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T cells play critical roles in anti-tumor immunity. Up-regulation of immune checkpoint

molecules (PD-1, PD-L1, CTLA-4, TIM-3, Lag-3, TIGIT, CD73, VISTA, B7-H3) in the

tumor microenvironment is an important mechanism that restrains effector T cells from

the anti-tumor activity. To date, immune checkpoint antibodies have demonstrated

significant clinical benefits for cancer patients treated with mono- or combination

immunotherapies. However, many tumors do not respond to the treatment well, and

merely blocking the immune suppression pathways by checkpoint-regulatory antibodies

may not render optimal tumor growth inhibition. Binding of the antibody Fc-hinge region

to Fc gamma receptors (FcγRs) has been shown to exert a profound impact on antibody

function and in vivo efficacy. Investigation of immune checkpoint antibodies regarding

their effector functions and impact on therapeutic efficacy has gained more attention

in recent years. In this review, we discuss Fc variants of antibodies against immune

checkpoint targets and the potential mechanisms of how FcγR-binding could influence

the anti-tumor activity of these antibodies.

Keywords: FcγR, checkpoint blockade, antibody therapy, cancer immunotherapy, IgG isotype

INTRODUCTION

Immune checkpoints refer to multiple inhibitory pathways that control the immune system to
maintain self-tolerance and modulate the intensity of physiological immune responses in order
to minimize pathological damage (1–3). Antagonizing antibodies against immune checkpoint
inhibitory molecules has achieved great success in cancer treatment (1, 2). However, many
tumors do not respond to the treatment, and antibody optimization (especially in the isotype
selection) is essential for improving outcomes (4, 5). target-binding specificity, imparted by the
antibody’s variable region, is well-known to be critical for the primary functional activities of
the antibody. However, mounting evidence has shown that the antibody’s constant region also
plays a crucial role, much of which is mediated through interaction of the crystallizable fragment
(Fc) with Fcγ receptors (FcγRs) (6). Fc endows IgG antibodies with effector functions, which
include antibody dependent-cellular cytotoxicity (ADCC), complement-dependent cytotoxicity
(CDC), antibody-dependent cellular phagocytosis (ADCP), Induction of cytokines/chemokines
and endocytosis of opsonized targets (7).

To date, therapeutic IgG antibodies (either approved or in clinical development) belong to the
IgG1, IgG2 or IgG4 subclasses. Each IgG isotype has a distinct binding affinity to the various FcγRs,
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which are expressed differently on immune cells. A combination
of these features leads to diverse and highly regulated
antibody responses.

Antagonizing antibodies against major T-cell inhibitory
pathways, such as PD-1/PD-L1 and CTLA-4, have become
important parts of cancer therapeutics (1). Consequently,
the next wave of therapeutic antibodies targeting alternative
immunosuppression pathways (e.g., LAG-3, TIM-3, B7-H3,
VISTA, CD73) are rapidly emerging (8). The majority of
the immune checkpoint antibodies have low or significantly
reduced binding to FcγRs to avoid potential ADCC and CDC,
especially when the target molecule is expressed on effector
T cells (9). However, for targets such as CTLA-4, TIGIT, and
VISTA, competent Fc is required for optimal anti-tumor immune
responses in various mouse models (10–12). The mechanisms
of action (MOA) may involve the killing of regulatory T cells
(Tregs), promoting immune synapse formation and production
of pro-inflammatory cytokines due to cross-linking of FcγRs with
the competent Fc.

In this article, we summarize the major properties of different
IgG isotypes and FcγRs, describe the MOA of different immune
checkpoint targets in inhibiting anti-tumor immunity and review
the recent studies on the important roles of either binding or
not binding to FcγRs in immune checkpoint antibody therapy.
It should be noted that many of the findings come from mouse
models; the clinical significance of these findings has yet to
be determined.

IgG ISOTYPES AND FcγRS

In humans, there are four isotypes of IgG (IgG1-4), differing
from the other in their binding profiles to various FcγRs and to
complement subunits, such as C1q. IgG1 has the highest affinity
to all FcγRs and C1q, leading to significant effector functions,
such as ADCC, ADCP, and CDC (5, 13). Although human IgG3
can also mediate competent effector functions, it has a very
long hinge region and complex disulfide bonds, resulting in
significantly greater polymorphism, which may increase the risk
of immunogenicity. Therefore, the IgG3 isotype is rarely chosen
in antibody therapeutics (14) and is not further discussed in
this review. In comparison, IgG2 and IgG4 induce significantly
weaker or no ADCC and CDC (13). The binding features
of different IgG isotypes to various FcγRs are summarized in
Table 1 and discussed below.

The overall structures of IgG1, IgG2, and IgG4 are very similar
with more than 90% sequence homology. The major differences
reside in the hinge region and CH2 domain, which form primary
binding sites to FcγRs (19–21). The hinge region also functions
as a flexible linker between the Fab and Fc portion.

In addition to differential binding affinity to FcγRs, IgG4, and
IgG2 demonstrate other unique features. IgG4 has a unique S228
in the hinge region, which allows for interchangeable disulfide
bond configurations and formation of “half-antibodies” (22).
In vivo, IgG4 with different specificity may shuffle, resulting
in monovalent-bispecific antibodies (a process called “Fab-arm
exchange”) (23). S228P mutation of IgG4 can efficiently eliminate

TABLE 1 | Binding activities of human FcγR to IgG isotypes and resulting effector

functions.

