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Abstract

Background: The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a
solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect
workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus,
we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in
worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests
with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of
the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for
understanding social insect caste evolution and general insect biology.

Results: Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony
generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary
phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects,
confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL
for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry.
One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic
variance, although no simple positive correlation between ovary size and activation was observed.

Conclusions: Our results provide strong support for the reproductive ground plan hypothesis of evolution in study
populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As
predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in
worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size
presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral
syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals
await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in
general.
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Background
The Western honey bee (Apis mellifera L.) is an impor-
tant pollinator and scientific model, particularly for
studying social evolution and complex behavior. The
reproductive ground plan hypothesis (RGPH) of social
evolution has been suggested to explain the evolution of
several aspects of honey bee biology, particularly beha-
vioral specialization in the helper caste of workers [1-3].
Based on the ovarian ground plan hypothesis [4,5], the
RGPH proposes that control modules of the ancestral
gonotrophic cycle of a hypothetical solitary ancestor
have been co-opted by social evolution, influencing
honey bee worker behavior and life history. Thus,
hormones and genes are predicted to pleiotropically
influence worker reproductive traits and nest provision-
ing behavior (foraging).
The RGPH has been supported by an increasing number

of studies [1,2,6-9], accumulating evidence for associations
between reproductive traits of honey bee workers and
their social behavior and life history. These studies have
used ovary size, a convenient reproductive trait because it
varies greatly among individuals and can be easily quanti-
fied by dissection as the number of parallel ovary fila-
ments, the ovarioles. Ovary size co-varies with the age at
which workers transition from in-hive tasks to foraging in
different populations of A. mellifera [1,10]. After foraging
initiation, many foragers specialize on either pollen or nec-
tar collection and this specialization is also related to ovary
size in A. mellifera [1,6] and the Eastern honey bee, Apis
cerana [7]. Furthermore, ovary size correlates with other
aspects of the pollen hoarding syndrome in worker honey
bees [8], such as sucrose responsiveness [1,9].
In addition to these phenotypic correlations, the RGPH

predicts mechanistic links between reproductive and
social behavioral regulation, which have been demon-
strated by the study of candidate genes, such as vitello-
genin [11-13] and genes associated with insulin-like
signaling [6,14]. However, the most stringent test of the
RGPH consists of the demonstration of common genetic
variation for reproductive traits and social behavior that
segregates in contemporary bee populations. Genetic var-
iation is implicated in enhancing the division of labor in
honey bee colonies [15] but not expected to result from
selection on worker ovary size per se [16].
Artificially selected high and low pollen hoarding

strains of honey bees [17] were instrumental for the
initial formulation of the RGPH and detection of pheno-
typic associations between worker reproductive traits and
social behavior [1-3]. These selected strains have also
been used to establish the genetic co-segregation between
ovary size and foraging specialization [6]. However, the
generality of the relation between reproductive traits and
foraging specialization in honey bees has been questioned

because this relation was not found in a study of another
selection line (the “anarchistic line”, characterized by the
unusual occurrence of worker reproduction in the pre-
sence of a queen) [10]. Therefore, more general tests of
co-segregating genetic variation for social behavior and
reproductive traits are warranted to evaluate the RGPH.
One such independent test system in the Western

honey bee (Apis mellifera) is provided by the Africanized
population in South and North America. It has originated
through hybridization of an introduced A. mellifera
scutellata ancestor from Africa with honey bees of differ-
ent subspecies of European descent, characterized by
phenotypic and genomic displacement of the European
by the African ancestor [18,19]. Compared to the
European honey bees (EHB) in America, Africanized bees
(AHB) are more responsive to sucrose, transition earlier
to foraging tasks, and forage more for pollen [20]. The
ovariole number of AHB workers is also higher than that
of their EHB counterparts [21,22], but see [23]. Even
though independent, this system is similar to the selected
pollen hoarding strains at the phenotypic level: the AHB
differ from the EHB in the same way that high pollen
hoarding strain bees differ from low pollen hoarding
strain bees. The AHB/EHB system has been used pre-
viously to confirm quantitative trait loci (QTL) for fora-
ging specialization that had been initially discovered in
the selected pollen hoarding strains [24]. Thus, crosses
between colonies selected from the AHB and EHB popu-
lations provide an independent test system of the predic-
tion of genetic co-segregation of social behavior and
ovary size.
In total, four QTL for pollen hoarding behavior and

