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A B S T R A C T

This study analyzed the performance of four (REgional MOdel (REMO2009), High-Resolution Hamburg Climate
Model 5 (HIRAM5), Climate Limited-Area Modeling Community (CCLM4-8) and Rossby Centre Regional Atmo-
spheric Model (RCA4)) Regional Climate Models (RCMs) simulations from Coordinated Regional Climate
Downscaling Experiment (CORDEX) Africa program. The simulation period of 1985–2005 was evaluated
considering how each RCM simulated the observed rainfall and air temperature over southwest Ethiopia. It was
found that all the RCMs simulated the seasonal rainfall, but not the peak rainfall, with all models including their
ensemble underestimating the peak rainfall. However, the ensemble was better than the individual RCMs in
simulating both rainfall and air temperature. All models were slightly biased around a warm climate zone in
simulating maximum air temperature when compared to the simulation of air minimum temperature. Of the four
RCMs, REMO2009 performed well in simulating the maximum and minimum air temperatures. The interseasonal
variation in rainfall was greater than the seasonal variation in air temperature. In terms of cumulative distribu-
tion, the HIRAM5 captured more extreme rainfall events and overestimated the return period. Overall, the dif-
ferences in performance among the RCMs provided strong evidence for the use of regional-scale data at the local
scale in climate impact assessments being controversial. In relation to the spatial pattern of the rainfall, most of
the models simulated the observed minimum rainfall in the north and northeast, medium rainfall in the central
region, and maximum rainfall in the south and southwest of the study area. The overall results indicate that
choosing a reliable RCM is fundamentally necessary to delivering a strong basis for any climate-change impact
study.
1. Introduction

The impacts of climate change are becoming severe in developing
countries due to their low adaptive capacity (Dessalegn and Akalu, 2015;
Warnatzsch and Reay, 2019; Asfaw et al., 2021). An increase in air
temperature and variations in the rainfall are threating agriculture, water
security and socioeconomic development in Africa. Agricultural expan-
sion, in tandem with poor watershed management practices, is further
aggravating the impacts of climate change in the region (Francisco and
Camargo, 2020). In Africa, Sub-Saharan countries are the most vulner-
able to the intensifying impacts of climate change (Kotir, 2010; Kula
et al., 2013; Adenuga et al., 2021).

In the Ethiopian economy, agriculture accounts for around 45% of the
gross domestic product, 60% of the foreign exchange, and is a food
source for 85% of the population (Ministry of Finance and Economic
Development, 2010). However, 90% of the agricultural productivity
Demissie).

m 6 February 2021; Accepted 11
evier Ltd. This is an open access a
depends on rainfall (Araya et al., 2010). Variability in the rainfall and air
temperature are having a significant impact on the agricultural sector
(Asseng et al., 2014). The agricultural production system is simplistic and
extremely susceptible to climatic variation, with the country regularly
being exposed to famine (Seleshi and Zanke, 2004; Moges, 2013). For
example, in Ethiopia in the mid-1980s, as a result of climate change, a
drought in the northern part of the country caused significant loss of
animal and human life (Gray and Mueller, 2012).

Some developed countries, such as the United Kingdom and Canada,
have developed nation-specific tools for examining local-scale climate
change impacts (Warnatzsch and Reay, 2019). However, African coun-
tries have no such tools. To address this omission, and to effectively
quantify the impacts of climate change at the local scale, it is necessary to
select appropriate regional climate models (RCMs). General Circulation
Models (GCM) have been used since 1950 by different climate research
institutes for projecting future climate for the entire globe. However,
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Figure 1. (a) The Ethiopian regional states, (b) Oromia regional state and Jimma zone, (c) the upper Gilgel Gibe districts and the meteorological stations.

Table 1. Statistical indices in mean annual rainfall simulation.