FcγR Variants IgG1 IgG2 IgG4

Affinitya Effector

functions

Affinity Effector

functions

Affinity Effector

functions

I NA High ADCP None None High

ADCP,

Cytokine

release

IIa

H131 Medium
ADCP

Medium Myeloid

cell-induced

ADCCb

Low
Receptor
clusteringc

R131 Low Low Low

IIb

I
232

d
Low

Clearance of

IC, Immuno-

suppression
None None Low

Clearance of

IC, Immuno-

suppressionT
232

d

IIIa
V158 Medium

ADCC
Low

None
Low

None
F158 Low None None

aAffinity values are based on IC binding to FcγR, adapted from Bruhns et al. (13).
bBased on Arce Vargas et al. (15).
cBased on Oberst et al. (16).
dThe T232 variant is less potent in inhibitory activity than the I232 variant (17). However,

the I232T mutation leads to significantly better phagocytosis (18).

fab-arm change. Therefore, the majority of recently approved
therapeutic IgG4 antibodies adopt an S228P mutation (24).
In IgG2, several disulfide bond isomers (IgG2A, IgG2B, and
IgG2A/B) can be formed (25, 26). Many factors such as cell
culture conditions or thermal stress contribute to the formation
and equilibrium of different isomers (27). In vivo, IgG2A isomer
can convert to the form of IgG2B (28). Among the three isomers,
IgG2B has the most compact structure (26). In addition, as
compared to the form of IgG2A, the IgG2B conformation imparts
super-agonistic properties to immunostimulatory antibodies,
such as anti-CD40 antibodies (29). The feature of IgG2
isomer transformation is FcγR-independent and its activity has
been demonstrated for IgG2 CD40 mAb in the clinical trial
CP870-893 (29).

In mice, IgG2A functionally resembles human IgG1, whereas
mouse IgG1 is considered the closest functional equivalent of
human IgG4. The D265Amutation can further reduce the affinity
of mouse IgG1 for the Fc receptor, leading to a “silent Fc” and
antibodies harboring this mutation have been widely used in
mouse models to evaluate the effects of FcγR-binding on in vivo
therapeutic efficacy (30–32).

Based on the differences in structure, function, and affinity
for IgG binding, FcγRs are classified into three major groups:
FcγRI, FcγRII (FcγRIIa and FcγRIIb) and FcγRIII (FcγRIIIa and
FcγRIIIb) (13). Among them, FcγRI, FcγRIIa, and FcγRIIIa are
activating receptors containing the signal transduction motif,
immunoreceptor tyrosine-based activation motif (ITAM), in the
γ subunit of FcγRI and FcγRIIIa, or in the cytoplasmic tail
of FcγRIIa (14). In contrast, FcγRIIb is an inhibitory receptor.
Cross-linking of FcγRIIb leads to the phosphorylation of the
immunoreceptor tyrosine-based inhibitory motif (ITIM) and
inhibitory signaling transduction (33).

FcγRI

FcγRI is a high-affinity Fc receptor for both the monomeric
IgG and immune complex (IC) (13). The affinities of FcγRI
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to IgG1 or IgG4 are similar (KD of 1–10 nM). In contrast,
FcγRI has no binding to IgG2. FcγRI is mainly expressed on
monocytes/macrophages, dendritic cells (DCs), and activated
neutrophils. One of the major functions of FcγRI is to activate
myeloid cells to phagocytose IgG1 and IgG-bound target cells via
ADCP (34). Due to high-affinity binding of FcγRI to monomeric
IgG and high serum concentrations of IgG (∼15 mg/mL), it is
believed that most FcγRI is occupied by endogenous IgG (35).
However, a recent study has shown that stimulation of myeloid
cells with cytokines, such as tumor necrosis factor-α (TNF-α) and
interferon-γ (IFN-γ), could induce the clustering of FcγRI and
increase the binding of FcγRI to ICs (36). Multiple studies have
also shown that FcγRI plays an important role in modulating
immune responses in autoimmune diseases, inflammation, and
antibody therapy (37–39).

FcγRIIA AND FcγRIIIA

Both FcγRIIa and FcγRIIIa are low-affinity FcγRs, which
bind weakly to monomeric IgG, but strongly to IC.
FcγRIIa and FcγRIIIa receptors are primarily expressed on
monocytes/macrophages, dendritic cells, natural killer cells and
platelets. FcγR polymorphisms exist in FcγRIIa and FcγRIIIa
receptors, resulting in two isoforms of each receptor: H131 and
R131 of FcγRIIa(40), V158 and F158 of FcγRIIIa (41), respectively.
FcγRIIa-H131 variant is considered a high responder as compared
to R131 variant (low responder) due to a higher affinity for IgG1
and increased effector functions (such as phagocytosis) (13, 22).
Similar to FcγRI, FcγRIIa is one of the major phagocytic FcγRs
that mediates ADCP. In human, FcγRIIIa is the primary receptor
for NK- and macrophage-mediated ADCC. FcγRIIIa-V158

variant (high responder) has a higher affinity for IgG1 and can
also interact with IgG4 (13). Functionally, IgG-induced NK cell
activity is increased in FcγRIIIA-V/V158 homozygotes compared
with FcγRIIIA-F/F158 individuals (42).