foraging specialization have been mapped in the honey
bee genome [24-26]. These QTL (pln1 - pln4) were
repeatedly confirmed [24,26] and found to pleiotropically
affect other aspects of the pollen hoarding syndrome
[27,28]. They are located on chromosome 1 and 13 and
are significantly enriched for genes involved in insulin-like
signaling [29]. Additional QTL for the age of first foraging
(aff1 - aff4) and for sucrose responsiveness (per1) were
identified [27,28] but only three aff QTL could subse-
quently be located to specific genome locations on chro-
mosome 4, 5, and 11 [30]. Testing for genetic effects of
the seven located pln and aff QTL on worker ovary size
provide specific tests of a central prediction of the RGPH.
The genetic architecture of ovary size has been studied

in detail in Drosophila, suggesting major, interacting QTL
and environmental effects [31-33], but little is known
about other insect species. In social insects, ovary size is
particularly important in the context of differential fertility
between the female worker and queen castes [34]. Honey
bees have evolved a large caste difference: queen ovaries
typically contain >100 ovarioles and workers <10 [21].
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Probably due to the evolution of this large phenotypic
plasticity, intra-specific variability within the worker caste
is also high, with significant population differences [21]
and strong variability within populations [35] and even
among sibling crosses [22,23,36].
In a series of crosses between AHB and EHB, worker

ovary size showed a transgressive inheritance pattern
[22]: The parental AHB had more ovarioles per ovary
than the parental EHB source, with hybrids intermedi-
ate. EHB backcrosses resulted in workers with ovariole
numbers that were similar to the parental EHB, but
AHB backcrosses showed much larger ovary sizes than
their parents. In two of these crosses, workers had ovar-
ies with as many as 39 and 74 ovarioles [22], suggesting
that segregating genetic variation in workers can lead to
phenotypic differences in the same order of magnitude
as caste differences. Thus, the genetic basis of worker
ovary size variation may be based on the same mechan-
isms that control caste differences [22].
A preliminary analysis of these two crosses identified

one strongly supported QTL on chromosome 11 and
several weaker ones as the potential genetic basis for
these large worker ovary sizes via selective, pooled QTL
mapping [22]. However, this fast and cost-effective
approach has previously generated results that could not
be subsequently verified by individual genotyping
[30,36]. The present study examines an extended popu-
lation of workers with a transgressive ovary size from
the two crosses analyzed previously [22]. Our first objec-
tive is to specifically test for pleiotropic effects of the pln
and aff QTL on ovary size, as predicted by the RGPH.
Secondly, we extend our preliminary analysis [22]
towards a comprehensive understanding of the genetic
architecture of the transgressive worker ovary trait by
individual genotyping and analyzing different aspects of
worker ovary size and worker ovary activation under
queenless conditions.

Results
Ovary phenotypes
In the first backcross, ABC3, the minimum ovary size
ranged from 2 to 31 ovarioles with a median of 11
(quartiles: 7.25 - 15.0), maximum ovary size ranged
from 3 to 31 ovarioles with a median of 13 (9.25 - 17.0)
and average ovary size from 2.5 to 31 ovarioles with a
median of 11.75 (8.5 - 16.0). The differences between
the larger and the smaller ovary ranged from 0 - 10
ovarioles with a median of 2.0 (1.0 - 3.0), translating
into relative differences from 0 to 0.50 with a median of
0.067 (0.037 - 0.133), and ratios from 0.33 - 1.0 with a
median of 0.875 (0.766 - 0.929). In the parallel back-
cross, ABC5, the minimum ovary size ranged from 4 to
28 ovarioles with a median of 11 (8.0 - 14.0), maximum
ovary size ranged from 4 to 30 ovarioles with a median

