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Abstract
Controlling complex network is an essential problem in network science and engineering.

Recent advances indicate that the controllability of complex network is dependent on the

network's topology. Liu and Barabási, et.al speculated that the degree distribution was one

of the most important factors affecting controllability for arbitrary complex directed network

with random link weights. In this paper, we analysed the effect of degree distribution to the

controllability for the deterministic networks with unweighted and undirected. We introduce

a class of deterministic networks with identical degree sequence, called (x,y)-flower. We

analysed controllability of the two deterministic networks ((1, 3)-flower and (2, 2)-flower) by

exact controllability theory in detail and give accurate results of the minimum number of driv-

er nodes for the two networks. In simulation, we compare the controllability of (x,y)-flower
networks. Our results show that the family of (x,y)-flower networks have the same degree

sequence, but their controllability is totally different. So the degree distribution itself is not

sufficient to characterize the controllability of deterministic networks with unweighted

and undirected.

Introduction
Controlling is one of the most challenging problems in modern network science and engineer-
ing of complex network. In the past decades significant efforts have been devoted to under-
standing the controllability of the complex network [1–21]. A networked system is controllable
if imposing appropriate external signals on a subset of its nodes, the system can be driven from
any initial state to any final state in finite time [22–30]. The minimal set of driver nodes re-
quired to control a network is called the minimum driver node set (MDS). The minimum
number of the driver nodes denoted by ND. Moreover, we can measure the controllability of a

network by the nD, nD ¼ ND
N
. Lin proposed the structural controllability theory in 1974 [24] and

gave two factors influencing the structural controllability. He proposed minimal structure that
ensured the structural controllability. However, the structural controllability theory didn’t
solve the problem of minimal set of driver nodes. Liu, Slotine and Barabási [7] studied the con-
trollability of various random directed networks and proposed a method to get ND. Recently
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Yuan and Zhao et.al [11] introduced the exact-controllability framework based on the maxi-
mummultiplicity to identify the ND of arbitrary network topology. For more complicated
model networks and many real-word weighted networks with distinct node-degree distribu-
tions, the exact controllability can be efficiently assessed by numerical computations. In spite
of their results offered a general tool to solve the ND, we are more interested in the influence of
network topologies to controllability. To find the factors which affect the controllability of the
complex network, researchers from different perspectives were in the study of controllability
[1–18]. In previous research, one of the most significant conclusions was given by Liu, Slotine
and Barabási [7]. Their main conclusion is that the controllability of random directed network
is determined by the degree distributions of network. That means, for arbitrary random direct-
ed networks, if they had different degree distribution then had different controllability. Mean-
while, the results be obtained were base on the random directed networks. Random network
has most of the characteristics of the real network, however as Barabási said [31], it is hard to
gain a visual understanding for many properties, and how do different nodes relate to each
other. Deterministic networks are abundant in many real systems, such as power networks,
computer networks, neural network and chemical network. Therefore, it is significant to study
the controllability of deterministic networks. Li and Yuan et.al [17] analysed the controllability
of several deterministic networks and gained the exactly expression of ND.

So far, we did not see relevant results in the controllability of deterministic complex net-
works with identical degree distributions. If two networks with same degree distribution, it is
worthy of studying whether they have same controllability. On the other hand, there is an in-
teresting problem as to whether the degree distribution is the only ingredient responsible for
the controllability in the deterministic networks with unweighted and undirected.

To analyse the controllability of deterministic networks with identical degree distribution,
we introduce the family of deterministic networks with fractal feature, which was called (x, y)-
flower [32, 33] and has identical degree sequence. In the field of complex networks, fractal
properties and self-similarities are shared by many real network systems [34–37] include
World-Wide-Web, biological and social networks. In a lots of fractal networks, the (x, y)-flower
networks displayed some remarkable properties such as scale-free, non-clustered and their de-
gree distribution follows the power-law distribution. On the other hand, the (x, y)-flower has
small world property for x = 1 and has large world property for x = y. Hence, it is worthwhile
to investigate the dynamic processes of the (x, y)-flower networks. Zhang et.al [38] studied the
percolation of two networks in (x, y)-flower networks, which were (1, 3)-flower network and
(2, 2)-flower network respectively. Their results indicated that power-law degree distribution
alone didn’t suffice to characterize the percolation threshold on (1, 3)-flower and (2, 2)-flower
under bond percolation. Lin et.al [33] studied the spanning trees of (x, y)-flower networks, the
authors found that the entropy of spanning trees on (x, y)-flower networks were different al-
though the networks had the identical degree distribution. Thus, the degree distribution alone
was not sufficient enough to describe the spanning trees of the network.