FcγRIIB

FcγRIIb is expressed on many types of immune cells including
B cells, DCs, monocytes/macrophages, mast cells and basophils
(33). In addition, FcγRIIb was found to be expressed on liver
sinusoidal endothelial cells (LSEC) and plays an important
role in IC clearance (43). On B cells, FcγRIIb functions as
a primary inhibitory FcγR to suppress B cell activation and
antigen internalization after binding to the immune complex
(33). FcγRIIb also inhibits the type I interferon production by
DCs. The binding affinities of monomeric IgG to FcγRIIb are
extremely low (KA ≈ 2 x 105M−1), whereas the affinities of IC to
FcγRIIb are significantly higher (13). Despite the critical roles of
FcγRIIb in the negative regulation of immune responses, several
studies have shown that FcγRIIb is required for the induction
of efficient anti-tumor activity by agonistic anti-TNF receptor
superfamily-antibody therapeutics such as anti-CD40 antibodies
(44, 45). The overall binding features of human FcγR to IgG
isotypes are summarized in Table 1.

MOUSE FcγRIV

In addition to the FcγRs described above, in mice, there is a
unique FcγR (i.e., FcγRIV), whose expression is restricted to
myeloid lineage cells (46). FcγRIV bind to mouse IgG2a and
IgG2b with intermediate affinity and plays critical roles in IgG2a-
and IgG2b-mediated in vivo efficacy (46, 47). Mouse FcγRIV
is functionally similar to human FcγRIIIa, but not expressed
on natural killer cells (47). In a mouse model, anti-CTLA-4
antibody-mediated depletion of Tregs is largely dependent on
FcγRIV (10).

Fc ENGINEERING TO REDUCE OR
ELIMINATE FcγR BINDING

Several modifications to IgG can directly affect their binding
to FcγRs. The N297A mutation was the first mutation to be
described with significantly reduced FcγR-binding (48). It was
later demonstrated that mutations of residues 234 and 235 in
the lower hinge region (EU numbering system) to alanine could
also lead to significantly reduced FcγR-binding; the L234A/L235A
double mutation on the human IgG1 backbone is also known as
the “LALA” mutation (49). In addition, hybrid antibody isotype
IgG2m4, which is based on the IgG2 with four key amino
acid residue changes derived from IgG4 (H268Q, V309L, A330S,
and P331S), has been shown to have significantly reduced FcγR
binding (50).

IMMUNE CHECKPOINT MOLECULES AND
THEIR THERAPEUTIC ANTIBODIES

CTLA-4
CTLA-4 (cytotoxic T-lymphocyte-4, or CD152) is a member of
the Ig superfamily, which plays a critical role in inhibiting T-
cell immunity (51). The ligands are the B7 family members,
CD80 (B7-1) and CD86 (B7-2). As a CTLA-4-related protein,
CD28 is constitutively expressed on naïve T cells and enhances
T-cell activation when engaged by B7-1/2 on antigen-presenting
cells (APC) (52, 53). In contrast, CTLA-4 surface expression
increases in a day or two after T cell activation (51, 52). CTLA-
4 is also highly expressed on Tregs and plays an important
role in the homeostasis and suppressive functions of Tregs
(54). There is no known canonical immunoreceptor tyrosine-
based inhibitory (ITIM) motif in the cytoplasmic tail of CTLA-4
(55). The exact signaling pathway of CTLA-4 upon engagement
with its ligands still remains largely unknown. Accumulating
evidence suggested that CTLA-4 primarily exerted its inhibitory
functions by competing off CD28 binding to CD80 and/or
CD86, due to the higher affinity of CTLA4 to CD80 or CD86
(55). In addition, CTLA-4 has been shown to down-regulate
CD80 and CD86 on APC, thus inhibiting CD28-mediated
co-stimulation (54).

In mouse tumor models (melanoma and colorectal cancer),
several groups have clearly shown that surrogate anti-CTLA-
4 antibody-mediated anti-tumor efficacy is dependent on Fc
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FIGURE 1 | Anti-CTLA-4 and anti-PD-1 therapeutic antibodies have differential FcγR-binding requirement for optimal activity. In the mechanisms of action of

anti-CTLA-4 antibodies (A), depletion of Tregs after engaging FcγR+ effector cells [macrophages (Mφ) and NK cells] plays a critical role in their efficacy. In contrast,

anti-PD-1 antibodies need to have the Fc-mediated effector functions (ADCC, ADCP, and CDC) removed to avoid the killing of PD-1+ T cells by FcγR+ effector

cells (B).

