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Abstract

Social desirability and the fear of sanctions can deter survey respondents from responding

truthfully to sensitive questions. Self-reports on norm breaking behavior such as shoplifting,

non-voting, or tax evasion may thus be subject to considerable misreporting. To mitigate

such response bias, various indirect question techniques, such as the randomized response

technique (RRT), have been proposed. We evaluate the viability of several popular variants

of the RRT, including the recently proposed crosswise-model RRT, by comparing respon-

dents’ self-reports on cheating in dice games to actual cheating behavior, thereby distin-

guishing between false negatives (underreporting) and false positives (overreporting). The

study has been implemented as an online survey on Amazon Mechanical Turk (N = 6, 505).

Our results from two validation designs indicate that the forced-response RRT and the unre-

lated-question RRT, as implemented in our survey, fail to reduce the level of misreporting

compared to conventional direct questioning. For the crosswise-model RRT we do observe

a reduction of false negatives. At the same time, however, there is a non-ignorable increase

in false positives; a flaw that previous evaluation studies relying on comparative or aggre-

gate-level validation could not detect. Overall, none of the evaluated indirect techniques

outperformed conventional direct questioning. Furthermore, our study demonstrates the

importance of identifying false negatives as well as false positives to avoid false conclusions

about the validity of indirect sensitive question techniques.

1 Introduction

Surveying sensitive topics such as deviant behavior, stigmatizing traits, or controversial atti-

tudes poses serious challenges to survey research. First, respondents’ data need to be carefully

protected, particularly for sensitive themes like illegal behavior or politically repressed opin-

ions. Second, even with good data protection, respondents might be tempted to misreport on

sensitive questions or refuse to answer, for example, due to embarrassment or due to fear of

negative sanctions [1]. To avoid biased or incomplete measurement, survey researchers
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therefore have to find questioning procedures that maximize respondents’ willingness to pro-

vide truthful answers.

Various approaches to address this issue have been pursued in previous research, but the

results on the success and the failure of the different questioning strategies appear inconsistent

and highly dependent on implementation details, the research question, or the studied popula-

tion [2]. Most promising results can be found with respect to survey mode and, in particular,

to whether an interviewer is present or not. For example, Kreuter et al. [3] compared CATI

(Computer Assisted Telephone Interviewing), IVR (Interactive Voice Response), and online

mode in a study on poor (and potentially embarrassing) academic performance among univer-

sity alumni, where the respondents’ answers could be validated against the university’s grade

records. The level of misreporting (false denial of poor performance) was highest in CATI

mode, where an interviewer was present. However, also in the more anonymous IVR and

online modes, misreporting remained high.

1.1 The randomized response technique

Other approaches try to mitigate misreporting and non-response by employing so-called indi-

rect question techniques, one of which is the randomized response technique (RRT, originated

by Warner in 1965 [4]). The basic idea of the RRT is to protect respondents through random

misclassification so that a given answer does not reveal the true answer to the sensitive ques-

tion. Ideally the anonymity induced by the misclassification makes respondents more comfort-

able providing truthful answers. For example, in the forced-response variant of the RRT [5] a

randomizing device such as a coin flip determines whether a respondent is instructed to pro-

vide a truthful answer to a sensitive yes/no question or simply respond with “yes” (or “no”),

irrespective of the true answer. Therefore, as long as only the respondent knows the outcome

of the randomizing device, a given answer does not reveal the true answer to the sensitive ques-

tion; the given answer could also just be a surrogate response due to the randomizing device.

Despite the theoretical appeal of the RRT, it remains questionable whether all respondents

understand the procedure, trust that their anonymity is protected, and are more inclined to

provide a truthful answer (when instructed to do so). Existing findings suggest that the level of

perceived privacy, the main rationale for implementing indirect techniques, is far from satis-

factory [6, 7]. Furthermore, due to lack of understanding, respondents might fail to comply

with the RRT instructions even if they are asked to provide an answer that is unrelated to the

sensitive question [8–10]. A meta analysis by Lensvelt-Mulders et al. [11], mostly covering

face-to-face and paper-and-pencil RRT studies published between 1965 and 2000, concludes

that, on average, the RRT yields more valid results than direct questioning, but the variability

in results is high. Furthermore, findings from a number of newer studies on the application of

the RRT in online mode are not very promising. With few exceptions, RRT estimates of

socially undesirable or socially desirable behaviors turned out to be either no different from

direct questioning estimates, or different in the “wrong” direction [6, 12–15].

1.2 The crosswise-model RRT

Recently, a variant of the RRT, the “crosswise model,” proposed by Yu et al. [16], has received

growing attention. Several studies report that the crosswise-model RRT consistently produces

higher prevalence estimates of sensitive behaviors than direct questioning [6, 17–24]. The

crosswise-model RRT works by presenting two yes/no questions to the respondent, a sensitive

question and an unrelated non-sensitive question, and then asking whether the answers to

both questions are the same (both “yes” or both “no”) or whether the two answers are different

(one “yes,” one “no”). The advantages of the crosswise-model RRT over alternative RRT

Experimental individual-level validation of the randomized response technique and the crosswise model

PLOS ONE | https://doi.org/10.1371/journal.pone.0201770 August 14, 2018 2 / 22

https://doi.org/10.1371/journal.pone.0201770


variants, it is argued, are that the instructions are easy to understand, the response options are

obviously ambiguous with respect to the sensitive question (i.e., there is no clear self-protective

answering strategy), and no respondents are forced to give “false” answers.

1.3 Validation of indirect question techniques

As mentioned above, results from studies evaluating indirect question techniques are often

inconclusive. One reason for the variability in the findings is that the studies employ different

validation strategies.

By far the most frequent approach is to use the results from direct questioning as a baseline,

to which the results from one or several indirect question techniques are compared. We use

the term comparative validation study to refer to studies employing such an approach. The

argument is that if the question is sensitive, respondents will tend to underreport when asked

to answer the question directly. An indirect question technique that successfully reduces

underreporting should therefore yield higher estimates than direct questioning (likewise, if the

problem is over-reporting, such as in questions on voter turnout, a successful indirect tech-

nique should yield lower estimates than direct questioning). Hence, comparative validation

studies rely on the so-called more-is-better (less-is-better) assumption [11]; an indirect ques-

tion technique is considered more valid if it produces higher (lower) prevalence estimates than

direct questioning. More generally, if comparing multiple indirect techniques, the technique

producing the highest (lowest) estimate is judged to be the most valid.

The more-is-better assumption is often legitimate. In many cases it is reasonable to assume

that respondents avoid socially undesirable answers and thus underreport on sensitive ques-

tions. However, sometimes, social desirability might differ between subpopulations, a well-

known example being the number of sexual partners as reported by men and women [25, 26].