of 14 (11.0 - 17.0), and average ovary size from 4 to 29
ovarioles with a median of 12 (10.0 - 15.375). The differ-
ences between the larger and the smaller ovary ranged
from 0 - 15 ovarioles with a median of 2. 0 (1.0 - 4.0),
translating into relative differences from 0 to 0.47 with a
median of 0.09 (0.04 - 0.17), and ratios from 0.36 - 1.0
with a median of 0.83 (0.71 - 0.92). Ovary activation
scores ranged from 1 - 4 with a median of 3 (3 - 4).
Despite asymmetric ovaries in 85.2% (ABC3) and 86.9%
(ABC5), ovary size between the two body sides was highly
correlated (Table 1). The overall negative correlation
between ovary size and activation score in ABC5 was
caused by a non-linear relation between these two vari-
ables, combined with unequal representation of the dif-
ferent ovary activation classes in our sample (Figure 1).
Individuals with an activation score of three had signifi-
cantly larger ovaries than individuals with activation
scores of two (Kruskal Wallis’ H = 94.1, post-hoc p <
0.001) or four (H = 77.3, p < 0.001) but the latter effect
outweighed the former due to unequal sample sizes
(Figure 1). Except for the relationship between minimum
ovary size and the difference or ratio between the two
ovary sides, ABC3 and ABC5 show very similar relations
between the different variables (Table 1).

QTL Analyses
The final ABC3 map contained 137 SNP and 98 microsa-
tellite markers with an average inter-marker interval of
20.2 cM and 94.4% of the mapable genome within 20 cM
of at least one genetic marker. Most of the top single
markers (Table 2) were represented in the QTL indicated
by interval mapping (Table 3): One major QTL for ovary
size was mapped to chromosome 11 (Figure 2a). LOD
support of this QTL well above significance and it
explained about 1/3 of the phenotypic variance in the
mapping population for all ovary size traits but had only
a subtle effect on ovary asymmetry measures (Table 3).
Two additional, suggestive QTL for ovary size were
found on chromosome 5, approximately 5 cM proximal
from marker AT137 and on chromosome 10 between
markers K1055 and K1064 (Table 3). One significant
QTL was found for ovary asymmetry on chromosome 4
between marker est3866 and K0423B (Figure 3a) with an
effect that was independent of ovary size (Table 3).
MQM analysis increased the LOD score of this asym-

metry QTL and the statistical support for an effect of
the QTL on chromosome 11 on ovary asymmetry
(Table 3). MQM also increased the LOD score of the
ovary size effects of the QTL on chromosome 11 and
the suggestive QTL on chromosome 10 (Table 3) but
decreased LOD scores for the suggestive QTL on chro-
mosome 5. For average ovary size, MQM also indicated
another suggestive QTL on chromosome 2 near marker
est1833.
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None of the pairwise epistasis tests among the signifi-
cant and suggestive QTL was significant after Bonferroni
correction. The empirically determined, genome-wide
LOD significance thresholds were 2.9 for minimum
ovary size, and 3.2 for maximum and average ovary size.
Thresholds for ovary asymmetry ranged from 2.9 to 3.1,
depending on the specific measurement.
The final map of ABC5 contained 149 SNP and 82

microsatellite markers with an average inter - marker
interval of 18.7 cM and 91.7% of the mapable genome
within 20 cM of at least one genetic marker. Again,
most top-scoring single markers (Table 2) were located

in the QTL identified by interval mapping (Table 4):
One major QTL for all ovary size traits was found on
chromosome 6 between markers est4967 and UN258.
The region had no effect on asymmetry measure but
strongly influenced the ovary activation score (Table 4),
although the LOD trace diverged from the other traits
(Figure 2b). Another significant QTL for ovary size but
not ovary asymmetry or activation (Table 4) was located
on chromosome 13, centered on marker est10110
(Figure 4). The two significant ovary size QTL did not
interact (F(1,182) = 0.5, p = 0.465).
A significant QTL for ovary asymmetry but not ovary