effector functions and correlate with depletion of tumor-
infiltrating Tregs (10, 30, 56) (Figure 1A). In 2011, the FDA
approved the first anti-CTLA-4 antibody, ipilimumab (IgG1
wild-type), for the treatment of melanoma. Furthermore, the
combination of PD-1 blockade with ipilimumab demonstrated
increased, durable anti-tumor activity in renal cell carcinoma
and non-small cell lung cancer (NSCLC) (57, 58). Interestingly,
anti-CTLA-4 clones, which lose the ability to block the B7-
CTLA-4 interaction, remain fully active in inducing tumor
rejection, suggesting that other mechanisms are involved in
anti-CTLA-4 antibody-mediated anti-tumor efficacy besides the
blocking of B7-CTLA-4 (59). In an ex-vivo assay, melanoma
patient-derived non-classical monocytes could kill Tregs via
ADCC (60). In addition, patients who responded to ipilimumab
tended to have a higher percentage of CD14+CD16+ monocytes
in the periphery. Using human FcγR-transgenic mice, Arce
Vargas et al. clearly demonstrated that antibodies with isotypes
equivalent to ipilimumab increased the CD8+ to Treg ratio
by depleting intra-tumoral Tregs to promote tumor rejection
(15). Furthermore, a response to ipilimumab in melanoma
patients is associated with a high-affinity FcγRIIIa (CD16-V158)
polymorphism. A second anti-CTLA-4 mAb, tremelimumab,
is a human IgG2 isotype with minimal FcγRIIIa-mediated
ADCC effects (61). However, anti-mouse CTLA-4 antibody
with human IgG2 isotype could also deplete Tregs in human
FcγR-transgenic mice in a FcγRIIa-dependent manner (15).
Despite the convincing data from mouse models, there
has not been direct evidence indicating that anti-CTLA-
4 immunotherapy could efficiently deplete Tregs in human
cancers (62, 63).

PD-1/PD-L1
In recent years, immune therapy targeting the PD-1/PD-L1
pathway has become a backbone clinical strategy for cancer

treatment. Programmed cell death 1 (PD-1) is an inhibitory
immune modulatory receptor (64–66). It is inducibly expressed
on activated T, NK, and B lymphocytes (67), macrophages, DCs
(68), and monocytes (69) as an immune suppressor for both
adaptive and innate immune responses. PD-1 is highly expressed
on tumor-specific T cells. Engagement of PD-1 by its ligands,
PD-L1 (70) or PD-L2 (71, 72) leads to the exhaustion of T cell
function and immune tolerance in the tumor microenvironment.
Blockade of PD-1 pathway has been shown to restore the
function of “exhausted” T cells, resulting in significant anti-
tumor activity (70, 73). To date, five PD-1 antibodies have
been approved and many others are under development for
the treatment of a broad spectrum of cancers (Table 2). Most
of these anti-PD-1 antibodies are of IgG4 isotype with the
S228P mutation (IgG4 S228P), which has similar effector-binding
properties as the natural IgG4 with reduced ADCC and “null”
CDC, but still retaining high affinity to FcγRI and binding to
FcγRIIb. In the MC38 mouse model, Dahan et al. reported
that engagement of FcγRs reduced the anti-tumor activity of
an anti-PD-1 antibody by eliminating CD8+ tumor-infiltrating
lymphocytes (TILs) via ADCC in a FcγRI-dependent manner (9).
In addition, engagement of FcγRIIb by an anti-PD-1 antibody
could also decrease its anti-tumor activities. Arlauckas et al.
demonstrated that anti-PD-1 antibodies can be captured from
the T-cell surface by FcγR-bearing macrophages. The blockade
of FcγRs could thus prolong the binding of the anti-PD-1
antibody to CD8+ TILs and enhance the anti-tumor activity
in vivo (74). A preclinical study by our group also suggested
that FcγRI binding had a negative impact on the anti-tumor
activity of anti-PD-1 antibodies in a humanized xenograft model.
The binding could induce FcγRI+ macrophages to phagocytose
PD-1+ T cells via ADCP and reverse the function of an anti-
PD-1 antibody from blocking to activating (37). Recently, several
published research papers documented the phenomenon that the
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TABLE 2 | Select PD-1 and PD-L1 antibodies under development for cancer

treatment.

Target Company mAb Clinical

stages

IgG isotype or

mutant with effector

function nullified

PD-1 Bristol-Myers

Squibb

Nivolumab Approved IgG4 S228P

PD-1 Merck Pembrolizumab Approved IgG4 S228P

PD-1 Regeneron/Sanofi Cemiplimab Approved IgG4 S228P

PD-1 Novartis Spartalizumab Phase 3 IgG4 S228P

PD-1 BeiGene Tislelizumab Phase 3 IgG4mut, FcγR null

PD-1 Junshi JS001 Approved IgG4 S228P

PD-1 Hengrui Camrelizumab Phase 3 IgG4 S228P

PD-1 Innovent Sintilimab Approved IgG4 S228P

PD-L1 Roche Atezolizumab Approved IgG1mut, FcγR null

PD-L1 AstraZeneca Durvalumab Approved IgG1mut, FcγR null

PD-L1 Merck

KGaA/Pfizer

Avelumab Approved IgG1

hyperprogression frequencies of certain cancer types treated with
FDA-approved anti-PD-1 antibodies were substantially higher
than the control chemotherapy group (75–77). Lo Russo et al.
linked the interaction between the anti-PD-1 antibody and
FcγR+ macrophages to the hyperprogression in NSCLC during
PD-1 blockade therapy (78). Based on these observations, an
anti-PD-1 antibody with pure blocking activity would be more
desirable, since an anti-PD-1 antibody with FcγR-binding activity
can mediate cross-linking between PD-1+ T-cells and FcγR+

macrophages, induce the depletion of PD-1+ T effector cells, and
thus compromise the T-cell activity of tumor growth inhibition
(9, 37, 74) (Figure 1B).