Therefore, the more-is-better assumption can sometimes be challenged on the ground that

social desirability bias points in different directions depending on the subpopulation.

Furthermore, even if the more-is-better assumption is justified, a higher estimate from an

indirect question technique does not necessarily imply that the technique produces more valid

measurements than direct questioning. If it is true that direct questioning yields underestima-

tion, then higher estimates by an indirect technique is a necessary condition, but not a suffi-

cient condition. The more-is-better assumption assumes that the increase in estimates is due

to more truthful answers. However, given the complexity of the instructions of most RRT

implementations it may also be simply due to the respondents’ inability to correctly apply the

procedure. That is, the increase in estimates might be due to non-compliance with the RRT

instructions (e.g., due to problems with the randomizing device, misunderstanding of instruc-

tions, or unwillingness to follow the instructions) rather than more truthful answering. Over-

all, we conclude that comparative validation studies can only provide weak support for the

validity of sensitive question techniques (for similar arguments see [6, 11, 27, 28]).

At least some of the shortcomings of comparative validation studies can be overcome by

what we call aggregate-level validation studies. In such studies, the true population prevalence

of the sensitive trait or behavior is known from an external and reliable source or can be deter-

mined based on theoretical reasoning. For example, in studies of voter turnout, true aggregate

turnout is known from administrative records (for recent examples see [29] and [30]). If the

true value is known, then overestimation and underestimation by different question tech-

niques can be observed directly without having to resort to direct questioning as a baseline,

which is a clear improvement over comparative validation studies.

Yet, also such aggregate-level validation studies might be inconclusive. First, true values

might differ from the assumed value, perhaps because the study focuses on a special
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subpopulation or because there is sample selection bias (e.g., due to nonresponse). Second,

and more importantly, a close match between the prevalence estimate from a particular sensi-

tive question technique and the true value does not necessarily imply that the technique pro-

duces valid measurements at the individual level. As argued above, different mechanisms

might affect the prevalence estimate, not all of which are consistent with more truthful answer-

ing. In other words, apart from possible sample selection bias, the aggregate-level validation

approach rests on the assumption that socially desirable responding is the only misreporting

mechanism.

A useful distinction in this context is between false negatives (or true positives) and false

positives (or true negatives). The goal of sensitive question techniques is to reduce the number

of false negatives, that is, the number of respondents who deny the sensitive question even

though it does apply. However, a sensitive question technique might also increase the number

of false positives, that is, the number of respondents who agree with the sensitive question

even though it does not apply. Comparing overall prevalence estimates from the technique

with either direct questioning or a known “true” prevalence, does not allow one to distinguish

between a reduction in false negatives and an increase in false positives, both of which will

increase the estimated total prevalence. To be able to disentangle the two effects, validation

data at the individual level is required. Hence, we argue that individual-level validation
studies—studies in which true values of the sensitive trait or behavior are known at the individ-

ual level—are necessary to be able to evaluate the degree to which a technique does, in fact,

produce valid measurements. In the context of indirect questioning techniques one could even

go one step further and also observe the outcomes of the randomizing device or the values of

the unrelated question (which, however, we did not in this study).

Despite their clear advantage over the comparative approach, individual-level validation

studies are very rare. Reviewing RRT studies from over 35 years, Lensvelt-Mulders et al. [11]

counted just six published individual-level validation studies dealing with sensitive topics such

as convictions, arrests, welfare fraud, or failing university courses. We are aware of five addi-

tional studies published since [18, 27, 28, 31, 32]. The available validation studies provide

valuable insights, but they do not explicitly focus on disentangling false negatives and false pos-

itives. Moreover, some of the studies use a sample that only includes respondents who possess

the sensitive trait or engaged in the sensitive activity, so that, by design, only false negatives

can be studied. In sum, we believe that additional individual-level validation studies are neces-

sary to disentangle the different response mechanisms and to examine the possibility of false

positives in these types of survey techniques. Such studies are the only way to conclusively

assess the performance of different sensitive question techniques.

1.4 Our study

The goal of our study is to evaluate the validity of some popular variants of the RRT using a

validation design that does not rely on the more-is-better assumption and that allows separate

analysis of false negatives and false positives. To achieve this we conducted an online survey on

Amazon Mechanical Turk (N = 6, 505), in which the respondents had the opportunity to play

one of two dice games. We used two different dice games to evaluate whether results are robust

across different designs. Respondents were given monetary incentives to cheat in these games.

After playing the games, respondents were asked about whether they cheated, using direct

questioning or an implementation of one of the following three popular RRT variants: forced-

response RRT, unrelated-question RRT, and the crosswise-model RRT. For the first game

cheating was not directly observable and, hence, respondents could cheat without any risk of

disclosure. Nonetheless, the proportion of cheaters, overall as well as within subgroups, can be
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estimated based on the laws of chance. For the second game cheating was observable and

hence, as expected, cheating occurred less frequently. Comparing the cheating behavior in the

two games with the answers to the cheating question reveals the degree to which the different

questioning techniques are successful in eliciting truthful answers.

2 Data and methods

Study participants were US residents recruited via the online platform Amazon Mechanical

Turk (AMT). AMT is an online crowdsourcing marketplace where “requesters” can post tasks

(called “Human Intelligence Tasks” or HITs) that can then be completed by “workers” in

exchange for money. HITs are announced with a short description of the task and the corre-

sponding payment. In our study, participants completed a voluntary and anonymous online

survey. Subjects were informed about the issuer, content, and length of the survey before they

could choose whether they want to participate. Participation in the study could not have any

negative consequences whatsoever for the subjects and anonymity was granted at all times.

According to local (Swiss) law, the study does not fall under the Human Research Act, hence

does not require authorization from an ethics committee. Therefore, we do not have an

approval from a formal Institutional Review Board for this study.

AMT is suitable for any task that can be easily outsourced online to an anonymous work-

force and is frequently used to recruit participants for scientific surveys and experiments [33–

35]. AMT samples are certainly not representative of the general population. Furthermore,

there is evidence of widespread non-naivety (i.e., that many AMT participants are familiar

with common experimental tasks from behavioral studies) and more dishonesty compared to

other crowdsourcing platforms [36]. However, AMT samples have been shown to be suffi-

ciently heterogeneous and, with respect to results from experimental research, comparable to

other samples [37, 38]. Furthermore, non-naivety and elevated dishonesty seem to be particu-

larly prevalent among quick responders [39]. Using a large sample size and an extended

recruitment period, as in our study, should lead to a more balanced sample. Moreover, with

respect to our study, a somewhat elevated proportion of dishonest behavior could, in fact, be

beneficial as it puts the evaluated sensitive question techniques to a stronger test and makes

flaws in the techniques better detectable.