size or activation (Table 4) was found on chromosome 5
between markers est4576 and est4637 (Figure 3b). No
further, suggestive QTL for any traits were detected.
The empirically determined, genome-wide significant
thresholds were 3.0 for minimum and average ovary
size, 2.9 for maximum ovary size, and 2.8 for ovary acti-
vation score. Significance thresholds ranged from 2.9 for
“relative difference” and 3.0 for “absolute difference” to
3.3 for “ratio”, excluding chromosome 3 which produced
a discrete group of unreasonably large LOD scores of
>10 for the asymmetry variables. MQM was precluded
by the selective genotyping strategy in ABC5.
In ABC3, only the genetic marker near the aff4 QTL

showed a significant effect on ovary size. In ABC5, mar-
kers near three of the previously determined behavioral
QTL showed a significant effect on ovary size (pln1,
pln2, aff2) and the effect of pln3 was suggestive (Table
5). There were two overlaps between the three new
ovary size QTL and the seven previously mapped, beha-
vioral QTL when a wide confidence interval of the inde-
terminate [30]aff QTL on chromosome 11 was assumed.
This or more overlap has a probability of 0.017 to occur
by chance in two crosses. Assuming a narrow confi-
dence interval for the aff QTL, only one overlap

Table 1 Correlations* among ovary variables in ABC3 (n = 88, above diagonal) and ABC5 (n = 344, below diagonal)

Minimum ovary
size

Maximum ovary
size

Average ovary
size

Difference in ovary
size

Relative
difference

Ratio of ovary
size

Minimum ovary
size

— RS = 0.95, p < 0.001 RS = 0.98, p <
0.001

RS = 0.03, p = 0.763 Rp = -0.41, p <
0.001

Rp = 0.41, p <
0.001

Maximum ovary
size

RS = 0.80, p < 0.001 — RS = 0.99, p <
0.001

RS = 0.31, p = 0.003 RS = -0.14, p =
0.190

RS = 0.14, p =
0.190

Average ovary size RS = 0.94, p < 0.001 RS = 0.95, p < 0.001 — RS = 0.19, p = 0.080 RS = -0.26, p =
0.013

RS = 0.26, p =
0.013

Difference in
ovary

RS = -0.20, p <
0.001

RS = 0.35, p < 0.001 RS = 0.09, p =
0.104

— RS = 0.85, p <
0.001

RS = -0.85, p <
0.001

Relative difference RS = -0.50, p <
0.001

RS = 0.04, p = 0.465 RS = -0.23, p <
0.001

RS = 0.94, p < 0.001 — RS = -1.0, p <
0.001

Ratio of ovary size RS = 0.50, p < 0.001 Rp = -0.04, p =
0.465

RS = 0.23, p <
0.001

RS = -0.94, p < 0.001 RS = -1.0, p <
0.001

—

Ovary activation RS = -0.23, p <
0.001

RS = -0.25, p <
0.001

RS = -0.26, p <
0.001

RS = -0.03, p = 0.630 RS = 0.04, p =
0.520

RS = -0.04, p =
0.520

* Spearman’s correlations (RS) were used. For explanation of variables, see “Methods” in main text.

Figure 1 The relationship between ovary size and degree of
ovary activation under queenless conditions in Africanized
backcross workers that are characterized by large ovaries.
Almost all workers have developed their ovaries to some extent.
The workers with the largest ovaries only had an activation score of
three in contrast to some workers with smaller ovaries that
contained fully developed eggs.

Graham et al. BMC Evolutionary Biology 2011, 11:95
http://www.biomedcentral.com/1471-2148/11/95

Page 4 of 14



between the ovary and behavioral QTL was detected
(p = 0.332).