Programmed death ligand 1 (PD-L1) is constitutively
expressed by immune cells of myeloid lineages (79) and the cells
at immune-privileged sites (80, 81). It is also inducibly expressed
on T, NK and B lymphocytes, epithelial and endothelial cells
upon stimulation by pro-inflammatory factors, such as IFN-
γ and TNF-α (82). PD-L1 is the main ligand of PD-1, and
the PD-L1/PD-1 axis is the major controller of the peripheral
immune tolerance (65). In tumors, PD-L1 is expressed on both
tumor cells (83) and tumor-infiltrating immune cells and can
suppress anti-tumor immunity independently (84). Unlike anti-
PD-1 antibodies, the three approved PD-L1 antibodies have
differentiated FcγR-binding properties (Table 2). Atezolizumab
and durvalumab are designed to eliminate FcγR-binding and
effector functions (85, 86), while avelumab retains intact Fc
functions (87). Recent preclinical data suggested that the
engagement of FcγRs could augment the anti-tumor activity
of anti-PD-L1 antibodies via the ADCC effect against the PD-
L1+ immune suppressive myeloid cells (88) or tumor cells (89).
However, it is also speculated that the effector function could
be detrimental to the anti-tumor immunity due to the depletion
of PD-L1+ APC cells and T effector cells. To understand
the role of FcγR-binding on anti-PD-L1 anti-tumor efficacy,
future studies are needed to elucidate the expression of PD-L1

in the tumor microenvironment and the effect of anti-PD-L1
antibody treatment.

TIM-3
TIM-3 (T cell immunoglobulin and mucin-domain containing-
3, also known as HAVCR2) is a member of the T-cell
immunoglobulin- and mucin-domain-containing family that
plays an important role in promoting T-cell exhaustion in
both chronic viral infections and tumor escape from immune
surveillance (90, 91). It is primarily expressed on immune cells,
such as T cells, NK cells, DCs, and monocytes/macrophages (92).
When expressed on effector T cells, activation of TIM-3 has been
shown to reduce cytokine production, T-cell proliferation, and
cytotoxicity, all of which could be rescued by TIM-3 blocking
antibodies (93, 94). TIM-3 is also expressed on FoxP3+ Treg cells,
especially in human tumor tissues, and is correlated with poor
clinical parameters (95, 96).

Four TIM-3 ligands have been identified, which include
PtdSer, Gal-9, carcinoembryonic antigen-related cell adhesion
molecule 1, and high mobility group box 1 (97). To date,
the detailed mechanisms of TIM-3 signaling remain unclear.
Upregulation of TIM-3 expression in TILs, macrophages, and
tumor cells has been reported in many types of cancers (98–101).
Increased expression of TIM-3 in those cancers is associated with
a poor prognosis and/or patient survival.

Following PD-1 antibody blockade, TIM-3 expression has
been shown to be upregulated on TILs from both patient samples
and animal models, resulting in “adaptive resistance” to anti-PD-
1 treatment (102–104). Blockade of the TIM-3 receptor alone or
in combination with PD-1/PD-L1 blockade has been shown both
in vitro and in vivo to rescue functionally “exhausted” T cells
(3, 93, 105).

In pre-clinical mouse models of colorectal cancer (MC38
and CT26), the effects of “silent” Fc vs. “competent” Fc on
TIM-3 antibody-mediated anti-tumor activity with or without
anti-PD-1 antibody treatment were evaluated by several groups
(106, 107). The results showed that the combination of “Fc-silent”
TIM-3 Ab with PD-1 Ab led to significantly more synergistic
tumor-inhibitory effects than the one with “competent” Fc, while
TIM-3 blocking Ab monotherapy demonstrated marginal anti-
tumor efficacy. The exact mechanisms of Fc effector functions
(ADCC and/or ADCP) in the negative regulation of anti-TIM-3
antibody-mediated anti-tumor efficacy remain unknown.

To date, the first-in-human phase 1/2 clinical trials have
been initiated for four anti-TIM-3 antibodies: TSR-022
(NCT02817633), MBG543 (NCT02608268), BMS-986258
(NCT03446040), and LY3321367 (NCT03099109). TESARO
recently released the clinical data of TSR-022, in monotherapy
or in combination with an anti-PD-1 antibody (TSR-042) in
patients who progressed following anti-PD-1 treatment (108).
The results showed that the combination of TSR-022 and TSR-
042 (500mg) was generally well-tolerated in both NSCLC and
melanoma patients, and clinical activities have been observed in
the combination therapy, especially at a high dose of TSR-022
(300mg) with an objective response rate (ORR) of 15% (3/20)
and 40% stable disease (8/20) (108).
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LAG-3
LAG-3 (Lymphocyte activation gene-3, or CD223) is a member
of the immunoglobulin superfamily (IgSF) (109). The immune-
regulatory roles of LAG-3 were demonstrated in LAG-3
knockout mice, in which increased susceptibility to autoimmune
diseases was observed (110, 111). LAG-3 is primarily expressed
on activated T, natural killer (NK), and plasmacytoid dendritic
cells (pDC), but not on resting T cells (109, 112). In addition,
LAG-3 expression on Tregs is positively correlated with their
immune-suppressive activity (113). Sequence homology analysis
revealed that LAG-3 is structurally related to CD4, but with
higher affinity (60 nM) toMHC class II (MHC-II)molecules, thus
inhibiting CD4-MHC-II interaction and negatively regulating
T-cell receptor (TCR) signaling (109, 114). In addition, LAG-
3 can exert negative regulation of CD8+ T cells via CD4+ T
cell-dependent and/or independent manners (115, 116). Similar
to PD-1, LAG-3 is expressed on tumor-infiltrating lymphocytes
(TILs), but to a less extent. Besides MHC-II molecules, LAG-
3 has been shown to bind to galectin-3 (Gal-3) and LSECtin
(115, 117). The exact biological function of these two ligands
binding to LAG-3 remains unknown. Recently, fibrinogen-
like protein 1 (FGL1) has been identified as a novel high-
affinity ligand for LAG-3 (118). In vitro, FGL1 could induce
T-cell inhibition in a LAG-3-dependent manner. In the MC38
colorectal cancer model, ablation of FGL1-LAG-3 interaction
with either anti-FGL1 or anti-LAG-3 blocking antibodies inhibits
tumor growth.

