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High-throughput experimentation in chemistry allows for quick and automated exploration of chemical space
to, for example, discover new drugs. Combining machine learning techniques with high-throughput experi-
mentation has the potential to speed up and improve chemical space exploration and optimization.
The Trends in Chemistry February 2021

issue is a special issue on machine

learning (ML) for molecules and materials.

This special issue is understandably tar-

geted toward the domain science of

chemistry, rather than having the data sci-

ence focus of Patterns, but it does high-

light the important ways that machine

learning informs, bridges, and aids as-

pects of the synthesis, discovery, and

optimization cycle for new molecules

and materials. Performing these tasks

has historically been extremely difficult,

costly, and/or labor intensive, so the

application of machine learning to speed

up this process has the potential to drive

progress in this field. The guest editors

of this special issue are Prof. Rafael Gó-

mez-Bombarelli and Dr. Alexander B.

Wiltschko.

The focus of this preview is the article

‘‘Toward Machine Learning-Enhanced

High-Throughput Experimentation’’ by

Eyke et al.1 I chose it as a representative

sample from the special issue, as it dis-

cusses many of the issues with data that

are common across many fields, not just

chemical discovery and synthesis.

High-throughput experimentation (HTE)

allows many parallel chemistry experi-

ments to be conducted simultaneously

and more efficiently by using a variety of

automated routine chemical workflows.

The resulting experiments are conducted

uniformly andmore cheaply, and the anal-

ysis datasets are generated consistently.

This allows the properties of large chemi-

cal libraries to be screened quickly and

cost efficiently, helpful in a field where

many experiments are required to make

discoveries.

In the chemistry domain, much work

has been done on ML-based experi-
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mental design tools and automated

experimentation platforms. Combining

these two methodologies has great po-

tential to speed up and improve chemical

space exploration and optimization. This

combination also has the advantage of

being self-reinforcing: the ML algorithms

improve the efficiency with which the plat-

forms can navigate chemical space, and

the data that are collected on the plat-

forms can be fed back into theMLmodels

to improve their performance, although

the most effective way of doing this com-

bination is still up for debate.

The article describes the developments

inML for chemistry that facilitate data pro-

cessing, experimental design for maxi-

mally efficient experimentation, and appli-

cations such as synthesis planning. The

authors also describe the latest experi-

mental platforms, including advances in

platform-level control systems, hardware

implementation, and comprehensive

data capture and analytics.

Integration of automated analytical in-

struments that can generate a lot of infor-

mation while preserving throughput,

along withML algorithms capable of auto-

matic processing of the data, are a com-

mon theme in other physical science do-

mains as well as chemistry. The authors

point out that ‘‘systems that automatically

upload the data to reaction databases

and/or export it into standardized formats

that can be included in the supplementary

information of publications to facilitate

later extraction would help overcome the

issues with existing data.’’ My feeling is

that this is a good first step, and the use

of community standards and commonly

used and trusted data repositories is

essential. I would encourage the commu-

nity to investigate data sharing and
ticle under the CC BY-NC-ND license (http://cr
archiving systems in other physical sci-

ence domains and also not to relegate

the important information about the data

to the supplementary information. Data

are first-class research objects and are

an essential part of ensuring scientific

verifiability and reproducibility.

The discussion of automated HTE plat-

forms acknowledges the fact that these

platforms tend to be well suited to explore

narrow chemical spaces, although efforts

are ongoing to expand these spaces.

Many powerful ML models have been re-

ported in the literature for this domain

also, but unsurprisingly, their accuracy

and domain of applicability (DOA) is con-

strained by the available data.

A completely automated synthesis plat-

form depends on access to a model that

can readily predict the ‘‘best’’ route to a

target compound (where ‘‘best’’ can

depend on a wide range of, sometimes

conflicting, factors). Existing datasets

often suffer from missing information, or

dataset imbalance, and many need sub-

stantial data cleaning and curation to be

suitable to use with ML techniques. As a

result of these issues, existing synthesis

planning tools are generally capable of

suggesting viable routes but are unable

to fully specify synthesis recipes. The

article gives specific examples of these

and describes familiar results for re-

searchers trying to create general use

models, in that models trained on one da-

taset perform badly on others.