On November 5, 2013, we posted a HIT that asked for filling out a scientific survey on

“Mood and Personality” for a base payment of $1 and the prospect of winning an additional $2

bonus payment. The HIT was closed on December 5, 2013, when we reached the targeted sam-

ple size of 6,500 participants (the target sample size was set ex ante based on approximate con-

siderations of expected statistical power). Workers who accepted our HIT received an access

link to the survey. After having completed the survey, they received payment. To identify

untrustworthy participants, we employed a screening question from Berinsky et al. [40], which

was passed by 97% of the respondents. The median time required to complete the survey was

6.7 minutes. Details on the study and screenshots of the questionnaire are available in S1

Documentation.

A total of 6,505 participants were recruited, of which 6,473 completed the survey at least up

to the part containing the sensitive questions. Only the latter are included in our analysis. Fur-

thermore, we exclude 205 participants who did not pass the screening question, 115 partici-

pants who did not roll the die in the dice game (or for whom the result of the roll was not

recorded due to technical problems, e.g. because of script blockers), and 1 participant who

won in the roll-a-six game but did not claim his legitimate bonus payment (we exclude this

observation to simplify the analysis; see below). The final sample size for our analysis is N = 6,

152.

Experimental individual-level validation of the randomized response technique and the crosswise model

PLOS ONE | https://doi.org/10.1371/journal.pone.0201770 August 14, 2018 5 / 22

https://doi.org/10.1371/journal.pone.0201770


As displayed in Table 1, the sample has an even gender distribution and the majority of

respondents are under 35 (mean age 32). Respondents are relatively well educated, with 88

percent having attended at least some college. About two thirds are employed or self-

employed. A large majority of respondents completed the survey at home and most respon-

dents had extensive experience with “scientific studies such as surveys or experiments on

MTurk” (wording from the questionnaire; the median number of previous MTurk studies is

50).

2.1 The dice games

Participants were randomly assigned to one of two dice games in which they could win a $2

bonus payment: the prediction game or the roll-a-six game. The games were inspired by Greene

and Paxton [41] and Fischbacher and Heusi [42] (also see [43, 44]). In both games, participants

used a digital online die embedded in the questionnaire that could be “rolled” by clicking on a

button. Roll outcomes were randomized and followed a uniform distribution. The die could

be rolled several times, but as explained to the respondents, only the first roll counted.

In the prediction game participants had to correctly predict the outcome of a die roll to win

the $2 bonus payment. On a first screen, the rules of the game and the conditions under which

a participant would win the bonus payment were explained. On the second screen, participants

Table 1. Descriptive statistics of the sample.

Variable Category Percent

Gender male 49.9

female 50.1

Age 18–24 24.3

25–29 27.0

30–34 18.5

35–39 10.7

40–49 10.1

50 or older 9.3

Education college degree 54.0

some college 34.2

high school or other 11.8

Labor market status employed 54.1

self-employed 12.7

unemployed 11.3

student 13.0

other 8.9

Prior MTurk studies 0 6.8

1–9 19.3

10–99 32.9

100–999 30.2

1000 or more 10.8

Current location at home 85.4

at work 9.9

other 4.7

Labor market status recoded from multiple response data (prioritizing categories in the order as listed in the table);

N = 6, 152.

https://doi.org/10.1371/journal.pone.0201770.t001
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were asked to make their prediction (in private) and memorize it. On the third screen they

were instructed to roll the die, inspect the result, and then indicate whether their prediction

was correct or not. Because the prediction was made in private, it was obvious that one could

cheat without any risk of disclosure. However, even though cheating in this game is not

directly observable, the proportion of cheating respondents can be estimated, at the overall

level and also within subgroups, because the chance of winning is known to be one sixth by

design.

In the roll-a-six game participants had to roll a six in order to win the $2 bonus payment.

Respondents were again presented a first screen on which the game was explained. On the sec-

ond screen they were instructed to roll the die and then indicate whether the result was a six or

not. In contrast to the prediction game also the identification of individual cheaters is possible

in this game since the outcomes of the die roll were recorded. Although respondents were not

told that the outcomes would be tracked, it was obvious that this was possible, and hence, the

proportion of cheaters can be expected to be lower in the roll-a-six game than in the prediction

game. Likewise, when asked about whether they cheated, cheating respondents in the roll-a-six

game may be expected to provide more truthful answers than cheating respondents in the pre-

diction game.

We used two dice games because both games have their strengths and weaknesses. In the

prediction game a high proportion of cheaters can be expected because individual cheaters

cannot be singled out. For the same reason, however, analysis of the resulting data and, in par-

ticular, the separation of false negatives and false positives requires some extra assumptions

(see Data analysis below). In the roll-a-six game, the identification of individual cheaters is

possible and, hence, data analysis is straightforward, but the proportion of cheaters is likely to

be low and more selective than in the prediction game.

2.2 The sensitive question techniques

In the second part of the questionnaire, respondents were asked four “sensitive” questions, the

last of which being about whether they gave an honest answer in the dice game (see Table 2).

To evaluate different sensitive question techniques, respondents were randomly assigned to

one of four conditions: direct questioning (DQ), the crosswise-model RRT (CM), the unre-

lated-question RRT (UQ), or the forced-response RRT (FR). Table 3 reports the number of

observations per sensitive question technique and dice game variant. Respondents were ran-

domized into the different conditions with a probability of 1/8 for DQ, 3/8 for CM, 2/8 for

UG, and for 2/8 FR. These probabilities were employed to achieve comparable statistical preci-

sion for all techniques. Item-nonresponse was negligible; below 1% for all sensitive questions

Table 2. Sensitive questions.

Item Wording

Shoplifting “Have you ever intentionally taken something from a store without paying for it?”

Tax evasion “Have you ever provided misleading or incorrect information on your tax return?”

Non-voting� “Did you vote in the 2012 US presidential election?”

Cheating in dice

game�
Prediction game: “In the $2 dice task at the beginning of this survey: Did you honestly report

whether your prediction of the dice roll was right?”

Roll-a-six game: “In the $2 dice game at the beginning of this survey: Did you honestly report

whether you actually rolled a 6?”

� Reverse coded for the purpose of analysis.

https://doi.org/10.1371/journal.pone.0201770.t002
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in all experimental conditions. We therefore refrain from reporting results on item-nonre-

sponse in the analyses below.