Stations Performance Statistic RCMs

RCA4 REMO2009 HIRHAM5 CCLM4-8 Ensemble

Asendabo RMSE 1.39 0.97 0.89 0.88 0.77

PBIAS 24.41 -10.53 -4.02 -5.96 0.98

r -0.07 -0.14 -0.34 -0.20 -0.31

Jimma RMSE 1.02 1.55 1.72 1.23 1.05

PBIAS 5.12 -17.41 -22.96 4.27 -7.75

r -0.12 -0.11 0.35 -0.26 -0.10

Dedo RMSE 0.87 1.20 1.71 0.96 0.96

PBIAS 2.75 -0.13 -27.96 -3.38 -7.18

r 0.29 -0.09 -0.24 -0.01 -0.02

Omo Nada RMSE 1.11 1.33 1.35 1.36 1.04

PBIAS 6.95 -16.98 -19.01 -8.66 -9.43

r -0.19 -0.05 -0.19 -0.05 -0.24

Sekoru RMSE 0.66 1.28 0.68 0.77 0.61

PBIAS 0.97 -29.94 -0.15 0.66 -7.13

r -0.10 0.24 0.03 -0.07 0.02
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these have limitations when projecting climate change at the local scale
owing to their low spatial resolution (Giorgi et al., 2009; Dibaba et al.,
2019). Thus, the World Climate Research Program (WCRP) introduced
the Coordinated Regional Climate Downscaling Experiment (CORDEX)
initiative in 2009 to provide a harmonised framework for assessing and
refining Regional Climate Downscaling (RCD methods. CORDEX
2

provides local-scale information for the climate-modelling community
and climate-information end-users (Nikulin et al., 2012; Hern�andez-Díaz
et al., 2012; Gutowski et al., 2016). CORDEX Africa is a CORDEX domain,
experimentally developed specifically for climate impact studies over
Africa. It was designed using multiple RCMs to provide rationalised,
predictable variations in local climates and to evaluate any basis for



Table 2. Statistical indices in mean annual maximum air temperature simulation.

Stations Performance Statistic RCMs

RCA4 REMO2009 HIRHAM5 CCLM4-8 Ensemble

Asendabo RMSE 4.43 2.20 4.74 7.98 4.82

PBIAS -4.39 -2.09 -4.72 -7.96 -4.79

r 0.03 -0.03 0.39 0.05 0.12

Jimma RMSE 6.63 4.29 6.81 9.05 6.68

PBIAS -6.60 -4.21 -6.78 -9.01 -6.65

r 0.30 -0.07 0.43 -0.11 0.16

Dedo RMSE 0.95 2.47 1.00 2.273 0.93

PBIAS -0.21 2.22 -0.59 -2.03 -0.15

r 0.13 -0.13 0.38 -0.094 0.06

Omo Nada RMSE 4.26 1.82 4.72 6.33 4.22

PBIAS -4.08 -1.29 -4.54 -6.19 -4.02

r 0.33 0.24 0.18 0.12 0.28

Sekoru RMSE 3.96 2.48 5.09 6.55 4.49

PBIAS -5.04 -2.23 -5.04 -6.47 -4.40

r -0.33 -0.60 0.23 -0.49 -0.45

Table 3. Statistical indices in mean annual minimum air temperature simulation.

Stations Performance Statistic RCMs

RCA4 REMO2009 HIRHAM5 CCLM4-8 Ensemble

Asendabo RMSE 0.64 0.85 1.72 1.30 0.89

PBIAS -0.00 -0.34 1.57 1.10 0.54

r 0.56 0.14 0.45 0.41 0.52

Jimma RMSE 0.61 0.58 1.58 1.51 0.95

PBIAS 0.33 0.00 1.46 1.463 0.81

r 0.49 0.20 0.17 0.46 0.45

Dedo RMSE 2.98 2.35 3.79 4.26 3.297

PBIAS 2.47 1.55 3.44 3.90 2.84

r 0.08 -0.30 0.27 -0.07 -0.002

Omo Nada RMSE 1.40 1.82 2.54 2.66 2.09

PBIAS 1.31 1.75 2.49 2.63 2.04

r 0.40 0.20 0.14 0.44 0.38

Sekoru RMSE 0.83 1.72 0.81 0.98 0.70

PBIAS -0.43 -1.6 0.28 0.75 -0.25

r 0.14 0.32 -0.16 0.32 0.20
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uncertainty in the projection (Kim et al., 2013). To deliver adequate in-
formation on climate adaptation, climate-change projection, at high
spatial and temporal resolutions, are essential at the local scale. RCMs are
being used to examine projections of the climate at the local level
(Laprise et al., 2013). Previous studies have shown that RCMs simulate
the most reliable annual and seasonal rainfall and air temperature esti-
mations, and are also preferable in analysing extreme rainfall distribu-
tions and frequency (Dosio et al., 2014; Worku et al., 2018).