Candidate genes
For each significant QTL, the 1.5 LOD support interval
[29] depicted as a black bar on the x-axis of Figures 2, 3, 4
and 5, was searched for positional candidates in the NCBI
database. The full list of the current (Amel4.0) annotation
of the positional candidates is available as online supple-
ment. For the major QTL on chromosome 11 (Figure 2a)
54 gene models were predicted, 3 of which were hypothe-
tical loci. The functionally most interesting genes in this
list were the orthologs of quail (LOC410324) and cabut
(LOC410326), but it was also noteworthy that the notch
ortholog (LOC410351) was located just outside the QTL
confidence interval. In the second major ovary size QTL
region on chromosome 6 (Figure 2b), 47 positional candi-
dates were present. Two loci were hypothetical and func-
tional candidates included the seven-up receptor ortholog
(LOC408872), the transcription factor anormal oocyte
ortholog (LOC551371), and the putative steroid hydroge-
nase LOC725258. The third significant ovary size QTL on
chromosome 13 (Figure 4) contained 34 gene models with
significant similarity to known genes and 1 hypothetical
locus. It partially overlapped with pln1 and thus contained

some of the same functional candidate genes (orthologs of
bazooka: LOC726759 and midway: LOC552377) but also
orthologs of Ajuba (LOC408431), abrupt (LOC726491),
and toucan (LOC726183). The ovary asymmetry QTL on
chromosome 5 contained 147 positional candidate gene
models. Twelve models were hypothetical loci and some
functionally interesting genes were the Putative Achaete
Scute Target 1 ortholog (LOC413012), the Nedd8 ortholog
LOC552822, the ortholog of CTP:phosphocholine cytidylyl-
transferase 1 (LOC412303), and the pebble ortholog
LOC413063. In the support interval of the ovary asymme-
try QTL on chromosome 4, 83 total gene models included
12 hypothetical loci. Among the remainder, noteworthy
genes of known functions were the vitellogenin gene, the
coro ortholog LOC409316, and the MIG-2-like ortholog
LOC552138.

Discussion
As predicted by the RGPH of social evolution in honey
bees, worker ovary size showed genetic overlap with
QTL of two key aspects of worker social behavior, the
age of first foraging [30] and foraging specialization [29].
Thus, our study provides a strong, independent confir-
mation of the RGPH by demonstrating genetic effects of
behavioral QTL on ovary size in two crosses that are

Table 2 The most significant single markers in the study with an uncorrected significance of <0.01

Average ovary size Minimum ovary size Maximum ovary size Ovary asymmetry Ovary development

ABC3 est8456 (C.11, p < 0.0001) est8456 (C.11, p < 0.0001) est8456 (C.11, p < 0.0001) est3866 (C.4, p < 0.001) N/A

est8460 (C.11, p < 0.0001) est8460 (C.11, p < 0.0001) est8460 (C.11, p < 0.0001) K0423B (C.4, p < 0.005) N/A

AT137 (C.5, p < 0.005) AT137 (C.5, p < 0.005) ahb2105 (C.10, p < 0.01) N/A

ahb2105 (C.10, p < 0.01) ahb2105 (C.10, p < 0.01) A040 (C.1, p < 0.01) N/A

est1833 (C.2, p < 0.01) AT137 (C.5, p < 0.01) N/A

ABC5 est4967 (C.6, p < 0.0001) est4967 (C.6, p < 0.0001) est4967 (C.6, p < 0.0001) est4637, C.5, p < 0.0005) est4967 (C.6, p < 0.0001)

SV062 (C.6, p < 0.0001) SV062 (C.6, p < 0.0001) SV062 (C.6, p < 0.0001) est4644, C.5, p < 0.001) UN258 (C.6, p < 0.0005)

est10110 (C.13, p < 0.0005) est10110 (C.13, p < 0.001) est10110 (C.13, p < 0.0001) ahb10918 (C.1, p < 0.005) K1551 (C.15, p < 0.005)

UN258 (C.6, p < 0.001) UN258 (C.6, p < 0.005) UN258 (C.6, p < 0.0005) est6265 (C.8, p < 0.01) est1929 (C.2, p < 0.01)

est10066 (C.13, p < 0.005) est8339 (C.11, p < 0.005) est10066 (C.13, p < 0.005) ahb12014 (C.8, p < 0.01)

*C. = Chromosome.