In this paper, we analysed the controllability and give accurate results of the minimum
number of driver nodes for (1, 3)-flower networks and (2, 2)-flower network by exact control-
lability theory. Our results show that although (1, 3)-flower and (2, 2)-flower have same degree
sequence, their controllability are totally different; that is, the ND of the (1, 3)-flower is about
half of the (2, 2)-flower. Furthermore, we verify the results in (x, y)-flower networks by com-
puter simulation. Simulation results show that the (x, y)-flower networks of x = 1 have the
identical degree sequence with x = y, but their controllability are entirely different. So the de-
gree distribution itself is not sufficient to characterize the controllability of deterministic net-
works with unweighted and undirected.
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Model

Model and properties of (x, y)-flower
In order to analyse the controllability of the (x, y)-flower networks, we first introduce the con-
struction and structural properties of the (x, y)-flower. The (x, y)-flower are built in an iterative
way. We denote the (x, y)-flower after t generations of evolution by Ft(x, y)(n� 0), without
loss of generality we assumed that x� y and y> 1. The (x, y)-flower are constructed by the al-
gorithm as follows [32, 33]:

1. At the initial time t = 0, F0(x, y) is an edge connecting two node, called the initial nodes.

2. After, for t� 1, Ft(x, y) is derived from the Ft − 1(x, y). For x = 1, every old edge generates
y − 1 new nodes, and all of these y − 1 new nodes and the old edge form a circle of length
y+1. For x> 1, every old edge connecting two old nodes is removed and replaced by two
parallel paths with the two old nodes as the ends of the two parallel paths: the above y − 1
nodes and the two old nodes form a path of length y, while the below x − 1 nodes and the
two old nodes constitute another path of length x.

According the constructed process of (x, y)-flower, we can obtain some topological proper-
ties [32, 33] as follows:

1. Let Et is the number of edges and Nv(t) is the number of total nodes in Ft(x, y), then it is easy

to calculate Et = (x + y)t and NvðtÞ ¼ xþy�2
xþy�1 ðxþ yÞt þ xþy

xþy�1.

2. Since the Ft(x, y) is deterministic construction, we obtain the degree sequence of Ft(x, y). In
Ft(x, y), the degree of node i at time t denoted by ki(t). By construction, the degree ki(t)
evolves with time as ki(t) = 2ki(t − 1) = 2s(s = 1, 2, . . ., t), that is, the degree of node i in-
creases by a factor 2 at each time step. Let Nt(s)(s = 1, 2, . . ., t) be the number of nodes with
degeree 2s(s = 1, 2, . . ., t) in Ft(x, y), we have:

NtðsÞ ¼
ðx þ y � 2Þðx þ yÞt�s

; s < t;

x þ y; s ¼ t:
ð1Þ

8<
:

Thus, all the class of Ft(x, y) with the same x + y have the identical degree sequence.

3. The degree distributions of (x, y)-flower obey a power-law distribution P(k)* k − γ, with

the exponent g ¼ 1þ lnðxþyÞ
ln 2 . According the algorithm of constructing the (x, y)-flower, we

obtain the (1, 3)-flower and the (2, 2)-flower after t iterations, and denoted by Ft(1, 3) and Ft(2,
2) respectively. Figs 1 and 2 respectively show the growth process of the (1, 3)-flower and the
(2, 2)-flower.

For these two networks, after t iterations, we have Et = 4t, NvðtÞ ¼ 2
3
ð4t þ 2Þ. Let Lv(t) be the

number of nodes generated at step t. Each existing edge at a given step will yield two new nodes
at the next step, this leads to Lv(t) = 2Et − 1 = 2×4t − 1(t� 1).

The average node degree after t iterations is hkti ¼ 2Et
NvðtÞ ¼ 3�4t

4tþ2
, which approaches 3 for large

t. Meanwhile, the two networks have an identical degree sequence, and they obey a power-law
degree distribution P(k)* k − 3. Fig 3 show that the degree distributions of Ft(1, 3) network
and Ft(2, 2) network. From this figure, we can see that the degree distributions of the Ft(1, 3)
and Ft(2, 2) are identical.

