.
If correspondence holds, this quantity should vanish in the limit
of large n; the observed trend is consistent with this behavior.

In Supplementary Fig. 4, we compare a gradient-descent
trajectory with a set of neuroevolution trajectories, periodically
resetting the latter to the gradient-descent solution. The periodic
resetting tests the correspondence for a range of initial conditions.
The correspondence between gradient descent and the averaged
neuroevolution trajectory is approximate (averages were taken
over 152 trajectories, fewer than in Supplementary Fig. 4) but
apparent.

Conclusions. We have shown analytically that training a neural
network by neuroevolution of its weights is equivalent, in the
limit of small mutation scale, to noisy gradient descent on the loss
function. Conditioning neuroevolution on the Metropolis
acceptance criterion at finite evolutionary temperature is
equivalent to a noisy version of simple gradient descent, while at
infinite reciprocal evolutionary temperature the procedure is
equivalent to clipped gradient descent on the loss function.
Averaged over noise, the evolutionary procedures correspond to
forms of gradient descent on the loss function. This correspon-
dence is described by Equations (3), (5), (6), and (8).

Correspondence in the sense described above means that each
neural-network parameter evolves the same way as a function of
time under the two dynamics. Correspondence implies that the
convergence properties of the two methods are the same (see e.g.,
Fig. 3(b)) and that the neural networks produced by the same
methods are the same (see e.g., Fig. 4). The generalization
properties of those networks will then also be the same.

The correspondence is formally exact only in the limit of zero
mutation scale, and holds approximately for small but finite
mutations. It will fail when the assumptions underlying the
derivation are violated, such as when the terms neglected in (22)
and (23) are not small, or when the passage from (28) to (29) is
not valid because the change βU(x+ ϵ)− βU(x) is not small. It is
straightforward to determine empirically where correspondence
holds, even without access to gradient-descent results: the results
of neuroevolution, with time scaled as described, will be
statistically similar when the mutation size is small enough. The
time duration for which the correspondence holds increases with
decreasing mutation scale (see e.g., Fig. 2(b)). We have shown
here that the correspondence can be observed for a range of
mutation scales, and for different neural-net architectures.

More generally, several dynamical regimes are contained
within the neurevolution master equation (19), according to the
scale σ of mutations: for vanishing σ, neurevolution is formally
noisy gradient descent on the loss function; for small but
nonvanishing σ it approximates noisy gradient descent enacted by

explicit integration with a finite timestep; for larger σ it enacts a
dynamics different to gradient descent, but one that can still
learn; and for sufficiently large σ the steps taken are too large for
learning to occur on accessible timescales. An indication of these
various regimes can be seen in Fig. 2 and Supplementary Fig. 2.

Separate from the question of its precise temporal evolution,
the master equation (19) has a well-defined stationary distribu-
tion ρ0(x). Requiring the brackets on the right-hand of (19) to
vanish ensures that P(x, t)→ ρ0(x) becomes independent of time.
Inserting (20) into (19) and requiring normalization of ρ0(x)
reveals the stationary distribution to be the Boltzmann one,
ρ0ðxÞ ¼ e�βUðxÞ=

R
dx0e�βUðx0Þ. For finite β the neuroevolution

procedure is ergodic, and this distribution will be sampled given
sufficiently long simulation time. For β→∞ we have
ρ0ðxÞ ! δ UðxÞ � U0

� �
, where U0 is the global energy minimum;

in this case the system is not ergodic (moves uphill in U(x) are
not allowed) and there is no guarantee of reaching this minimum.

We have focused on the simple limit of the set of
neuroevolution algorithms, namely a non-interacting population
of neural networks that experience sequential probabilistic
mutations of their parameters. We have illustrated the corre-
spondence at the level of population averages, Equations (5) and
(8). However, no communication between individuals is required,
and each individually observes the correspondence defined by
Equations (3) and (6).