The RCMs covering East Africa such as REgional MOdel
(REMO2009), High-Resolution Hamburg Climate Model 5 (HIRHAM5),
Ross by Centre Regional Atmospheric Model (RCA4), and Climate
Limited-Area Modeling Community (CCLM4-8) and Canadian Regional
Climate Model (CanRCM4-8), Regional atmospheric climate model
version 2.2 (RECMO22T) have performed well in simulating air tem-
perature, but poorly in simulating precipitation (Warnatzsch and Reay,
2019). A study by Mutayoba and Kashaigili (2017) on Africa indicated
that the ensemble fit the observed data better than the single RCMs. Some
studies on Ethiopia have indicated that the RCMs show bias at higher
elevations, but work well for low-elevation regions (Workua et al., 2018;
Dibaba et al., 2019; van Vooren et al., 2019). Most of the previous studies
on Ethiopia have concentrated on climate-change vulnerability and
mitigation measures (Eshetu et al., 2020; Etana et al., 2020). Some
3

studies that have focused on the impact of climate change using single
RCMs should perhaps re-assess these based on multiple model ensemble.
According to Endris et al. (2013), Mutayoba and Kashaigili (2017) and
Dibaba et al. (2019), all RCMs are not equal when it comes to their
performance in a localised study area. RCMs that achieve good results in
some areas may fail in other places. Hence, in order to select the
appropriate RCMs for a specific location, evaluating the performance of
multiple available RCMs is necessary.

The aim of this study was to evaluate how well the CORDEX Africa
RCMs simulate the rainfall and air temperature over southwest Ethiopia.
Our main intention was not to evaluate all available RCMs, but to eval-
uate selected RCMs that have been frequently used in climate-impact
studies over East Africa at the local-scale level. The selected RCM were
evaluated on the basis of annual and seasonal temperatures and rainfall.
In addition, we developed a spatial rainfall distribution for the study
area, considered the cumulative distribution of the areal extreme rainfall,
and analysed the extreme rainfall frequency. The analysis and inter-
comparison of the individual RCMs and their ensemble will help us to
better understand how the RCMs perform in areas with complex topog-
raphy, as is the case in southwest Ethiopia. This is an important step in
any climate-impact assessment, as the uncertainties in RCMs are
characterised.



Figure 2. Mean monthly cycle of rainfall.
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2. Materials and methods

2.1. Description of the study area

This study was conducted to cover the upper Gilgel Gibe districts
in the Jimma zone of the regional state of Oromia, southwest
Ethiopia. These districts are bordered to the south by the Southern
Nations, Nationalities and Peoples’ Region, to the north by the
western Welega zone, to the northwest by the Illubabor zone and to
the northeast by the West Shewa zone. The upper Gilgel Gibe districts
include Dedo, Kersa, Omo Nada, Tiro Afata, Seka Chekorsa and
Sekoru, which have an area of about 6448 km2. Figure 1 (a) shows
the Federal Democratic Republic of Ethiopia Regional states. Figure 1
(b) shows the Oromia Regional State and Jimma Zone. Figure 1 (c)
shows the upper Gilgel Gibe Districts and the selected meteorological
stations.
4

2.2. Climate of the study area

Ethiopia has a wide diversity of landscapes, with notable differences
in relief and elevations ranging from 155 m to 3354 m. This exposes the
country to a wide variation in air temperature and rainfall. The climate of
Ethiopia is predominantly controlled by the multifaceted landscape of
the country and seasonal variations in the Intertropical Convergence
Zone (Fazzini et al., 2015). The study area receives annual rainfall of
between 1107.83 and 2428.80 mm, while the average air temperature is
in the range of 28.00 to 8.50 �C.
2.3. Observed data