In this paper, we analysed the controllability of (1, 3)-flower and (2, 2)-flower by the exact
controllability theory. Next, let’s start by reviewing some basic concepts of the exact
controllability theory.
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Exact controllability theory
One controlled complex network with N nodes, described by the following linear ordinary dif-
ferential equations [7, 11]

_X ¼ Axþ Bu; ð2Þ

where the vector x = (x1, x2, � � �, xN)T stands for the states of N nodes, A 2 RN × N denotes the
coupling matrix of a complex network, u is the vector ofm controllers: u = (u1, u2, � � �, um)T
and B is the N ×m input matrix. Note that each node is captured by single state, saying one-di-
mensional nodal dynamics. In order to fully control the complex network, we should choose
right B and u. Our purpose is to devise a matrix B, corresponding to the minimum number of
input signals imposing on minimum set of driver nodes. According to the results of Liu [7] and
Yuan [11],

ND � minfrankðBÞg: ð3Þ

Fig 1. Illustration of the growing process for the (1, 3)-flower.Where, every old edge generates 2 new nodes. All of these 2 new nodes and the old edge
form a circle of length 4.

doi:10.1371/journal.pone.0127545.g001
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According to the PBH rank condition [23, 28–30] Yuan et.al [11] proved that for arbitrary net-
work, the minimum number ND of controllers or drivers are determined by the maximum geo-
metric multiplicity μ(λi) of the eigenvalue λi of A:

ND ¼max fmðliÞg; ð4Þ

where μ(λi) = dimVλi = N − rank(λi IN − A) and λi(i = 1, � � �, l) are the distinct eigenvalues of A.
For a symmetric coupling matrix, its geometric multiplicity equals to algebraic multiplicity. For
an undirected networks, ND is determined by the maximum algebraic multiplicity δ(λi) of λi
[11]:

ND ¼ maxfdðliÞg: ð5Þ

For a large sparse network with a small fraction of self-loops, in which the number of links
scales with N in the limit of large N [39], ND is simply determined by the rank of the coupling
matrix A [11]

ND � maxf1;N � rankðAÞg; ð6Þ

which means the eigenvalue 0 has a maximum multiplicity.

Fig 2. Illustration of the growing process for the (2, 2)-flower.Where, each old edge connecting two old nodes is removed and replaced by two pathes
with the two old nodes as the ends; one new node and the two old nodes form one path of length 2, while another new node and the two old nodes constitute
the other path of length 2.

doi:10.1371/journal.pone.0127545.g002
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For a densely connected network with a small fraction of self-loop in which the zeros in A
same scale with N in the limit of large N, we have [11]

ND � maxf1;N � rankðwIN þ AÞg: ð7Þ

The measure of controllability denoted by nD, it is defined as the ratio of ND to the network
size N [7]:

nD ¼ ND

N
: ð8Þ

Using the Eqs (3)–(7) we can calculate ND of an arbitrary network topology. For the determin-
istic (1, 3)-flower network and (2, 2)-flower network, we obtain the exact solutions of ND in (1,
3)-flower network and (2, 2)-flower network by equation Eq (6). Moreover, we get the measure
of controllability nD in (x, y)-flower by equation Eq (8).

Analysis
We derive the formula of ND and nD of Ft(1, 3) and Ft(2, 2) from network topology by exact
controllability theory. To calculate the eigenvalues of fractal scale-free networks, Zhang and

Fig 3. The degree distribution of Ft(1, 3) and Ft(2, 2). Two networks have identical degree distribution and their degree distribution obey a power-law
degree distribution P(k)* k − 3.

doi:10.1371/journal.pone.0127545.g003
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Hu et.al introduced a method [36] Inspired by this method, we calculate the rank of the adja-
cency matrix in Ft(1, 3) and Ft(2, 2).

The controllability of (1, 3)-flower network
Let α be the set of nodes of the network at the s-step, α = Ns; β be the set of nodes that are gen-
erated at the (s + 1)-th iteration, β = Ns+1 − Ns. The matrix As+1(1, 3) is the adjacency matrix of
Fs+1(1, 3), which has the following block form:

Asþ1ð1; 3Þ ¼
Aa;a Aa;b

Ab;a Ab;b

0
@

1
A: ð9Þ

The matrix Aα,α is the adjacency matrix of (1, 3)-flower at t = s, which represents the adjacency
relations of old nodes. The matrix Aβ,β represents the adjacency relationships of new nodes,
and the matrix Ab;a ¼ AT

a;b characterizes the relationships between new nodes and old nodes.