Our results are also relevant to population-based genetic
algorithms in which members of the population are periodically
reset to the identities of the individuals with lowest loss
values11–13. For instance, when correspondence holds, individuals
in the neuroevolution populations considered in this paper have
an averaged loss equal to that of the corresponding gradient
descent algorithm. Therefore, some individuals must have loss
less than that of the corresponding gradient descent algorithm
(see e.g. Fig. 1(a), and Fig. 3(b) for the case λ= 1/10). This
observation indicates the potential for such methods to be
competitive with gradient-descent algorithms.

The neuroevolution-gradient descent correspondence we have
identified follows from that between the overdamped Langevin
dynamics and Metropolis Monte Carlo dynamics of a particle in
an external potential19,20. Our work therefore adds to the existing
set of connections between machine learning and statistical
mechanics42,43, and continues a trend in machine learning of
making use of old results: the stochastic and deterministic
algorithms considered here come from the 1950s9,10 and
1970s1–6, and are connected by ideas developed in the 1990s19,20.

Methods
Derivation of the neuroevolution-gradient descent correspondence. We start
by considering the quantity P(x, t), the probability that a neural network has the set
of parameters x at time t under a given stochastic protocol. The time evolution of

Fig. 6 Illustration of the neuroevolution-gradient descent correspondence for the case of finite β. Panel a shows two parameters of the network, panel b
shows the loss, and panel c shows the parameter Δ, Eq. (15), a measure of the difference between the average network produced by neuroevolution and
the network produced by gradient descent.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

this quantity is governed by the master equation44,45, which in generic form reads

∂tPðx; tÞ ¼
Z

dx0 Pðx0; tÞWx�x0 ðx0Þ
�

� Pðx; tÞWx0�xðxÞ
�
:

ð18Þ

The two terms in (19) describe, respectively, gain and loss of the probability P(x, t)
(note that the probability to have some set of parameters is conserved, i.e.,
∫dx P(x, t)= 1). The symbol Wx0�xðxÞ (sometimes written Wððx ! x0ÞÞ) quantifies
the probability of moving from the set of parameters x to the set of parameters
x þ ðx0 � xÞ ¼ x0 , and encodes the details of the stochastic protocol. For the
neuroevolution procedure defined in section “Neuroevolution” we write (18) as

∂tPðx; tÞ ¼
Z

dϵ Pðx � ϵ; tÞWϵðx � ϵÞ�
� Pðx; tÞWϵðxÞ

�
:

ð19Þ

Here, ϵ denotes the set of random numbers (the “mutation”) by which the neural-
network parameters are changed; the integral

R
dϵ ¼ R1

�1 dϵi � � �
R1
�1 dϵN runs

over all possible choices of mutations; and

WϵðxÞ ¼ pðϵÞmin 1; e�β½UðxþϵÞ�UðxÞ�� � ð20Þ
is the rate for going from the set of parameters x to the set of parameters x+ ϵ. Eq.
(20) contains two factors. The first,

pðϵÞ ¼
YN
i¼1

pðϵiÞ with pðϵiÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
ϵ2
i

2σ2 ; ð21Þ

quantifies the probability of proposing a set of Gaussian random numbers ϵ. The
second factor, the Metropolis “min” function in (20), quantifies the probability of
accepting the proposed move from x to x+ ϵ; recall that U(x) is the loss function.