In Ethiopia, there are no long meteorological time-series data avail-
able, although the country did expand the number of meteorological
stations following the drought of the mid-1980s. Therefore, for this



Figure 3. Mean monthly cycle of maximum air temperature.
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study, daily air temperature and rainfall data obtained from the National
Meteorological Service Agency of Ethiopia were used, which cover the 21
years from 1985 to 2005. Five meteorological stations Jimma, Asendabo,
Sekoru, Dedo and Omo Nada were considered in order to adequately
represent the study area. The continuity of a record may be broken with
missing data due to the absence of the observer and failed instrument.
Therefore, it is necessary to estimate and complete the missing data
before using for hydrological analysis. The specific technique to fill the
missing data is called data imputation. The choice of the methods is
based on percentage of data missed and choice of neighboring stations.
When the amount of the data filled are less than 5%, linear regression can
be used by identifying the relationship between the observed data of
neighboring stations and that of reference station (Aieb et al., 2019). In
this study, the recorded data had missed values randomly and the per-
centage of the missing data were less than 4%. Hence linear regression
was used to fill the missing rainfall data while simple average method
was used to fill the temperature data. Missing data were filled in using
XLSTAT 2018 software. It is statistical software which have been used for
5

examining relationships of multiple variables simultaneously (Vidal
et al., 2020).

Homogeneity tests allow checking the quality and reliability of the
data. In this study, the data homogeneity was checked using Standard
Normal Homogeneity Test (SNHT). This method has been used to iden-
tify a variation in a time series of rainfall data by comparing the mean of
the first k years of the record with the last n-k years (Elzeiny et al., 2019;
Agha et al., 2017). The homogeneity of the data was checked using the
standard homogeneity test in XLSTAT, with the data from all of the
considered stations being found to be homogeneous.

2.4. Regional climate models (RCMs) data

The RCMs simulated daily rainfall and air temperature for the period
1985–2005were taken from the CORDEX forced by Irish Centre for High-
End Computing Ireland European Centre Earth global climate model
system (ICHEC-EC-EARTH). It is CORDEX project under Africa domain
with spatial resolution of 0.440o * 0.44 o. The selected CORDEX Africa



Figure 4. Mean monthly cycle of minimum air temperature.
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domains, RCMs included the HIRHAM5, REMO2009, RCA4, and CCLM4-
8. The simulated historical period is available from 1950 to 2005. These
models have been evaluated in multiple studies on Africa, and have been
found to perform well in simulating rainfall and air temperature (Worku
et al., 2018; Dibaba et al., 2019). For the upper Gilgel Gibe districts of
southwest Ethiopia, the performance of the CORDEX Africa domains has
not previously been evaluated using different RCMs. The RCM rainfall
and air temperature data were downloaded from a public website, with
the required data for each station being extracted using the latitude and
longitude of the station in ArcGIS.

2.5. Methodology

2.5.1. Model performance criteria
The systematic and dynamic behaviour of the models was visualised

by plotting the simulated and observed data on the same coordinate
system. All of the models were not equally able to simulate the climate
data because it is influenced by factors such as land features. To assess the
6

performance of the RCMs in simulating mean annual precipitation and
air temperature, the mean Percentage of Bias (PBIAS), the Root Means
Square Error (RMSE) and Pearson's correlation (r) have been commonly
used in multiple studies (Ongoma et al., 2018; Dibaba et al., 2019;
Mendez et al., 2020).

2.5.2. Variations in rainfall and air temperature
The coefficient of variation (CV) was used to analyse the seasonal and

annual variations in the rainfall data. The higher the CV value, the more
variable the data, with values less than 20 indicating low variability,
values between 20 and 30 showing moderate variability, and values
greater than 30 indicating high variability in the recorded data (Mekonen
and Berlie, 2019).