By the construction of the Fs+1(1, 3) and appropriately implementing elementary transforma-
tions for the matrix As+1(1, 3), we get

Asþ1ð1; 3Þ �
0 0

0 Ib;b

0
@

1
A; ð10Þ

where the Iβ,β is an identity matrix with β rows and β columns. For details on elementary trans-
formations, see Supporting Information(S1 File). Obviously, rank(As+1) = rank(Iβ,β) = β = Ns+1

− Ns. Thus by Eq (6),

NDðFsþ1ð1; 3ÞÞ ¼ max f1;Nsþ1 � rankðAsþ1Þg
¼ max f1;Nsg:

So,

NDðFtð1; 3ÞÞ ¼
1; t ¼ 0;

2

3
ð4t�1 þ 2Þ; t � 1:

ð11Þ

8><
>:

The measure of controllability nD of Ft(1, 3) network is obtained by Eq (8):

nD ¼ NDðFtð1; 3ÞÞ
Nt

¼
2
3
4t�1 þ 2
� �
2
3
4t þ 2ð Þ ¼ 4t�1 þ 2

4t þ 2
ð12Þ

with its thermodynamic limit:

lim
t!1

nD ¼ lim
s!1

4t�1 þ 2

4t þ 2
¼ 1

4
: ð13Þ

The controllability of (2, 2)-flower network
The controllability of the (2, 2) − flower network can be analysed in the same way as the (1, 3)
− flower network. Similarly, let α be the set of nodes that are belong to the s-step network Ft(2,
2); and β be the set of nodes that are generated at the (s + 1)-th iteration, where the value of α
and β are same with Ft(1, 3). From the construction, at (s + 1)-th step, the adjacency matrix

Controllability and Deterministic Network
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Bs+1(2, 2) of the network Fs+1(2, 2) has the following form:

Bsþ1 ¼
Ba;a Ba;b

Bb;a Bb;b

0
@

1
A

¼
0 Ba;b

Bb;a 0

0
@

1
A

¼
0 Ba;b

BT
a;b 0

0
@

1
A:

ð14Þ

Then, we can obtain the rank of the adjacency matrix Bs+1 as:

rankðBsþ1Þ ¼ rankðBa;bÞ þ rankðBT
a;bÞ

¼ 2rankðBa;bÞ:
ð15Þ

By calculating(S1 File) we obtain rank(Bα,β) = Ns − 1. Then, by Eq (15), rank(Bs+1) = 2(Ns − 1).
According the Eq (6), we have:

NDðFtð2; 2ÞÞ ¼
1; t ¼ 0;

2

3
ð2� 4t�1 þ 1Þ; t � 1:

ð16Þ

8><
>:

Furthermore, the measure of controllability nD of Ft(2, 2) network is obtained:

nD ¼ NDðFtð2; 2ÞÞ
Nt

¼
2
3
2� 4t�1 þ 1
� �

2
3
4t þ 2ð Þ ¼ 2� 4t�1 þ 1

4t þ 2
ð17Þ

with its thermodynamic limit:

lim
t!1

nD ¼ lim
t!1

2� 4t�1 þ 1

4t þ 2
¼ 1

2
: ð18Þ

Numerical analysis
Lots of results about controllability of the complex network show that the controllability is
mainly determined by the degree distribution of the network. We numerically analysed the
controllability of a class of deterministic networks with the identical degree sequence. However
from our results, the family of deterministic networks with identical degree sequence have
different controllability.

Numerical analysis of (1, 3)-flower network and (2, 2)-flower network As shown in Fig 4,
we calculate ND of (1, 3)-flower network and (2, 2)-flower network by computer numerical
simulation, and compare with the theory results of Eqs (11) and (16). We see that the computer
numerical simulations are in accordance with theory results obtained from equation. On the
other hand, as discussed above, the minimum number ND of driver nodes of the two networks
increases exponentially as the iteration step t increase, as reflected in Eqs (11) and (16). More-
over, Fig 4 shows that the ND of the two networks are totally different. The size of ND in the (2,
2)-flower network is more than the (1, 3)-flower network. This indicates that the (1, 3)-flower
network is easier to control. The Fig 5 shows both limits of the two networks’ controllability

Controllability and Deterministic Network
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measure nD converge to the constant lower than 1, as predicted by Eqs (12), (13), (17) and (18).
The controllability measure nD of the (1, 3)-flower network falls faster and tends to a constant
1
4
, and the nD of the (2, 2)-flower network tends to 1