Table 3 Statistics for the QTL detected by interval mapping in cross ABC3 (MQM scores in brackets)

QTL Average ovary size Minimum ovary size Maximum ovary size Ovary asymmetry*

Chromos. 11 (Figure
2a)

LOD = 6.5 (8.3), 35.4% Var.
expl.

LOD = 6.7 (6.7), 38.8% Var.
expl.

LOD = 5.9 (7.0), 29.7% Var.
expl.

LOD = 0.0 - 2.0 (0.0 - 2.6), 0.0 - 9.7% Var.
expl.

Chromos. 5 LOD = 2.0 (1.6), 16.4% Var.
expl.

LOD = 2.3 (1.4), 18.2% Var.
expl.

LOD = 1.7 (1.1), 14.4% Var.
expl.

LOD = 0.5 - 1.1 (0.1 - 0.2), 5.1 - 13.5%
Var. expl.

Chromos. 10 LOD = 1.9 (3.1), 16.0% Var.
expl.

LOD = 1.6 (2.5), 14.0% Var.
expl.

LOD = 2.0 (3.0), 16.8% Var.
expl.

LOD = 0.0 - 0.6 (0.0 - 0.9), 0.2 - 3.6% Var.
expl.

Chromos. 4 (Figure
3a)

LOD = 0.5 (0.3), 3.5% Var.
expl.

LOD = 0.9 (1.6), 5.6% Var.
expl.

LOD = 0.3 (0.5), 1.8% Var.
expl.

LOD = 2.6 - 4.0 (2.6 - 4.2), 18.0 - 28.9%
Var. expl.

Chromos. 2 LOD = 1.4 (2.3), 6.8% Var.
expl.

LOD = 1.3 (1.8), 6.8% Var.
expl.

LOD = 1.3 (2.2), 6.6% Var.
expl.

LOD = 0.0 - 0.6 (0.1 - 0.2), 1.1 - 4.0% Var.
expl.

* Values describe the range of 3 different asymmetry measures.
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unrelated to the selected high and low pollen hoarding
strains. The analyzed crosses differ dramatically in their
ovarian phenotypes from these selected strains [36] and
most worker honey bees in general [22]. Despite the
phenotypic distinctiveness of the studied bees, the

RGPH prediction of phenotypic [22] and genotypic link-
age between the ovary and social behavior has been sup-
ported. Together with previous QTL mapping studies
[24-26,28], our results indicate that pronounced, co-seg-
regating genetic variation for worker ovary size and

Figure 2 In both parallel backcrosses one major QTL for transgressive ovary size in worker honey bees was identified. However, these
major QTL were on different chromosomes in the ABC3 backcross (a) and the ABC5 backcross (b).
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social behavior is maintained in contemporary honey
bees. The magnitude of the QTL effects on ovary size
suggests either a link to the evolution of caste differ-
ences [22] or a significant role of this variation in colony
function [37].

With direct, pleiotropic effects in four of fourteen
QTL tests in this system, the detected genetic overlap in
ABC3 and ABC5 is stronger than in crosses between
the high and low pollen hoarding strains, which showed
two effects in eight tests [6]. Such tests of pleiotropy in

0

K0423B

LO
D

 S
co

re
4

3

U
N

004

est3866

est3715

K0422

ahb6833

K0416B

A
p149

ahb7242

ahb7032
est3328

6393

Chromosome 4 map (cM)

0 100 150 20050 300250

Ovary Asymmetry

Average Ovary Size

Maximum Size

Minimum Size

1

2

0

ahb7856

LO
D

 S
co

re

3

2
A

C126

A
T164

ahb7365

ahb7415

est4672

est4644

ahb7971

est4702

K0554B

est4044

U
N

359B

est4559

Ovary Activation
Ovary Asymmetry

Average Ovary Size
Maximum Size
Minimum Size

Chromosome 5 map (cM)