2.5.3. Spatial analysis of the rainfall data
The spatial pattern of the rainfall was obtained by interpolating

rainfall of the five stations using the inverse distance weight (IDW). This
is a suitable method for interpolating average rainfall using latitude,



Table 4. Coefficient of variation (CV) for the seasonal and annual rainfall and air temperature.

Climate Parameters Seasons CCLM4-8 HIRHAM5 REMO2009 RCA4 Ensemble Observed

Rainfall Spring 13.35 13.28 15.68 20.07 11.16 16.48

Summer 15.65 12.06 17.94 8.70 7.72 18.38

Autumn 15.78 12.52 21.68 15.21 12.78 26.43

Annual 8.22 7.40 10.22 6.42 5.02 14.28

Maximum Temperature Spring 1.48 0.87 1.09 1.21 0.89 0.99

Summer 2.87 2.69 4.85 2.56 2.44 2.37

Autumn 4.45 2.49 3.58 3.08 2.40 2.23

Winter 3.25 2.43 2.68 2.02 1.71 3.72

Annual 2.20 1.90 2.20 1.97 1.50 2.28

Minimum Temperature Spring 0.91 0.93 0.94 1.05 0.67 1.59

Summer 1.73 1.85 2.88 3.04 1.93 5.22

Autumn 2.94 3.31 3.79 3.96 2.34 5.54

Winter 5.51 4.75 4.70 7.17 3.75 9.46

Annual 1.91 2.09 1.90 3.16 1.65 4.63

Figure 5. Cumulative distribution of areal rainfall over the study area.

Figure 6. Annual extreme areal rainfall and return periods over the study area.
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longitude and the average rainfall recorded at a gauging station. IDW
interpolation gives accurate results with a reasonable calculation based
on the temporal and spatial structure (Maleika, 2020; Ryu et al., 2020;
Yang et al., 2020). The spatial interpolation of the extreme rainfall data,
using IDW algorithms, has given good results (Edalat et al., 2019;
Tsangaratos et al., 2019). The IDW interpolation for estimating precipi-
tation is given in Eqs. (1), (2), and (3) (Chang et al., 2005).
7

PP ¼
XN

WiPi (1)

i¼1

Wi ¼ wiPN
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piPN

i¼1d
�m
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(2)



Figure 7. The spatial distribution of mean annual rainfall (1985–2005) over the study area.
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PP ¼
N
i¼1Pid�m

piPN �m
(3)
P

i¼1dpi

where Pp is the required rainfall data in mm, Pi is the rainfall data from
the gauging station in mm, Wi is the weighting of individual rainfall
stations, wi is a weighting factor representing the relative importance of
the individual rainfall station, N is the number of gauging stations, dpi is
the distance from each station to the required point, m is the exponent
and the controlling factor fixed by the user (Bartier and Keller, 1996),
usually assumed to be 2 (Chen and Liu, 2012), and d is calculated using
the Haversine formula (Ingole and Nichat, 2013).

3. Results and discussion

3.1. Mean annual rainfall climate

The REMO2009 and HIRHAM5 models underestimated the mean
annual rainfall in the upper Gilgel Gibe districts, whereas the RCA4
overestimated the mean annual rainfall in the study area. In terms of
PBIAS, only in four out of twenty possibilities the relative biases excee-
ded �20%, which is an acceptable range of relative bias for precipitation
(Table 1). In terms of the RMSE, systematic errors occurred at the Sekoru
station, followed by the Asendabo station. The highest values of RMSE
were 1.72 and 1.71 at the Jimma and Dedo stations, respectively, using
the HIRHAM5 model. A minor systematic error occurred using the
ensemble at most stations, as opposed to the individual RCMs. In terms of
r, the CCLM4-8 simulated mean annual rainfall data negatively corre-
lated with the observed data at all the stations. The higher positive and
negative values of r were r ¼ 0.35 and r ¼ -0.34, using the HIRHAM5 at
the Jimma and Asendabo stations, respectively. Table 1. Statistical
indices in mean annual rainfall simulation.