Direct questioning (DQ) was included as a benchmark for the evaluation of the different

sensitive question techniques. The sensitive questions were introduced by a screen announcing

some sensitive questions, stating the importance of honest answers for the success of the study,

providing privacy assurance, and telling the respondents that their answers to the sensitive

questions would not affect their payment or the HIT approval (this introductory screen was

identical for all conditions). After that, the four sensitive questions followed on four separate

screens.

For the crosswise-model RRT (CM) we used an implementation proposed by Jann et al.

[20]; similar implementations have been used in most other studies on the crosswise-model

RRT. Respondents were asked two questions: A sensitive question and an unrelated non-sensi-

tive question. Respondents then had to indicate whether their answers to the two questions

were the same (both “no” or both “yes”) or different (one “yes,” one “no”) without reporting

the individual answers. The unrelated questions, which were randomly paired with the sensi-

tive questions for each respondent, asked about the birthday (in January or February, between

the 1st and the 6th of the month) of the respondent’s mother or father. Between the introduc-

tory screen and the screen with the first sensitive question, an additional screen was displayed

explaining the question technique and how it protects anonymity (similar screens were also

displayed for the other indirect question techniques).

For the unrelated-question RRT (UQ) we used an implementation as proposed by Diek-

mann [45]. Respondents were asked to think of an acquaintance and use the first digit of this

person’s house number as their personal random number. If their random digit was 1, 2, 3, 4,

or 5, respondents then had to answer the subsequent sensitive questions; otherwise they had to

answer the subsequent unrelated non-sensitive questions. Diekmann [45] provides evidence

that first digits of house numbers follow “Benford’s Law”. Accordingly, the probability of 1, 2,

3, 4, or 5 (i.e., of having to answer the sensitive questions) is 0.778. To evaluate whether Ben-

ford’s Law holds, we included a question on the first digit of an acquaintance’s address for a

subsample of respondents in a different experimental condition. The proportion of respon-

dents reporting a 1, 2, 3, 4, or 5 was 0.784 (95% confidence interval: 0.763 to 0.804). Similar

tests were included for all unrelated questions used in CM and UQ. Since deviations between

the theoretical values (assuming an even distribution of birthdays) and the estimated propor-

tions were only small, we focus on results based on the theoretical values in the analyses below.

The unrelated questions were randomly paired with the sensitive questions for each respon-

dent and asked about the birthday of the respondent’s mother (in January–June, in an even-

numbered month, in the first half of the month, on an even-numbered day, in an even-num-

bered year).

Respondents in the forced-response RRT (FR) implementation (adopted from Höglinger

et al. [6]) were presented twelve fields on the screen, numbered from one to twelve. They were

told to privately choose a field and memorize their choice (without clicking on the field).

Table 3. Number of observations by dice game variant and sensitive question technique.

Prediction game Roll-a-six game

Direct questioning (DQ) 387 382

Crosswise-model RRT (CM) 1168 1145

Unrelated-question RRT (UQ) 760 780

Forced-response RRT (FR) 759 771

https://doi.org/10.1371/journal.pone.0201770.t003
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Then, they were told to click a “Show instructions” button to uncover the instructions hidden

within the fields and follow the instruction that appeared in the field of their choice. Possible

instructions were “Answer question”, “Directly tick yes”, or “Directly tick no”. The instruc-

tions were randomized across fields.

Because participants might have been troubled by the sensitive questions, all respondents

were shown a debriefing page at the end of the survey (see page 56 in S1 Documentation). The

debriefing page stated the goal of the study and assured the respondents that their answers to

the sensitive questions will be kept confidential. The respondents were also assured that they

will receive their bonus payments irrespective of these answers.

2.3 Data analysis

The RRT leads to data misclassification so that adjusted methods for data analysis are required.

Let Y� be the (unobserved) answer to the sensitive question (Y� = 1 if the answer is “yes”, Y� =

0 else) and Y be the observed response (Y = 1 if the response is “yes” in case of DQ, UQ and FR

or “the same” in case of CM; Y = 0 else). Throughout this discussion we assume that “yes” is

the sensitive answer, although some of the sensitive questions in our study were framed differ-

ently (for example, we asked respondents whether they played honestly in the dice game, not

whether they cheated). For the purpose of analysis, all data was appropriately recoded.

The RRT procedures introduce misclassification so that Y 6¼ Y�. In general, in a misclassifi-

cation setting, the relation between Y and Y� can be described as

PrðY ¼ 1Þ ¼ PrðY ¼ 1jY� ¼ 1ÞPrðY� ¼ 1Þ þ PrðY ¼ 1jY� ¼ 0ÞPrðY� ¼ 0Þ

Solving for Pr(Y� = 1) yields

PrðY� ¼ 1Þ ¼
PrðY ¼ 1Þ � p1j0

p1j1 � p1j0

where we use shorthand notation p1|1 = Pr(Y = 1|Y� = 1) and p1|0 = Pr(Y = 1|Y� = 0) for sake of

brevity. In the RRT, p1|1 and p1|0 are known by design. Hence, we can estimate Pr(Y� = 1) by

inserting a sample estimate for Pr(Y = 1) (i.e., the sample mean �Y ) into the above formula. Fur-

thermore, since Pr(Y� = 1) is a linear transformation of Pr(Y = 1) and, in general, V(ax + b) =

a2V(x) [46], the sampling variance of estimator bPrðY� ¼ 1Þ is given as

Vð bPrðY� ¼ 1ÞÞ ¼
1

ðp1j1 � p1j0Þ
2
Vð bPrðY ¼ 1ÞÞ

where Vð bPrðY ¼ 1ÞÞ can be estimated from the data using standard techniques (e.g., as

�Y ð1 � �Y Þ=ðn � 1Þ where n is the sample size).

For direct questioning, there is no misclassification, so that p1|1 = 1 and p1|0 = 0 and hence

PrðY� ¼ 1Þ ¼ PrðY ¼ 1Þ

For the CM, let pZ be the known probability that the answer to the non-sensitive question is

“yes”. Then p1|1 = pZ and p1|0 = 1 − pZ. Hence,

PrðY� ¼ 1Þ ¼
PrðY ¼ 1Þ þ pZ � 1

2pZ � 1

For UQ, again let pZ be the known probability that the answer to the non-sensitive question

is “yes.” Furthermore, let pU be the probability that the respondent is instructed to answer the

non-sensitive question instead of the sensitive question. We then have p1|1 = 1 − pU(1 − pZ)

Experimental individual-level validation of the randomized response technique and the crosswise model

PLOS ONE | https://doi.org/10.1371/journal.pone.0201770 August 14, 2018 9 / 22

https://doi.org/10.1371/journal.pone.0201770


and p1|0 = pUpZ, so that

PrðY� ¼ 1Þ ¼
PrðY ¼ 1Þ � pUpZ

1 � pU

Finally, for FR, let pyes and pno be the probabilities of an unconditional “yes” or “no” answer,

respectively. Then p1|1 = 1 − pno and p1|0 = pyes, so that

PrðY� ¼ 1Þ ¼
PrðY ¼ 1Þ � pyes

1 � pyes � pno

The above formulas can be used to obtain prevalence estimates for the sensitive behaviors.