Inmouse tumormodels (Sa1N fibrosarcoma,MC38 colorectal
cancer, and MBT-2 bladder cancer), dual blockade of LAG-
3 and PD-1 receptors with blocking antibodies has shown to
significantly improve the anti-tumor activity than either antibody
alone (111, 119). In a study by Jun et al., a pair of anti-mouse
LAG-3 surrogate antibodies with IgG1 (D265A) [anti-mLAG-
3 IgG1(D265A)] or IgG2a (anti-mLAG-3 IgG2a) isotypes were
generated based on a commercial clone (C9B7W). Comparative
study of these two antibodies either alone or in combination with
anti-mouse PD-1 antibody in the CT26 mouse colorectal cancer
model showed that anti-mouse LAG-3 antibody with minimal
Fc effector functions [IgG1 (D265A)] had anti-tumor efficacy,
and the one with effector function (IgG2a) had no apparent
tumor inhibitory effect (120). In addition, when combined
with PD-1 blocking antibody, anti-mLAG-3 IgG1 (D265A)
showed significantly synergistic anti-tumor effects, whereas anti-
mLAG-3 IgG2a with intact effector function in combination
with an anti-mouse PD-1 antibody was less efficacious than
anti-mouse PD-1 alone, suggesting that the effector function
of LAG-3 antibody might interfere with anti-mouse PD-1
mediated efficacy. The anti-tumor efficacy of anti-mouse LAG-3
antibodies without effector functions was also observed by other
groups (119, 121, 122).

As of now, there are six LAG-3 antibodies being evaluated
in clinical trials. All these LAG-3 antibodies have Fc with
either reduced or “null” effector functions. Preliminary
data showed that combining anti-LAG-3 therapy (BMS-
986016) with nivolumab in melanoma patients refractory
to PD-1/PD-L1 treatment could help patients overcome

resistance and restore T-cell function with an ORR up to
18%, especially in patients with high LAG-3 expression
(≥1%)(123).

TIGIT
TIGIT (T cell immunoglobulin and ITIM domain, also known
as WUCAM or Vstm3) is a member of the CD28 family of
proteins that play an important role in inhibiting T- and NK
cell-mediated functional activities in anti-tumor immunity (124–
126). TIGIT is mainly expressed on T and NK cells. T cells in the
tumor microenvironment (3) often co-express TIGIT with other
“checkpoint” inhibitory immune receptors, such as PD-1, LAG-3,
and TIM-3 (93, 127).

Two TIGIT ligands, CD155 (PVR) and CD112 (PVRL2,
nectin-2), have been identified; they are primarily expressed on
APCs (such as dendritic cells and macrophages) and tumor
cells (125, 126, 128, 129). The binding affinity of TIGIT to
CD155 (Kd:∼1nM) is much higher than to CD112. Whether the
TIGIT: CD112 interaction is functionally relevant in mediating
inhibitory signals is yet to be determined. High-affinity binding
of TIGIT to CD155 could compete with another co-stimulatory
receptor, CD226 (DNAM-1), which binds to the same ligands
with lower affinity (Kd: ∼100nM) and delivers a positive signal
(130), therefore reducing T- or NK-activation. In addition, the
interaction between TIGIT and PVR on dendritic cells (DCs)
could deliver a “reverse signaling” in DCs, leading to reduced DC
activity and T-cell activation (126). TIGIT expression on Tregs
has been associated with a highly immune-suppressive phenotype
in tumor tissue and TIGIT signaling in Tregs may favor Treg
stability (131, 132).

Blockade of the TIGIT receptor alone or in combination with
PD-1/PD-L1 blockade could rescue functionally “exhausted” T
cells both in vitro and in vivo (133, 134). In the CT26 cancer
model, Fc with effector functions is critical for TIGIT antibody-
mediated anti-tumor activity (11, 135). The TIGIT antibody
with wild-type (WT) human IgG1 Fc (EOS884448) has been
shown to be capable of preferentially depleting Treg cells in
vitro (11). The authors demonstrated that the surrogate mouse
TIGIT antibody of the mIgG2a isotype has potent anti-tumor
activity either as monotherapy or in combination with a PD-
1 antibody. In contrast, the mouse anti-TIGIT antibody with
Fc devoid of effector functions did not show any of the anti-
tumor efficacies, indicating that Fc-mediated effector functions
are required for TIGIT antibody-mediated anti-tumor effects.
In addition, the observed efficacy was associated with increased
activity of effector T cells (CD8+ and CD4+) and also with Treg
depletion within the TME. Argast et al. also observed that effector
functions were critical for TIGIT antibody-induced in vivo
efficacy (135).