We can pass from the master equation (19) to a Fokker-Planck equation by
assuming a small mutation scale σ, and expanding the terms in (19) to second
order in σ44,45. Thus

Pðx � ϵ; tÞ � 1� ϵ � ∇þ 1
2
ðϵ � ∇Þ2

� �
Pðx; tÞ ð22Þ

and

Wϵðx � ϵÞ � 1� ϵ � ∇þ 1
2
ðϵ � ∇Þ2

� �
WϵðxÞ; ð23Þ

where ϵ � ∇ ¼ ∑N
i¼1 ϵi∂i (note that ∂i � ∂

∂xi
). Collecting terms resulting from the

expansion gives

∂tPðx; tÞ � �
Z

dϵðϵ � ∇ÞPðx; tÞWϵðxÞ

þ 1
2

Z
dϵðϵ � ∇Þ2Pðx; tÞWϵðxÞ:

ð24Þ

Taking the integrals inside the sums, (24) reads

∂tPðx; tÞ � � ∑
N

i¼1

∂

∂xi
AiðxÞPðx; tÞ
� �

þ 1
2
∑
N

i;j¼1

∂2

∂xi∂xj
BijðxÞPðx; tÞ

	

;

ð25Þ

where

AiðxÞ �
Z

dϵ ϵiWϵðxÞ; ð26Þ

and

BijðxÞ �
Z

dϵ ϵiϵjWϵðxÞ: ð27Þ
What remains is to calculate (26) and (27), which we do in different ways

depending on the value of the evolutionary reciprocal temperature β.

The case of finite β. First we consider finite β, in which case we can evaluate (26)
and (27) using the results of Refs. 19,20 (making small changes in order to account
for differences in proposal rates between those papers and ours).

Eq. (26) can be evaluated as follows (writing U(x)=U for brevity):

AiðxÞ ¼
Z

dϵ pðϵÞϵi min 1; e�β½UðxþϵÞ�UðxÞ�� � ð28Þ

�
Z

dϵ pðϵÞϵi min 1; 1� βϵ � ∇U� � ð29Þ

¼
Z

dϵ pðϵÞϵiΘð�ϵ � ∇UÞ

þ
Z

dϵ pðϵÞϵið1� βϵ � ∇UÞΘðϵ � ∇UÞ
ð30Þ

¼
Z

dϵ pðϵÞϵi

� β

Z
dϵ pðϵÞΘðϵ � ∇UÞ∑

j
ϵiϵj∂jU

ð31Þ

¼ �β

Z
dϵ pðϵÞΘðϵ � ∇UÞ∑

j
ϵiϵj∂jU ð32Þ

¼ � β

2

Z
dϵ pðϵÞ∑

j
ϵiϵj∂jU ð33Þ

¼ � βσ2

2
∂iU : ð34Þ

In these expressions Θ(x)= 1 if x ≥ 0 and is zero otherwise. In going from (28) to
(29) we have assumed that βϵ ⋅ ∇U(x) is small. This condition cannot be met for
β=∞; that case is treated later. In going from (30) to (31) we have used the result
Θ(x)+Θ(− x)= 1; the first integral in (31) then vanishes by symmetry. The
second integral, shown in (32), can be turned into (33) using the symmetry
arguments given in Ref. 20, which we motivate as follows. Upon a change of sign of
the integration variables, ϵ→− ϵ, the value of the integral in (32) is unchanged
and it is brought to a form that is identical except for a change of sign of the
argument of the Θ function. Adding the two forms of the integral removes the Θ
functions, giving the form shown in (33), and dividing by 2 restores the value of the
original integral. (33) can be evaluated using standard results of Gaussian integrals.

Eq. (27) can be evaluated in a similar way:

BijðxÞ ¼
Z

dϵ pðϵÞϵiϵj min 1; e�β½UðxþϵÞ�UðxÞ�� � ð35Þ

�
Z

dϵ pðϵÞϵiϵj min 1; 1� βϵ � ∇U� � ð36Þ

¼
Z

dϵ pðϵÞϵiϵjΘð�ϵ � ∇UÞ

þ
Z

dϵ pðϵÞϵiϵjð1� βϵ � ∇UÞΘðϵ � ∇UÞ
ð37Þ

�
Z

dϵ pðϵÞϵiϵj ð38Þ

¼ σ2δij: ð39Þ
The ≈ sign in (38) indicates that we have omitted terms of order σ3.