Furthermore, suitably modified least-squares [47] or maximum-likelihood techniques [48]

[49] could be used to estimate regression models. Employing the more-is-better assumption or

comparing the estimates to the aggregate cheating rates in the dice games, we can then decide

which of the techniques works best.

The formulas, however, assume that respondents comply with the instructions so that, for

example, no false positives occur (apart from false positives induced by design). If this assump-

tion is violated, then the overall estimates can be misleading. To evaluate the degree to which

the techniques produce valid results, we therefore perform separate analyses for those who

cheated in the dice game and for those who did not cheat. What we are interested in is the true
positive rate (TPR) that is, the proportion of cheaters who admit having cheated, and the false
positive rate (FPR), that is, the proportion of non-cheaters who falsely “admit” having cheated.

Furthermore, as an overall measure of validity, we are interested in the correct classification
rate (CCR). Note that false negatives and false positives do not necessarily imply that respon-

dents deliberately lied about their behavior. For example, some respondents might have rolled

the die multiple times and overlooked that only the first roll counted. Others might have

engaged in self-deception, believing that their answer was correct while it was not. In such

cases our measures may be off in the sense that they no longer exactly quantify the degree to

which respondents provide honest answers about what they believe to be true. For example,

one reason why the true positive rate does not reach 100% might be that some participants

think they won the bonus even though they did not. These participants would be classified as

false negatives. We cannot rule out that our results are at least partially affected by such prob-

lems. However, we see no reason why these biases should differ by sensitive question tech-

nique. Hence, comparisons among techniques should still be valid.

For the roll-a-six game, these analyses are straightforward since cheating is observed at the

individual level. Let X� = 1 if the respondent rolled a six and X� = 0 else. Furthermore, let X = 1

if the respondent claimed having rolled a six and X = 0 else. A respondent is identified as a

cheater (false winner) if X = 1 even though X� = 0. Non-cheaters are given if X = X�, that is, if

X = X� = 1 (true winner) or X = X� = 0 (true loser). For sake of simplicity, assume that

“reverse” cheating (X = 0 even though X� = 1) is nonexistent, that is, assume that there are no

respondents who did roll a six but then did not claim the bonus payment (false losers; there

was only one out of 516 winners in the roll-a-six game who did not claim the bonus payment;

we exclude this observation from the analysis below). The true positive rate is then given as

TPR ¼ PrðY� ¼ 1jX 6¼ X�Þ ¼
PrðY ¼ 1jX 6¼ X�Þ � p1j0

p1j1 � p1j0

Experimental individual-level validation of the randomized response technique and the crosswise model

PLOS ONE | https://doi.org/10.1371/journal.pone.0201770 August 14, 2018 10 / 22

https://doi.org/10.1371/journal.pone.0201770


and the false positive rate is give as

FPR ¼ PrðY� ¼ 1jX ¼ X�Þ ¼
PrðY ¼ 1jX ¼ X�Þ � p1j0

p1j1 � p1j0

Furthermore, the correct classification rate is

CCR ¼ TPR � PrðX 6¼ X�Þ þ ð1 � FPRÞPrðX ¼ X�Þ

Since X� is observed, all of the above quantities can be readily estimated from the data.

In the prediction game, however, where X� denotes whether the respondent’s prediction

was correct and X denotes whether the respondent claimed that the prediction was correct, X�

is unobserved. To identify TPR and FPR in the prediction game we make two assumptions.

Assumption 1 (A1) All respondents whose predictions were correct do claim the bonus pay-
ment (no false losers), that is, X� = 1 implies X = 1, and X = 0 implies X� = 0.

As mentioned above, only one of 516 winners in the roll-a-six game did not claim the

bonus payment. It appears highly plausible to assume that the proportion of false losers is neg-

ligible also in the prediction game.

Assumption 2 (A2) The false positive rate of true winners, Pr(Y� = 1|X = X� = 1), is equal to
the false positive rate of true losers, Pr(Y� = 1|X = X� = 0).

Both types of respondents were honest in the prediction game and we do not see much rea-

son why they should differ in their response behavior when asked about whether they were

honest or not. Furthermore, results from the roll-a-six game, where the assumption can be

evaluated, do not reveal significant differences between the two groups (see S1 Supporting

Information). Note, however, that the composition of the two groups is somewhat different.

Among the winners there are potential cheaters, that is, respondents who would have cheated

should they not have won, as well as non-cheaters. The group of true losers only contains non-

cheaters. Differential assumptions about the response behavior of potential cheaters and non-

cheaters could be made, but would not fundamentally change our results. In S1 Supporting

Information we provide additional results assuming the false positive rate of true winners to

be zero (Assumption A2’). Even such an extreme assumption does not change our

conclusions.

We can now derive estimable expressions for FPR and TPR. A2 implies Pr(Y� = 1|X = X�) =

Pr(Y� = 1|X = X� = 0) and A1 implies Pr(Y� = 1|X = X� = 0) = Pr(Y� = 1|X = 0). The false posi-
tive rate is thus identified as

FPR ¼ PrðY� ¼ 1jX ¼ X�Þ ¼
PrðY ¼ 1jX ¼ 0Þ � p1j0

p1j1 � p1j0

The true positive rate, according to the definition of conditional probability, can be written

as the joint probability of cheating and admitting having cheated, divided by the cheating

probability:

TPR ¼ PrðY� ¼ 1jX 6¼ X�Þ ¼
PrðY� ¼ 1 \ X 6¼ X�Þ

PrðX 6¼ X�Þ

Our strategy is to solve the numerator and the denominator separately. From the design of

the game we know that the probability of a correct prediction is PrðX� ¼ 1Þ ¼ 1

6
. Given A1, the
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denominator (cheating probability) can thus be written as