3.2. Mean annual air temperature climate

3.2.1. Maximum mean annual air temperature climate
The REMO2009 performed better over the study area than the other

RCMs considered in this study. Almost all the models underestimated the
8

maximum mean annual air temperature in the study area. The minimum
bias observed was 0.21 �C at Asendabo station with RCA4. However, the
maximum bias observed was 8.61 �C at Jimma station with CCLM4-8.
There were high negative values of bias at the Jimma and Sekoru sta-
tions, indicating that the models were highly biased around these areas.
This was also shown by the high RMSE values at the Jimma and Sekoru
stations. There was a positive correlation between the observed and
simulated mean annual maximum temperatures at the Omo Nada station,
while HIRAM5 gave a positive correlation in the maximum mean annual
air temperature simulations at all stations (Table 2).

3.2.2. Minimum mean annual air temperature climate
In the minimum mean annual air temperature simulation, all the

models performed fairly well in the hot to warm sub-humid valleys
around Sekoru and Asendabo stations, but were biased in the cool
sub-humid mountainous areas around the Omo Nada and Dedo sta-
tions. The REMO2009 performed better than all the individual RCMs
in most stations. The large bias and RMSE values observed were 3.90
�C and 4.26 %, respectively, at the Dedo station using CCLM4-8. The
CCLM4-8 overestimated the minimum mean annual air temperature.
Almost all models overestimated the minimum mean annual air
temperature when compared with the observed data. At the Asen-
dabo, Jimma and Omo Nada stations, a positive correlation were
observed (Table 3).
3.3. Mean monthly cycles

3.3.1. Mean monthly rainfall cycle
Figure 2a–e shows the station-based mean monthly rainfall cycle,

while Figure 2f shows the mean monthly rainfall cycle over the entire
study area. A common error in all RCMs is to simulate a double peak of
the rainfall from May to September, while the observation shows only
one peak in August. Some models overestimated the rainfall in the dry
months and underestimated it in the wet months. The RCA4 showed high
interannual variation, estimating relatively very high rainfall in the wet
months and too-low rainfall in the dry months. The REMO2009 simu-
lated lower rainfall values in the wet months than all the other models.
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All the model-simulated rainfall were better in the dry months than the
wet months.

3.3.2. Mean monthly air temperature cycle

a) Mean monthly maximum air temperature cycle

Figure 3a–e shows the station-based mean monthly maximum air
temperature cycle, with Figure 3f illustrating the mean annual maximum
air temperature cycle over the entire study area. The RCMs under-
estimated the maximum air temperature in all months. The CCLM4-8 and
HIRHAM5 failed to simulate the maximum air temperature, while the
REMO2009 simulated it fairly accurately in the study area (Figure 3f). All
the models simulated the maximum monthly air temperatures from
January to April and August to December. The maximum air tempera-
tures decreased between May and September, and the minimum fell in
July.

b) Mean monthly maximum air temperature cycle

Figure 4a–e shows the station-based mean monthly minimum air
temperature cycle and Figure 4f shows mean monthly minimum air
temperature cycle over the entire study area. The CCLM4-8 over-
estimated the monthly minimum air temperature, while the HIRHAM5
underestimated the minimum air temperature in all months. The
REMO2009 simulated the air temperatures in all the months fairly well.
The models estimated high values between January and April, and
October and September, with the minimum air temperature gradually
increasing from January to May, but decreasing from September to
October (Figure 4).
3.4. Annual and seasonal climate variability

3.4.1. Annual and seasonal rainfall variability
The CV values for variability in the annual and seasonal rainfall were

in the low (less than 20%) to moderate (20–30%) categories (Table 4).
The RCMs underestimate the observed interannual and seasonal vari-
ability of precipitation, except RCA4 in spring. There was moderate
variability in the rainfall in the autumn and spring under the REMO2009
and RCA4, respectively.