To date, there are six TIGIT antibodies (seeTable 3) in clinical
trials, with different IgG isotypes or mutant forms. The most
advanced, MTIG7192 (NCT03563716), is in a phase 2 trial in
combination with the anti-PD-L1 antibody atezolizumab for
treatment of advanced NSCLC. How the effector functions affect
clinical activities remains to be seen.
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TABLE 3 | Anti-TIGIT in clinical trials.

Company mAb Clinical

stages

IgG Isotype and Fc

effector functions

Genentech MTIG7192 Phase 2 IgG1

Merck Sharp & Dohme MK-7684 Phase 2 IgG1

Bristol-Myers Squibb BMS-986207 Phase 1/2 IgG1mut, FcγR null

Oncomed OMP-

313M32

Phase 1 IgG1

Arcus AB-154 Phase 1 IgG4 S228P

Potenza ASP8374 Phase 1 IgG1mut, FcγR null

CD73
CD73 (also known as 5’-ecto-nucleotidase, or NT5E) is a
glycosylphosphatidylinositol (136) anchored cell surface protein,
which has both enzymatic and non-enzymatic functions (137).
As a nucleotidase, it catalyzes the extracellular dephosphorylation
of adenosine monophosphate (AMP) to adenosine. Adenosine
is believed to be an immunosuppressive molecule inhibiting
CD8+ T cells, NK cells, and dendritic cells, while promoting
the proliferation of immunosuppressive cells (138, 139). In
some cases, CD73 can be shed from the cell surface with
retained enzymatic activity (140). Expression of CD73 varies
on normal tissues but remains at constitutively high levels on
many types of cancer cells. High CD73 expression has been
shown to be correlated with unfavorable clinical outcomes (141–
147), which is consistent with the immunosuppressive role
of adenosine.

Three CD73 blocking antibodies have been entered into
clinical trials (i.e., BMS-986179, CPI-006, and MEDI9447).
Compared with small-molecule inhibitors, anti-CD73mAbs offer
the possibility of directly targeting both enzymatic and non-
enzymatic CD73 pathways (148). In vitro data showed that
MEDI9447 (human IgG1 variant) could inhibit the enzymatic
activity of both soluble- and membrane-bound CD73 through
prevention of the conformational transition of CD73 to an active
state, and could induce internalization of membrane-bound
CD73, and restore T-cell proliferation from the inhibition by
AMP (149, 150). In a mouse model, MEDI9447 monotherapy
showed significant anti-tumor efficacy, which was further
increased when combined with a PD-1 antibody (150). In the
Fc region of MEDI9447, triple mutations (L234F/L235E/P331S)
were introduced to eliminate its binding to FcγRs (Including
FcγRI, FcγRIIa, and FcγRIIIa) and C1q (150, 151). Similarly,
CPI-006 from Corvus is also an IgG1 isotype with a “silent”
Fc. It could fully block the production of adenosine by
inhibiting the enzymatic activity of CD73 (IC50, 17nM) without
internalization, while also activate B cells independent of
adenosine reduction (152).

Another anti-CD73 antibody, BMS-986179, is an IgG2/IgG1
hybrid with a “null” effector function. BMS-986179 could
not only inhibit CD73 enzymatic function but also induce
rapid, near-complete internalization (153). The disulfide bond
isomerization of IgG2 is thought to be the major mechanism
for BMS-986179-induced CD73 efficient clustering and

internalization. Results from mouse models indicated that the
combination of PD-1 blockade and a surrogate anti-mouse-
CD73 antibody treatment resulted in more enhanced anti-tumor
efficacy than either treatment alone (153). In a phase 1/2a
study (NCT02754141), 59 patients with advanced solid tumors
were treated either alone with BMS-986179 or in combination
with nivolumab. Preliminary results showed that both the
monotherapy of BMS-986179 and the combination were well-
tolerated and clinical activities were observed with 7 partial
responses and 10 stable diseases (154).

VISTA
VISTA (V-domain Ig-containing Suppressor of T cell
Activation,also known as B7-H5, B7H5, C10orf54, DD1alpha,
GI24, PD-1H, PP2135, SISP1) is a type I transmembrane protein
with a single extracellular IgV domain, functioning as a negative
regulator of T-cell immunity. It is predominantly expressed on
hematopoietic cells, at the highest level on myeloid cells and at
lower levels on T cells (155). In vitro studies indicated that not
only could VISTA-Ig inhibit T-cell activation and proliferation,
but it could also induce Treg differentiation (155). The receptor
for VISTA remains unknown. Results from murine models
suggested that VISTA and PD-1 suppressed T-cell function in
a synergistic manner, providing the possibility of combined
therapy targeting both VISTA and PD-1 to enhance anti-tumor
immunity (156).

To date, JNJ-61610588, a fully human IgG1 antibody (with
wild-type Fc) is the only anti-VISTA monoclonal antibody in a
clinical trial (NCT02671955). A preliminary study showed that
JNJ-61610588 could induce monocytes and T-cell activation, as
well as T-cell proliferation in vitro (12). Interestingly, active
Fc and Fc receptor crosslinking is required for the efficacy,
since neither the silent Fc version of VSTB140, with an IgG2
sigma constant region, nor the Fc blocking of JNJ-61610588
exhibited activity. Consistent with in vitro findings, the anti-
tumor activity of JNJ-61610588 in mouse tumor models was
observed. The exact mechanisms and clinical evidence remain to
be seen.