Inserting (34) and (39) into (25) gives us, to second order in σ, the Fokker-
Planck equation

∂Pðx; tÞ
∂t

� � ∑
N

i¼1

∂

∂xi
� βσ2

2
∂UðxÞ
∂xi

Pðx; tÞ
� �

þ 1
2
∑
N

i¼1

∂2

∂x2i
σ2Pðx; tÞ� �

:

ð40Þ

This equation is equivalent (the diffusion term is independent of x, and so the
choice of stochastic calculus is unimportant) to the N Langevin equations44,45

dxi
dt

¼ � βσ2

2
∂UðxÞ
∂xi

þ ξiðtÞ 8i; ð41Þ

where ξ is a Gaussian white noise with zero mean and variance σ2:

ξiðtÞ
� � ¼ 0; ξiðtÞξjðt0Þ

D E
¼ σ2δijδðt � t0Þ: ð42Þ

Eq. (41) describes an evolution of the neural-network parameters xi that is
equivalent to gradient descent with learning rate α= βσ2/2, plus Gaussian white
noise. Averaging over independent stochastic trajectories of the learning process
(starting from identical initial conditions) gives

d xi
� �
dt

¼ � βσ2

2
∂UðxÞ
∂xi

; ð43Þ

which is equivalent to simple gradient descent on the loss function.

The case β=∞. When β=∞ we only accept mutations that do not increase the
loss function. To treat this case we return to (26) and take the limit β→∞:

AiðxÞ ¼
Z

dϵ pðϵÞϵiΘð�ϵ � ∇UðxÞÞ: ð44Þ

We can make progress by introducing the integral form of the Θ function (see e.g.,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2

8 NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ref. 46),

Θð�ϵ � ∇UðxÞÞ ¼
Z 0

�1
dz δðz � ϵ � ∇UðxÞÞ

¼
Z 0

�1

dz
2π

Z 1

�1
dω eiωðz�ϵ�∇UðxÞÞ:

ð45Þ

Then (44) reads

AiðxÞ ¼
Z 0

�1

dz
2π

Z 1

�1
dω eiωz Gð1Þ

i

Y
j≠i

Gð0Þ
j ; ð46Þ

where the symbols

GðnÞ
j � 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p

Z 1

�1
dϵj ϵ

n
j e�ϵ2j =ð2σ2Þ�iωϵj∂jU ð47Þ

are standard Gaussian integrals. Upon evaluating them as

Gð0Þ
j ¼ e�

1
2σ

2ω2ð∂jUÞ2 ð48Þ
and

Gð1Þ
i ¼ �iωσ2ð∂iUÞe�1

2σ
2ω2 ð∂iUÞ2 ; ð49Þ

(46) reads

AiðxÞ ¼ �
Z 0

�1

dz
2π

Z 1

�1
dω iσ2ωð∂iUÞe�1

2ω
2σ2 j∇Uj2þiωz

¼
Z 0

�1

dz
2π

ffiffiffiffiffi
2π

p ∂iU

σj∇U j3 ze
�z2=ð2σ2 j∇Uj2Þ

ð50Þ

¼ � σffiffiffiffiffi
2π

p ∂iUðxÞ
j∇UðxÞj : ð51Þ

The form (51) is similar to (34) in that it involves the derivative of the loss function
U(x) with respect to xi, but contains an additional normalization term, ∣ ∇U∣. This
term is sometimes introduced as a form of regularization in gradient-based
methods25. Here, the form emerges naturally from the acceptance criterion that
sees any move accepted if the move does not increase the loss function: as a result,
the length of the step taken does not depend strongly on the size of the gradient.

In the limit β→∞, (27) reads

BijðxÞ ¼
Z

dϵ pðϵÞϵiϵjΘð�ϵ � ∇UðxÞÞ ð52Þ

¼ 1
2

Z
dϵ pðϵÞϵiϵj ð53Þ

¼ 1
2
σ2δij; ð54Þ

upon applying the symmetry arguments used to evaluate (32). Eq. (54) is half the
value of the corresponding term for the case β ≠∞, Eq. (39), because one term
corresponds to Brownian motion in unrestricted space, the other to Brownian
motion on a half-space.