2
. It shows that the (1, 3)-flower network is

much more easily controlled.
Numerical analysis of (x, y)-flower networks In order to verify that a class of network with

the identical degree sequence have different controllability, we give the simulation results of (x,
y)-flower networks. We compare the controllability of (x, y)-flower networks, and obtain the
same conclusions with (1, 3)-flower networks and (2, 2)-flower network. That is, for (x, y)-
flower networks, the networks of x = 1 have the identical degree distribution with the networks
at x = y, but their controllability are different. Fig 5 shows that the controllability measure of
networks for x = 1 and x = y. In the simulation, we give the controllability measure nD with
fixed x+y = 6, 8, 10 and 12, respectively. Fig 6 shows that the nD of each network tends a con-
stant lower than 1, and the controllability of each other is different. Furthermore, Fig 6 shows
that the ratios of nD for the network with x = 1 and x = y, all ratios are lower than 1. According
to the results of Fig 7, the networks of x = 1 is controlled easy than the networks of x = y.

Fig 4. Theminimum number of driver nodesND of the two networks increased with s. CSR denotes the results by computer simulation. AR denotes the
results predicted by Eqs (11) and (16) in two networks. Two networks are iterated to step 7. For the two networks, the CSR and AR are exactly same,
respectively. But theND of the (2, 2)-flower network is more than the (1, 3)-flower network.

doi:10.1371/journal.pone.0127545.g004
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Conclusions and discussion
In this paper, we investigate the controllability of a class of deterministic networks with the
identical degree sequence. The family of (x, y)-flower networks are deterministic networks and
have the same degree sequence. They have many good properties such as scale-free, non-clus-
tered; the networks of x = 1 are small-world, but the networks of x = y are large world. Hence,
it is worthwhile to investigate the processes taking place upon the model to find the different
impact on dynamic processes. The family of (x, y)-flower networks are sparse deterministic
networks with fractal characteristics, according the exact controllability theory, their controlla-
bility are completely determined by the rank of their adjacency matrix of the network. Due to
the self-similarity of networks, we derived an exact expression of the minimum driver nodes
for the (1, 3)-flower network and the (2, 2)-flower network by exactly controllability theory.
Theoretical analysis and simulation results show that though the (1, 3)-flower network and (2,
2)-flower network have the identical degree sequence, their controllability are entirely different.
Meanwhile, by comparing the controllability measure of (x, y)-flower networks, we find that
the degree distributions of the networks x = 1 are identical with x = y, but they have different
controllability. Moreover, the networks of x = 1 are display better controllability than the

Fig 5. Controllability measure nD is a function of iteration step s for the (2, 2) flower network and the (1, 3)-flower network, respectively. CSR
denotes the results by computer simulation. AR denotes the results predicted by Eqs (12) and (17) for the two networks. Limit denotes the thermodynamic
limit predicted by Eqs (13) and (18). The two networks are iterated to step 7. For the (2, 2)-flower network, three curves of CRS, AR and Limit are coincide.
For the (1, 3) flower network, three curves of CRS, AR and Limit are almost entirely the same at s� 4.

doi:10.1371/journal.pone.0127545.g005
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networks of x = y. The results indicate that the degree distribution alone is not sufficient to
characterize the controllability of deterministic scale-free networks with unweight and undir-
ect. Then, an important question arises: For the unweighted and undirected networks, which
structural property has the decisive effect on the controllability in network with identical de-
gree sequence? In the Ref [33] the authors studied the thresholds of bond percolation in the (x,
y)-flower networks, which indicated that the thresholds of bond percolation of the networks
x = 1 are smaller than the x = y. In recent years, some new results about the entropy of graphs
are obtained [29, 32, 38, 40–42]. In the Ref [32, 38] the authors studied the entropy of the span-
ning trees of two networks, and they got similar results that the entropy of the spanning trees
in the networks x = 1 are smaller than x = y. Thus, it is a worthwhile to studying the relation be-
tween the controllability, the thresholds and the spanning trees.

Supporting Information
S1 File. This file includes the process how to calculate the rank of the adjacency matrix in
Ft(1, 3) network and Ft(2, 2) network.
(PDF)

Fig 6. Controllability measure nD of the (x, y) flower networks at different iteration s. Controllability measure nD is a function of iteration step s for the (x,
y) flower networks, where we take x+y = 6, 8, 10 and 12 respectively. These networks are iterated to step 5. The controllability measure are equal of all
networks at s = 0, after start to fall at s > 0, and converges a constant lower than 1 at s > 4.

doi:10.1371/journal.pone.0127545.g006
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