B7-H3
B7-H3 (Human B7 homolog 3, also known as CD276) is a
member of the B7 family of immune proteins. The majority of
studies suggest that B7-H3 is an immune checkpoint molecule
(157–159), although it was initially characterized as a co-
stimulatory molecule for T-cell activation and IFNγ production
(160). The B7-H3 receptor expressed on T cells remains to be
identified (161). B7-H3 has limited expression on normal tissues
but is preferentially expressed on a wide spectrum of cancer cells
and tumor vasculature, which is associated with poor outcomes
in multiple cancers (162–168).

MGA271 (or enoblituzumab), is an Fc-enhanced humanized
IgG1 anti-B7-H3 antibody developed by MacroGenics.
Mutations were introduced in the IgG1 Fc domain to increase
its affinity to FcγRIIIa but decrease the affinity to FcγRIIb (169).
Enhanced ADCC against a wide arrange of B7-H3 positive
tumor cell lines (including prostate, lung, breast, colon, bladder,
renal cancers and melanoma) was observed across all the
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donors with different FcγRIIIa polymorphisms (low-affinity
158F homozygous, high-affinity 158V homozygous, and 158F/V
heterozygous). Consistent with in vitro data, greater anti-tumor
efficacy was observed in the group with MGA271 than the one
with wildtype IgG1 Fc in human FcγRIIIa-158F-transgenic mice
(170). Initial evidence of anti-tumor activity was observed in a
clinical trial with MGA271, with no dose-limiting toxicities or
severe immune-related side effects (171).

CONCLUDING REMARKS

In this review, we have summarized recent advances in the
study of FcγR-binding on checkpoint antibody therapy. For
targets such as CTLA-4, multiple studies indicated the critical
role of competent IgG1-Fc for anti-CTLA-4 antibody-mediated
intratumoral depletion of Tregs via ADCC (10, 15). This MOA
may largely be attributed to the preferential surface expression
of CTLA-4 on Tregs and the presence of significant numbers
of CD16+ macrophages inside tumors (15). In mouse models,
anti-CTLA-4mAbs do not block CTLA-4-B7 interaction, yet they
remain active in anti-tumor efficacy, suggesting that intratumoral
depletion of Tregs by anti-CTLA-4 antibodies might be the
primary MOA (172). A similar phenomenon was observed for
TIGIT or VISTA in mouse models, in which their antibody-
elicited anti-tumor efficacy is mainly dependent on Fc-mediated
effector functions (11).

So far, five approved anti-PD-1 mAbs (nivolumab,
pembrolizumab, and cemiplimab) are of human IgG4 isotype.
The choice was made primarily based on the fact that the
affinity of IgG4 to FcγRIIIa is very low, inducing little ADCC
(13). However, IgG4 binds to FcγRI with high affinity, which
can negatively impact the efficacy of PD-1 therapy (9, 37).
Moreover, IgG4 can also bind to FcγRIIb, leading to reduced
anti-tumor efficacy, likely through the induction of a more
immunosuppressive environment (9, 78). Therefore, an IgG
variant of the anti-PD-1 antibody with null FcγR-binding is
expected to be the optimal candidate for therapeutic blocking
of PD-1 without the unwanted engagement of FcγR pathways.
A similar rationale applies to co-inhibitory receptors TIM-3
and LAG-3, in which blocking antibody-mediated anti-tumor

efficacy might be compromised when the Fc maintains intact
effector functions.

Three PD-L1-targeting mAbs have been approved:
atezolizumab, durvalumab (IgG1 variant with null or reduced
Fc-FcγR binding), and avelumab (wild-type IgG1, ADCC-
enabling) (173). Comparison of clinical activities of these mAbs
may provide important insight into the contribution of FcγRs
for the anti-PD-L1 treatment of human cancers.

It should be noted that most of the findings in this review
about the role of IgG antibody and FcγR binding on immune-
oncology therapy were obtained from mouse models (some even
in human FcγR-transgenic mice). There are several factors that
need to be taken into consideration, including, how well the
mouse FcγR expression pattern (including transgenic human
FcγRs) mimics the human counterpart, especially in cancer
patients, and how different the abundance and distribution of
FcγR+ effector cells (e.g., NK cells and macrophages) are in mice
vs. in humans in the TME. Studies on the impact of human FcγR
polymorphisms (FcγRIIIa-V158 vs. F158; FcγRIIa-H131 vs. R131)
on clinical activity may also shed light on the MOA of immune
checkpoint-targeted antibodies (15). In addition, ex vivo assays
using human tumor samples and targeted antibodies in various
settings may provide useful insight into this matter.

In summary, the triggering of effector functions on IgG and
FcγR interactions is a complex process; the overall outcome may
be dependent on the target expression level, distribution, and
abundance of T cells, and the FcγR+ effector cells (NK cells
and macrophages) inside tumors. Further investigation through
clinical pathology and pharmacology studies is needed to assess
the translational applicability of these findings in mouse models
to human cancer treatment.
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