PrðX 6¼ X�Þ ¼ PrðX ¼ 1Þ � PrðX� ¼ 1Þ ¼ PrðX ¼ 1Þ �
1

6

For the numerator, note that A1 implies

PrðY� ¼ 1 \ X 6¼ X�Þ ¼ PrðY� ¼ 1 \ X ¼ 1Þ � PrðY� ¼ 1 \ X ¼ X� ¼ 1Þ

where the first term is

PrðY� ¼ 1 \ X ¼ 1Þ ¼ PrðX ¼ 1ÞPrðY� ¼ 1jX ¼ 1Þ

with

PrðY� ¼ 1jX ¼ 1Þ ¼
PrðY ¼ 1jX ¼ 1Þ � p1j0

p1j1 � p1j0

and the second term is

PrðY� ¼ 1 \ X ¼ X� ¼ 1Þ ¼ PrðX ¼ X� ¼ 1ÞPrðY� ¼ 1jX ¼ X� ¼ 1Þ

with

PrðX ¼ X� ¼ 1Þ ¼ PrðX� ¼ 1Þ ¼
1

6

according to A1, and

PrðY� ¼ 1jX ¼ X� ¼ 1Þ ¼
PrðY ¼ 1jX ¼ 0Þ � p1j0

p1j1 � p1j0

according to A1 and A2. Putting all elements together, the true positive rate for the prediction

game is identified as

TPR ¼
PrðX ¼ 1Þ

PrðY¼1jX¼1Þ� p1j0

p1j1 � p1j0
� 1

6

PrðY¼1jX¼0Þ� p1j0

p1j1 � p1j0

PrðX ¼ 1Þ � 1

6

The correct classification rate is

CCR ¼ TPR � PrðX ¼ 1Þ �
1

6

� �

þ ð1 � FPRÞ PrðX ¼ 0Þ þ
1

6

� �

We estimate the above quantities and their standard errors by applying joint mean

estimation to the components of the formulas and then, since some of the equations contain

nonlinear transformations, using the delta method [50] to obtain the sampling variances. Non-

parametric bootstrap estimation [51] essentially yields the same results (see S1 Supporting

Information).

3 Results

3.1 Comparative validation

We first report results as in a standard comparative validation study, using the more-is-better

assumption. Fig 1 displays the point estimates for the sensitive behaviors from the different

sensitive question techniques, as well as the differences in the estimates between direct ques-

tioning (DQ) and the indirect techniques (also see S1 Table).
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For shoplifting, estimates from all three indirect techniques are significantly higher than the

estimate from direct questioning (i.e., the confidence intervals of the differences in the right

panel are strictly above zero in all three cases). The highest estimate was obtained by the unre-

lated-question RRT (UQ). Also for tax evasion, all three techniques significantly outperformed

direct questioning, with the crosswise-model RRT (CM) producing the highest estimate. CM

also produced the highest estimates for the remaining three items, although the difference to

direct questioning is not significant for the non-voting item. The unrelated-question RRT

(UQ) and the forced-response RRT (FR) did not produce significantly higher estimates than

direct questioning for these three items. Moreover, for cheating in the roll-a-six game, the esti-

mate from FR is significantly lower than the estimate from DQ.

From these results we would conclude that the CM clearly performed best of all techniques;

it produced the highest estimates for four of the five items and produced significantly higher

estimates than direct questioning for four of the five items. The difference between CM and

the other techniques is particularly pronounced for the two cheating items. While cheating

rates were 5% or less according to the other techniques, they were about 15% according to

CM. The results for UQ and FR are mixed. They outperformed direct questioning for the first

two items, but not for the remaining three. For the last item, FR even produced a slightly nega-

tive estimate, indicating significant non-compliance with the RRT instructions. A negative

estimate is possible if a substantial proportion of respondents deviate from the instructions

determined by the randomizing device. This seems to be a common problem with the forced-

response RRT (see, e.g., [12]).

Fig 1. Comparative validation of sensitive question techniques. Point estimates and 95% confidence intervals in percent.

https://doi.org/10.1371/journal.pone.0201770.g001
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3.2 Aggregate-level validation

As illustrated above, were we to conduct a comparative validation study based on the more-is-

better assumption, we would find that the crosswise-model RRT is the most valid technique, a

finding that is consistent with the results from previous comparative validation studies. How-

ever, the more-is-better assumption is a strong assumption that might be violated. In the sec-

ond step, we therefore compare the prevalence estimates from the various techniques to the

true prevalence of the sensitive behaviors at the aggregate level. We can conduct such an analy-

sis for the two items on cheating in the dice games. Fig 2 displays the true rates as well as the

various estimates including 95% confidence intervals (left panel, also see S2 Table). Confidence

intervals are also reported for the true cheating rates even though in the roll-a-six game the

sample cheating rate can be determined exactly. The confidence intervals reflect the variability

in the cheating rates one could expect were one to repeat the experiment.

In the right panel of the figure, the differences between the true rates and the estimates are

shown. For the prediction game, all question techniques performed poorly. DQ, UQ and FR

all produced estimates below 5% although the true cheating rate was around 25%. The CM

comes closest to the true cheating rate with an estimate of a bit more than 15%, but still under-

estimates the true rate by about 11 percentage points. For the roll-a-six game, we see that DQ

and UQ both produced accurate estimates of a cheating rate of about 5%. As expected, cheat-

ing was substantially less prevalent in the roll-a-six game (5%) than in the prediction game

(25%), due to the design of the game (the roll-a-six game provided less incentive for cheating

than the prediction game because it was obvious that cheating could potentially be detected;

see [52] for similar results on the effect of detectability on cheating rates). FR significantly

Fig 2. Aggregate-level validation of sensitive question techniques. Point estimates and 95% confidence intervals in percent.

https://doi.org/10.1371/journal.pone.0201770.g002
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underestimated the cheating rate. For CM, on the other hand, an overestimation by about 8

percentage points occurred.

Hence, while for the prediction game the more-is-better assumption seems to be valid in

the sense that the highest estimate comes closest to the true value, the assumption fails for the

roll-a-six game. Respondents did not substantially underreport their cheating behavior in the

roll-a-six game when asked directly, probably because it was obvious that such misreporting

could be detected. One could argue that cheating in the roll-a-six game is therefore not a good

test case for evaluating sensitive question techniques; there is no bias that could be improved

on by the techniques. On the other hand, we would want a valid sensitive question technique

to produce unbiased results also if the question is, in fact, not sensitive. A positive bias such as

observed for the CM should not occur.

3.3 Individual-level validation

Overall, the results from the aggregate-validation are ambiguous. For the first item, cheating in

the prediction game, the crosswise-model RRT (CM) is the clear winner. If we had exclusively

looked at the prediction game, we would have again concluded that CM is the most valid tech-

nique. However, cheating in the roll-a-six game indicates that there might be a problem with

the CM. In the third step of our analysis we therefore evaluate the accuracy of the measure-

ments obtained by the different questioning approaches at the individual level. Fig 3 displays

the true and false positive rates of the different techniques for the prediction game and the

roll-a-six game (also see S3 Table).