Inserting (51) and (54) into (25) gives a Fokker–Planck equation equivalent to
the N Langevin equations

dxi
dt

¼ � σffiffiffiffiffi
2π

p 1
j∇UðxÞj

∂UðxÞ
∂xi

þ ηiðtÞ 8i; ð55Þ

where η is a Gaussian white noise with zero mean and variance σ2/2:

ηiðtÞ
� � ¼ 0; ηiðtÞηjðt0Þ

D E
¼ 1

2
σ2δijδðt � t0Þ: ð56Þ

As an aside, we briefly consider the case of non-isotropic mutations, for which
the Gaussian random update applied to parameter i has its own variance σ2i , i.e.,
ϵi � N ð0; σ2i Þ in step 2 of the procedure described in section “Neuroevolution”. In
this case the derivation above is modified to have σ replaced by σi in (21). In the
case of finite β the equations (41) and (42) retain their form with the replacement
σ→ σi. In the case of infinite β, (56) retains its form with the replacement σ→ σi
and (55) reads

dxi
dt

¼ � σ iffiffiffiffiffi
2π

p 1

j~∇UðxÞj
~∂iUðxÞ þ ηiðtÞ; ð57Þ

with ~∂i � σ i
∂
∂xi

and j~∇U j �
ffi
∑N

j¼1
~∂jU

	
2
r

. Non-isotropic mutations are used in

covariance matrix adaptation strategies47. Those schemes also evolve the step size
parameter dynamically, and to model this more general case one must make σ a
dynamical variable of the master equation, with update rules appropriate to the
algorithm of interest.

Data availability
Data can be generated using the source code at https://github.com/reproducible-science/
MC-GD-correspondence.

Code availability
Source code is available at https://github.com/reproducible-science/MC-GD-
correspondence.

Received: 26 April 2021; Accepted: 4 October 2021;

References
1. Linnainmaa, S. Taylor expansion of the accumulated rounding error. BIT

Numer. Math. 16, 146–160 (1976).
2. Werbos, P. J. Applications of advances in nonlinear sensitivity analysis. In:

System Modeling and Optimization. Lecture Notes in Control and Information
Sciences (eds Drenick R. F. & Kozin F.), vol 38. 762–770 (Springer, Berlin,
Heidelberg, 1982). https://doi.org/10.1007/BFb0006203.

3. Rumelhart, D. E., Durbin, R., Golden, R. & Chauvin, Y. In Backpropagation:
Theory, Architectures and Applications, (eds Chauvin Y. & Rumelhart D. E.)
1–34 (Hillsdale: NJ. Lawrence Erlbaum, 1995).

4. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986).

5. Hecht-Nielsen, R. InNeural Networks for Perception (eds Wechsler H.) 65–93
(Elsevier, 1992).

6. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1, 541–551 (1989).

7. Chauvin, Y. & Rumelhart, D. E. Backpropagation: Theory, Architectures, and
Applications (Psychology Press, 1995).

8. Schmidhuber, J. Deep learning in neural networks: an overview. Neural
Networks 61, 85–117 (2015).

9. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller,
E. Equation of state calculations by fast computing machines. J. Chem. Phys.
21, 1087–1092 (1953).

10. Hastings, W. K. Monte C”arlo sampling methods using markov chains and
their applications. Biometrika 57, 97–109 (1970).