ML models require large amounts of

data, and so researchers need to use

pre-existing data. As is the case with so

many experimental domains, the histori-

cal data available for chemical ML

lack sufficient quality and/or relevance to

fulfil objectives of interest. A strategy,
Patterns 2, March 12, 2021 ª 2021 1
eativecommons.org/licenses/by-nc-nd/4.0/).

mailto:s.callaghan@cell.com
https://doi.org/10.1016/j.patter.2021.100221
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100221&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preview
ll

OPEN ACCESS
common across domains, is to augment

the available literature data to make

them better suited to the task, which

also means extracting data from the liter-

ature in a useful and standardized way.

Quantity is not enough, however; data

relevance and data quality are also vital

aspects that need to be considered.

Sometimes the community has no

choice but to generate higher-quality

data. As we all know, brute force methods

for data generation are inefficient as well

as inelegant, and computational models

are expensive to run, not only in terms of

time but also in terms of carbon and elec-

tricity. Efficient experimental design tools,

whether they’re based on new or pre-ex-

isting data, navigate the chemical space

and avoid the collection of redundant in-

formation. These tools narrow the experi-

ments to be run from the set of all possible

experiments in a domain to find the bal-

ance between those that are most infor-

mative (exploration) and/or most likely to

be optimal (exploitation).

The focus on getting good quality data

does have the benefit of an increasing

community appreciation of the value of

comprehensive data capture, aided by

new initiatives such as the Open Reaction

Database (https://docs.open-reaction-

database.org), which aims not only to be

a data repository but also to offer guid-

ance on what kinds of data are useful to

collect.

As well as a discussion of data collec-

tion and quality, the article also outlines

methods of merging ML with traditional

statistical methods of optimal experi-

mental design for navigation of high-

dimensional chemical space. These

include the following:

d Traditional design of experiments

(DOE) methods for reaction optimi-

zation tasks in a small design space

involving a small number of primarily

continuous variables.

d Bayesian optimization (BO) using a

Gaussian process (GP)-based sur-
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rogate model to relate the input vari-

ables to the objective, although this

does come with a computational

expense associated with fitting

GPs and optimizing the acquisition

function in high dimensions. It is

becoming common to perform GP-

based BO in a dimensionality-

reduced space defined using some

sort of autoencoder such as a varia-

tional autoencoder (VAE) or more

traditional dimensionality reduction

algorithms like principal-compo-

nent analysis (PCA), as this allows

higher input dimensionality. The

combination of BO with generative

models is also a popular area of

chemical research in recent years.

d Bayesian neural networks (BNNs)

can also be used to construct the

probabilistic surrogate model.

d Traditional neural networks (NNs)

and random forests (RFs) can also

be used as surrogate models and

are therefore useful in large design

spaces with high input dimension-

ality, even though they are not

innately probabilistic. Strategies for

uncertainty estimation for NNs and

RFs exist, allowing exploration-

exploitation experimental design

schemes analogous to those de-

ployed for BO.

d Other experimental design strate-

giesmentioned include those based

on reinforcement learning and

divergence measures.

Critically, the information that is re-

corded during experimentation directly

determines the types of chemical models

that can be constructed from the data.

Many current HTE platforms for reaction

screening achieve increased throughput

by initially restricting the analysis to a

small set of low-cost observables, and

the most promising or interesting results

are subsequently investigated in greater

detail offline. While this tiered approach

has yielded promising results, the infor-
mation derived from the initial, high-

throughput phase lacks enough detail to

be useful for most general modeling

tasks, so there is a balance that must be

found between the resources needed to

comprehensively analyze a sample and

the throughput needed to navigate large

chemical spaces. A promising develop-

ment for this problem is the use of auto-

mated, high-throughput, label-free tech-

niques that can probe reaction chemistry

in finer detail than targeted methods,

automated at both the instrument and

the data-processing levels.

Robust control software that is capable

of translating model predictions into ma-

chine-executable tasks and workflows

that provide comprehensive analysis of

the molecules produced on these plat-

forms are critical to provide information-

rich datasets for ML efforts. Existing plat-

form control networks are powerful but

require specialized control-systems

knowledge to implement and modify—

knowledge that chemistry end-users do

not typically have, making this a substan-

tial barrier to entry. ForML-enhancedHTE

platforms to be broadly accessible, there

must be serious consideration of the

operational design.

As the authors conclude: ‘‘The potential

to quickly generate tailormade datasets

with ML-enhanced HTE represents a

promising path toward accurate models

with broad capabilities that can be sys-

tematically created on demand.’’ This

work requires a close collaboration be-

tween domain researchers and data sci-

entists but is an area that has a great

deal of promise and potential.

WEB RESOURCES

Open Reaction Database, https://docs.open-
reaction-database.org
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