Direct questioning had a true positive rate (TPR) of only 10% in the prediction game, that

is, only 10% of respondents who cheated in the prediction game admitted having done so

when asked directly. FR did not manage to improve the TPR and UQ slightly increased the

TPR to 15% (both differences are not significant; p = 0.88 and 0.38). The CM, on the other

hand, was considerably more successful in eliciting truthful answers from cheaters than DQ

(p = 0.004), with a true positive rate of almost 30% (although still being far from 100%). Yet,

the CM also had a substantial false positive rate (FPR) of 10.7% (or 8.3% under Assumption

A2’). That is to say, about 10% of respondents who did not cheat in the prediction game acci-

dentally admitted having cheated when using the CM. Due to the (relatively) high TPR and

the positive FPR the estimate of the cheating rate from the CM came closest to the true cheat-

ing rate at the aggregate level (as seen above). However, the correct classification rate (CCR) of

the CM was, in fact, worst of all techniques (since about 75% of the respondents did not cheat,

the positive FPR has a strong influence on the CCR; p = 0.14 compared to DQ; under Assump-

tion A2’ the CCR of CM is a bit higher and comparable the other techniques). The UQ and FR

did not have the problem of false positives, but did also not really improve on the TPR com-

pared to DQ, so that these techniques did not reach a better CCR than DQ as well. Overall, for

the prediction game, we can therefore conclude that the unrelated-question RRT (UQ) and the

forced-response RRT (FR) did not manage to produce more accurate measurements than

direct questioning, and that the crosswise-model RRT (CM), although seemingly more valid

than direct questioning at the aggregate level, did not yield better measurements either due to

the occurrence of false positives.

For the roll-a-six game (right panel in Fig 3) we obtain a similar picture. Also here the CM

was affected by a substantial amount of false positives (to a similar degree as in the prediction

game; FPR = 11.9%) and, again, although not severely affected by false positives, the UQ and

FR did not perform better than direct questioning. For true positives, the ranking of the tech-

niques changed in that direct questioning now performed best, with a true positive rate of

about 70% (although the differences to the other techniques are not, or only marginally
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significant; the p values compared to CM, UQ, and FR are 0.23, 0.30, and 0.06, respectively).

That the true positive rates for the indirect techniques were lower in this case than for direct

questioning might be due to the fact that the RRT, although meant to provide an opportunity

to be honest without the risk of disclosure, also provides respondents the possibility to be dis-

honest without the risk of disclosure. Because it was obvious in the roll-a-six game that a dis-

honest answer about whether a respondent cheated or not could potentially be identified,

some of the respondents who would have felt compelled to answer truthfully in direct ques-

tioning might have misused the RRT as a protection mechanism to answer untruthfully

without risk of detection. The possibility of such a paradoxical effect of indirect question tech-

niques is also mentioned by Wolter and Preisendörfer [28]. Lelkes et al. [53] found similar

adverse effects of complete anonymity on truthful reporting.

To summarize the results for the roll-a-six game: none of the indirect techniques managed

to improve the true positive rate compared to direct questioning and the CM was affected by

a substantial amount of false positives, so that similar to the prediction game, the correct

Fig 3. Individual-level validation of sensitive question techniques. Point estimates and 95% confidence intervals in percent.

Negative false positive rates were set to zero for the computation of the correct classification rate.

https://doi.org/10.1371/journal.pone.0201770.g003
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classification was best for direct questioning and worst for the CM (the difference between DQ

and CM now being highly significant, p< 0.001).

Our conclusion from the individual-level validation is that none of the tested indirect ques-

tion techniques yielded an improvement over direct questioning while, at the same time,

sacrificing statistical efficiency and hence requiring larger sample sizes than direct questioning.

The CM appeared particularly problematic as it was affected by false positives. The occurrence

of false positives is the reason why the CM overestimated the cheating rate in the roll-a-six

game; it is also the reason why, at the aggregate level, the CM came seemingly closest to the

true cheating rate in the prediction game. That the false positive rates of the CM were similar

for both games indicates that there was a specific fraction of respondents in our sample who

were unable or unwilling to apply the CM procedure correctly. How large this fraction is

might depend on the population under study. It is clear, however, that the presence of such

noncompliance has strong effects on the estimates obtained by the CM. We suspect that the

false positives are the reason for why the CM seemingly performed so well in many previous

studies that used a comparative design without the possibility for individual-level validation.

False positives inflate the CM estimates and, from a more-is-better perspective, make it look

like the CM provides more valid estimates than other techniques.

4 Conclusions

In order to evaluate the validity of survey respondents’ self-reports based on various sensitive

question techniques we carried out an online experiment in which respondents’ self-reported

rates of cheating were compared to true cheating rates. Participants played one of two incentiv-

ized dice games in which they could cheat, that is, in which they could illegitimately claim a

bonus payment. After the game, participants were asked whether they cheated using either

direct questioning or one of several RRT implementations. The resulting self-reports were

then validated against the actual rate of cheating in the dice game. Unlike most other evalua-

tion studies of indirect question techniques, our study relies on a true validation criterion and

detects misreporting at the individual level.

Results from the two dice games reveal that all tested question techniques suffer sizable mis-

classification in the direction of the socially desirable answer. Among the different techniques

only between 9% and 28% of all cheaters could be correctly classified as cheaters in the first

variant of the dice game (prediction game). In the second variant of the dice game (roll-a-six

game) between 41% and 71% of cheaters could be correctly classified. The large difference in

the true positive rate between the two games suggests that the sensitivity of an item and—pos-

sibly, whether answers are potentially verifiable or not—has an important effect on respon-

dents’ decision whether to misreport or not. Although, at least for the prediction game, some

of the evaluated indirect question techniques yielded higher true positive rates than direct

questioning, none of the techniques produced overall more valid measurements than direct

questioning. The reason is that the indirect techniques tend to produce poor results for

respondents who do not possess the sensitive trait (i.e. who did not cheat). In particular, a sub-

stantial false positive rate was observed for the crosswise-model RRT (CM): for the subsample

of non-cheaters, the CM erroneously yielded cheating rates of about 11% or 12%. Further-

more, the forced-response RRT (FR) yielded negative cheating rates in the subsample of non-

cheaters, which indicates that some of the respondents did not comply to the RRT instructions

and answered “no” even though the procedure instructed them to answer “yes.” The unre-

lated-question RRT (UQ) had the least problems with respect to misclassification in the sub-

sample of non-cheaters, but it did also not substantially reduce the amount of misclassification

in the subsample of cheaters.
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The most important insight of our study is that the findings would have been quite different

had there not been the possibility for individual-level validation. False positives in the CM

inflated the prevalence estimates so that the CM consistently yielded higher prevalence of sensi-

tive behaviors than direct questioning—a result that is in line with previous studies. Hence,

employing the more-is-better assumption, the CM seemed superior. As illustrated by the first

sensitive item in our study for which validation was possible (cheating in the prediction game),

comparing prevalence estimates from indirect question techniques to the true prevalence rate at

the aggregate level, although certainly an improvement over the more-is-better assumption, can

still be misleading. The CM provided a prevalence estimate that came closest to the true preva-

lence. Hence, one could again conclude that the CM has superior validity. The analysis at the

individual level, however, revealed that this is a false conclusion. The CM came close to the true

prevalence primarily because it misclassified some of the non-cheating respondents as cheaters.