11. Holland, J. H. Genetic algorithms. Sci. Am. 267, 66–73 (1992).
12. Fogel, D. B. & Stayton, L. C. On the effectiveness of crossover in simulated

evolutionary optimization. BioSystems 32, 171–182 (1994).
13. Montana, D. J. & Davis, L. Training feedforward neural networks using

genetic algorithms. In IJCAI, Vol. 89 762–767 (1989).
14. Mnih, V. et al. Playing Atari with deep reinforcement learning, Preprint at

https://arxiv.org/abs/1312.5602 (2013).
15. Morse, G. & Stanley, K. O., Simple evolutionary optimization can rival

stochastic gradient descent in neural networks. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016 477–484 (2016).

16. Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution strategies as a
scalable alternative to reinforcement learning. Preprint at https://arxiv.org/
abs/1703.03864 (2017).

17. Zhang, X., Clune, J. & Stanley, K. O. On the relationship between the OpenAI
evolution strategy and stochastic gradient descent. Preprint at https://
arxiv.org/abs/1712.06564 (2017).

18. Sutton, R.S. & Barto, A.G. Reinforcement Learning: An Introduction (MIT
press, 2018).

19. Kikuchi, K., Yoshida, M., Maekawa, T. & Watanabe, H. Metropolis Monte
C”arlo method as a numerical technique to solve the fokker-planck equation.
Chem Phys Lett 185, 335–338 (1991).

20. Kikuchi, K., Yoshida, M., Maekawa, T. & Watanabe, H. Metropolis Monte
C”arlo method for brownian dynamics simulation generalized to include
hydrodynamic interactions. Chem Phys Lett 196, 57–61 (1992).

21. Floreano, D., Dürr, P. & Mattiussi, C. Neuroevolution: from architectures to
learning. Evolution. Intell. 1, 47–62 (2008).

22. Such, F. P. et al. Deep neuroevolution: genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,
Preprint at https://arxiv.org/abs/1712.06567 (2017).

23. Whitelam, S. & Tamblyn, I. Learning to grow: control of material self-
assembly using evolutionary reinforcement learning. Phys. Rev. E 101, 052604
(2020).

24. Frenkel, D. & Smit, B. Understanding Molecular Simulation: from Algorithms
to Applications, Vol. 1 (Academic Press, 2001).

25. Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning
1310–1318 (PMLR, 2013).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2 ARTICLE

NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications 9

https://github.com/reproducible-science/MC-GD-correspondence
https://github.com/reproducible-science/MC-GD-correspondence
https://github.com/reproducible-science/MC-GD-correspondence
https://github.com/reproducible-science/MC-GD-correspondence
https://doi.org/10.1007/BFb0006203
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1712.06564
https://arxiv.org/abs/1712.06564
https://arxiv.org/abs/1712.06567
www.nature.com/naturecommunications
www.nature.com/naturecommunications

26. Stanley, K. O. & Miikkulainen, R. Evolving neural networks through
augmenting topologies. Evolution. Comput. 10, 99–127 (2002).

27. Stanley, K. O., Clune, J., Lehman, J. & Miikkulainen, R. Designing neural
networks through neuroevolution. Nat. Machine Intell. 1, 24–35 (2019).

28. Swendsen, R. H. & Wang, J.-S. Nonuniversal critical dynamics in monte carlo
simulations. Phys. Rev. Lett. 58, 86 (1987).

29. Wolff, U. Collective monte carlo updating for spin systems. Phys. Rev. Lett. 62,
361 (1989).

30. Liu, J. & Luijten, E. Rejection-free geometric cluster algorithm for complex
fluids. Phys. Rev. Lett. 92, 035504 (2004).

31. Whitelam, S. Approximating the dynamical evolution of systems of strongly
interacting overdamped particles. Mol. Simul. 37, 606–612 (2011).

32. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math.
Control Signal. Syst. 2, 303–314 (1989).

33. Raisbeck, J. C., Allen, M., Weissleder, R., Im, H. & Lee, H., Evolution strategies
converges to finite differences. Preprint at https://arxiv.org/abs/2001.01684
(2019).