3.4.2. Mean annual and seasonal air temperature variability
The mean annual and seasonal maximum and minimum air temper-

atures variability were in the low-variability range. The variability in the
minimum and maximum air temperatures in autumn and spring were
slightly high when compared with other seasons. The variability in the
maximum air temperature was slightly high when compared with the
minimum air temperature. Table 4 illustrates coefficient of variation (CV)
for the seasonal and annual rainfall and air temperature.

The simulated rainfall showed considerable variability in spring and
autumn. The rainfall variability in the summer season was relatively low.
The ensemble data was in agreement with the observed data throughout
the considered years, and agreed with the findings of (Endris et al., 2013;
Gadissa et al., 2018; Dibaba et al., 2019).

The annual and seasonal maximum air temperature anomalies indi-
cated an increase in air temperature between 1985 and 2005. In simu-
lating the maximum air temperature, the HIRHAM5 showed significant
variation compared to the other RCMs. In 1991 and 1998, there was high
variability in the maximum air temperature in spring. The maximum air
temperature variation produced positive anomalies between 1998 and
2005 in most seasons. In autumn and summer, the variation given by
RCM simulation was somewhat related to the observed variation.

The RCM-based variations in minimum air temperature slightly
diverged from the observed values in 1986–1988. In summer, all the
RCMs simulated the minimum air temperature better. The seasonal
9

variation in minimum air temperature continuously increased from 1994
to 2005 in spring, summer and annually.
3.5. RCM event characteristics

The areal rainfall over the study area for the period 1985–2005 was
used for analysis of the extreme rainfall. The Gumbel (maximum extreme
value type I) cumulative distribution was used. The REMO2009 simu-
lated the distribution of extreme rainfall well compared to the other
models (Figure 5). The probability of the occurrence of heavy rainfall was
high in all the models. From the observed data, there was no probability
of the occurrence of very extreme rainfall greater than 50 mm/day. The
HIRHAM5 estimated very high extreme rainfall (Figure 5). All the RCMs
overestimated the return period (Figure 6). The ensemble and RCA4
estimated the return period relatively well. The HIRHAM5 best estimated
the return period, followed by the CCLM4-8 (Figure 6).
3.6. Spatial analysis of mean annual rainfall

The RCM and observed rainfall data simulated for 1985–2005 was
used to examine the spatial variation in rainfall over the study area
(Figure 7). The mean annual minimum simulated value was 2.72 mm/
day at the Asendabo station by REMO2009. The HIRHAM5 and RCA4
simulated the maximum rainfall around the Omo Nada and Asendabo
stations. The CCLM4-8, ensemble, REMO2009 and observed data gave
high rainfall values around the Dedo station (Figure 7). Maximum rain-
fall was simulated for the southwest and central parts of the study area.
Almost all the models simulated minimum rainfall in the northeast and
moderate rainfall in the south. The ensemble and observed models gave
similar average rainfall distributions. Figure 7 shows the spatial mean
annual rainfall distribution (1985–2005) over the study area.

4. Conclusions

In this study, the performance of the CORDEX Africa RCMs in simu-
lating rainfall and air temperature was evaluated using observed data as a
reference for the baseline period 1985–2005. The performance of the
RCMs was found to be variable on the spatial and temporal scales. The
RCMs performed better at simulating maximum air temperature than
minimum air temperature. They overestimated the minimum air tem-
perature and underestimated the maximum average in the study area.
Rainfall was simulated well in the dry months, but was underestimated in
the wet months. In both the rainfall and air temperature simulations, the
ensemble data fit relatively well to the observed data in comparison to
the individual RCMs. The variations in both rainfall and air temperature
were relatively low, interannually and seasonally, in the study area. All
the RCMs, including the ensemble, overestimated the extreme areal
rainfall and return periods. These findings clearly indicate why the use of
climate-change evidence, from the regional to local scale, is important for
assessing climate-change impacts in southwest Ethiopia.

In general, the RCMs showed systematic deviations in model perfor-
mance, and it is therefore necessary to be aware of these limitations
before using models to investigate the impacts of climate change on
water resources, agriculture and hydropower generation. The differences
in the biases of the RCMs strongly indicated the importance of correc-
tions to the RCMs before using RCM outputs for climate-impact studies.
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