That is, our study not only shows that the CM might not be as promising as suggested by

previous studies [6, 17–24], it also points to a general weakness in past research on sensitive

question techniques. Because complicated misreporting patterns are possible, we must be very

cautious when interpreting results from comparative evaluation studies employing the more-

is-better assumption, from validation studies that rely on aggregated prevalence validation, or

from one-sided validation studies in which the sensitive trait or behavior applies to all or none

of the respondents. We argue that an integral evaluation of the performance of a sensitive

question technique is only possible if the design is such that false negatives and false positives

can be disentangled.

Of course, our study also has limitations. For example, we cannot answer why a substantial

share of non-cheaters misreported in the CM. It is noteworthy that such misreporting did not

occur with direct questioning. As such, we would speculate the cause might have to do with

confusion rather than carelessness. It would be worthwhile to conduct further research on the

CM to identify the design feature that causes this type of misreporting and to evaluate possible

modifications to address the problem. Possibly, better-designed CM implementations are

more robust against the observed problem. Furthermore, although we obtained similar results

in both dice games, our study uses a very specific item (cheating for a small amount of money)

to evaluate the sensitive question techniques and, in addition, has been conducted in a special

setting and in a special population (an online survey on Amazon Mechanical Turk). Whether

our results can be generalized to other sensitive questions, and to other populations and set-

tings remains questionable. However, note that our finding of false positives in the CM has

recently been replicated with a different design and in a different type of sample in an online

survey on organ donation [54]. Finally, we only evaluated three specific variants of the ran-

domized response technique. Although the results of our study are discouraging for all three

variants, there might be alternative designs or implementations that are more successful.

Future research should focus on evaluating such alternatives. Using a research design that

allows individual-level validation of respondents’ answers, however, would be crucial for such

research to be meaningful.
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42. Fischbacher U, Föllmi-Heusi F. Lies in Disguise—an Experimental Study on Cheating. Journal of the

European Economic Association. 2013; 11(3):525–547. https://doi.org/10.1111/jeea.12014

43. Fischbacher U, Heusi F. Lies in Disguise. An experimental study on cheating. Thurgau Institute of Eco-

nomics and Department of Economics at the University of Konstanz; 2008. Research Paper Series No.

40. Available from: http://kops.uni-konstanz.de/handle/123456789/11857.

44. Suri S, Goldstein DG, Mason WA. Honesty in an Online Labor Market. In: Proceedings of the 11th AAAI

Conference on Human Computation. AAAIWS’11-11. AAAI Press; 2011. p. 61–66. Available from:

http://dl.acm.org/citation.cfm?id=2908698.2908709.

45. Diekmann A. Making Use of “Benford’s Law” for the Randomized Response Technique. Sociological

Methods & Research. 2012; 41(2):325–334. https://doi.org/10.1177/0049124112452525

46. Mood AM, Graybill FA, Boes DC. Introduction to the Theory of Statistics. New York: McGraw-Hill;

1974.

47. Jann B. rrreg: Stata module to estimate linear probability model for randomized response data. Boston

College Department of Economics; 2008. Statistical Software Components S456962. Available from:

https://ideas.repec.org/c/boc/bocode/s456962.html.

48. Maddala GS. Limited Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge

University Press; 1983.

49. Blair G, Imai K, Zhou YY. Design and Analysis of the Randomized Response Technique. Journal of the

American Statistical Association. 2015; 110(551):1304–1319. https://doi.org/10.1080/01621459.2015.

1050028

50. Oehlert GW. A Note on the Delta Method. The American Statistician. 1992; 46(1):27–29. https://doi.org/

10.1080/00031305.1992.10475842

51. Davison AC, Hinkley DV. Bootstrap methods and their application. Cambridge: Cambridge University

Press; 1997.

52. Gneezy U, Kajackaite A, Sobel J. Lying Aversion and the Size of the Lie. American Economic Review.

2018; 108(2):419–53. https://doi.org/10.1257/aer.20161553

Experimental individual-level validation of the randomized response technique and the crosswise model

PLOS ONE | https://doi.org/10.1371/journal.pone.0201770 August 14, 2018 21 / 22

https://doi.org/10.3758/s13428-011-0144-2
http://www.ncbi.nlm.nih.gov/pubmed/21858604
https://www8.gsb.columbia.edu/rtfiles/marketing/seminar_papers/paper_John_13.pdf
https://www8.gsb.columbia.edu/rtfiles/marketing/seminar_papers/paper_John_13.pdf
https://doi.org/10.1515/jos-2015-0002
https://doi.org/10.1007/s10683-011-9273-9
https://doi.org/10.3758/s13428-011-0124-6
http://www.ncbi.nlm.nih.gov/pubmed/21717266
https://doi.org/10.1016/j.jesp.2017.01.006
https://doi.org/10.1016/j.jesp.2017.01.006
https://doi.org/10.1093/pan/mpr057
https://doi.org/10.1093/pan/mpr057
https://doi.org/10.1016/j.econlet.2018.05.022
https://doi.org/10.1016/j.econlet.2018.05.022
https://doi.org/10.1111/ajps.12081
https://doi.org/10.1073/pnas.0900152106
https://doi.org/10.1073/pnas.0900152106
https://doi.org/10.1111/jeea.12014
http://kops.uni-konstanz.de/handle/123456789/11857
http://dl.acm.org/citation.cfm?id=2908698.2908709
https://doi.org/10.1177/0049124112452525
https://ideas.repec.org/c/boc/bocode/s456962.html
https://doi.org/10.1080/01621459.2015.1050028
https://doi.org/10.1080/01621459.2015.1050028
https://doi.org/10.1080/00031305.1992.10475842
https://doi.org/10.1080/00031305.1992.10475842
https://doi.org/10.1257/aer.20161553
https://doi.org/10.1371/journal.pone.0201770


53. Lelkes Y, Krosnick JA, Marx DM, Judd CM, Park B. Complete anonymity compromises the accuracy of

self-reports. Journal of Experimental Social Psychology. 2012; 48(6):1291–1299. https://doi.org/10.

1016/j.jesp.2012.07.002
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