34. Staines, J. & Barber, D. Variational optimization. Preprint at https://arxiv.org/
abs/1212.4507 (2012).

35. Maheswaranathan, N., Metz, L., Tucker, G., Choi, D. & Sohl-Dickstein, J.
Guided evolutionary strategies: Augmenting random search with surrogate
gradients. In International Conference on Machine Learning. 4264–4273
(PMLR, 2019).

36. Whitelam, S. & Geissler, P. L. Avoiding unphysical kinetic traps in Monte
C”arlo simulations of strongly attractive particles. J. Chem. Phys. 127, 154101
(2007).

37. Wilber, A. W. et al. Reversible self-assembly of patchy particles into
monodisperse icosahedral clusters. J. Chem. Phys. 127, 08B618 (2007).

38. Berthier, L. Revisiting the slow dynamics of a silica melt using Monte C”arlo
simulations. Phys. Rev. E 76, 011507 (2007).

39. Sanz, E. & Marenduzzo, D. Dynamic Monte Carlo versus Brownian dynamics:
a comparison for self-diffusion and crystallization in colloidal fluids. J. Chem.
Phys. 132, 194102 (2010).

40. Liu, X., Crocker, J. C. & Sinno, T. Coarse-grained Monte C”arlo simulations of
non-equilibrium systems. J. Chem. Phys. 138, 244111 (2013).

41. Rovigatti, L., Russo, J. & Romano, F. How to simulate patchy particles. Eur.
Phys. J. E 41, 59 (2018).

42. Engel, A. & Van den Broeck, C., Statistical Mechanics of Learning (Cambridge
University Press, 2001).

43. Bahri, Y. et al. Statistical mechanics of deep learning. Ann. Rev. Condens
Matter Phys. 11, 501–528 (2020).

44. Risken, H. Fokker-Planck Equation. In The Fokker-Planck Equation. Springer
Series in Synergetics vol 18 (Springer, Berlin, Heidelberg, 1996). https://
doi.org/10.1007/978-3-642-61544-3_4.

45. Van Kampen, N. G., Stochastic Processes in Physics and Chemistry, Vol. 1
(Elsevier, 1992).

46. Sinai, Y. B., https://yohai.github.io/post/half-gaussian/ (2019).
47. Hansen, N. in Towards A New Evolutionary Computation, (eds Lozano J. A.,

Larrañaga P., Inza I. & Bengoetxea E.) 75–102 (Springer, 2006).

Acknowledgements
This work was performed as part of a user project at the Molecular Foundry, Lawrence
Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No. DE-AC02–05CH11231.
This work used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231. I.T. acknowledges funding from the National Sci-
ence and Engineering Council of Canada.

Author contributions
S.W. and I.T. initiated the study. S.W. did the analytic work and the shallow-net
simulations, and V.S. did the deep-net simulations. S.-W.P. provided assistance with
numerical simulations. All authors discussed the work and helped write the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26568-2.

Correspondence and requests for materials should be addressed to Stephen Whitelam or
Isaac Tamblyn.

Peer review informationNature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26568-2

10 NATURE COMMUNICATIONS | (2021) 12:6317 | https://doi.org/10.1038/s41467-021-26568-2 | www.nature.com/naturecommunications

https://arxiv.org/abs/2001.01684
https://arxiv.org/abs/1212.4507
https://arxiv.org/abs/1212.4507
https://doi.org/10.1007/978-3-642-61544-3_4
https://doi.org/10.1007/978-3-642-61544-3_4
https://yohai.github.io/post/half-gaussian/
https://doi.org/10.1038/s41467-021-26568-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Correspondence between neuroevolution and gradient descent
	Results
	Gradient descent
	Neuroevolution

	Discussion
	Numerical illustration of the neuroevolution-gradient descent correspondence
	Shallow net, β  = ∞
	Deep net, β = ∞
	Shallow net, finite β
	Conclusions

	Methods
	Derivation of the neuroevolution-gradient descent correspondence
	The case of finite β
	The case β = ∞

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