est4863
A

C090

est4292

est4637

est4055
est4053

0 100 150 20050 300250

1

4

A

B

Figure 3 In both parallel backcrosses one significant QTL for ovary asymmetry in worker honey bees was identified. The ABC3 QTL was
located on the 4th chromosome (a) and the ABC5 QTL was located on the 5th chromosome (b), indicating no overlap between the backcrosses.
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quantitative traits are conservative in general because
the absence of an effect could be due to a lack of segre-
gating variation in the specific cross studied or due to
genetic background and environmental effects that may
affect the penetrance of the QTL effect. Accordingly,
previous studies of genetic overlap between components
of the pollen hoarding syndrome have found pleiotropic
effects only in 3/12 tests of pln QTL effects on sucrose
responsiveness [27] and in 1/8 tests of pln QTL effects
on the age of first foraging [28]. Our study reports the
highest proportion of genetic overlap, focusing on fora-
ging behavior and the ovary. Accounting for the mar-
ginal pln3 effect further strengthens this argument,
increasing the proportion of positive tests to 5/14. In
addition, the effect size of pln1, and presumably also
aff2, on ovary size were sufficiently pronounced to be
detected at the genome wide significance threshold for
mapping novel QTL. The overlap between aff2 and the
ovary size QTL on chromosome 11 was only detected
with after widening the confidence interval for aff2.
However, this is justified because the initial interval
was arbitrarily narrow, spanning only 11 cM [30]. In

addition, evidence for widening the confidence interval
of the ovary size QTL exists when the evidence from
ABC3 and ABC5 is combined (see Figure eight in [22]).
This study has also discovered novel QTL for ovarian

traits of honey bee workers in regions that are not
known for any behavioral effects. Future studies will
need to address whether these QTL also show beha-
vioral effects. The partial genetic overlap among differ-
ent aspects of the pollen hoarding syndrome, which has
been reported previously [27,28,36] corresponds best to
a genetic network with a combination of central, pleio-
tropic regulators and downstream, specific effectors.
This interpretation is compatible with our molecular
understanding of worker ovary size determination dur-
ing larval development, which is dependent on general
regulators that influence all aspects of caste differentia-
tion, such as juvenile hormone [34], but progresses
through very specific mechanisms, such as actin-spectrin
interactions and apoptosis [38,39].
The intervals for the three significant ovary size QTL

contain 135 positional candidate genes in total, with sev-
eral candidates that have either a general or a specific
putative molecular role that make them plausible func-
tional candidates. Orthologs of at least 16 transcription
factors and 7 members of major signaling pathways are
present as candidates of potentially general function,
and orthologs of 2 apoptosis-related and 2 actin-asso-
ciated genes may represent functional candidates that
are involved in the specific downstream processes that
determine worker ovary size [39]. In addition, there may
be numerous unannotated transcripts, particularly regu-
latory RNA with a potential role in ovary development
that we are not able to discuss. Our top candidates for
the QTL on chromosome 11 are the ortholgs of quail
and cabut: Quail is a villin-like protein that is active in
various life history stages in the Drosophila ovary and
interacts with actin [40], which makes it a potential spe-
cific effector on worker ovary size [39]. Cabut is a tran-
scriptional activator that is responsive to TOR [41] and
ecdysone [42] signaling, involved in the JNK cascade
[43] and autophagic cell death [44]. Moreover, cabut
shows developmental expression differences between the
high and low pollen hoarding strains [45]. In addition,

Table 4 Statistics for the QTL detected by interval mapping in cross ABC5.

QTL Average ovary size Minimum ovary size Maximum ovary size Ovary activation
score

Ovary asymmetry*

Chromos. 6 (Figure
2b)

LOD = 7.8, 14.5% Var.
expl.

LOD = 7.8, 15.0% Var.
expl.

LOD = 7.2, 14.1% Var.
expl.

LOD = 8.7, 74.0% Var.
expl.

LOD = 0.1 - 1.1, 0.2 - 2.7%
Var. expl.

Chromos. 13
(Figure 4)

LOD = 3.1, 4.8% Var.
expl.

LOD = 2.6, 4.2% Var.
expl.

LOD = 3.2, 5.5% Var.
expl.

LOD = 0.8, 2.2% Var.
expl.

LOD = 0.1 - 0.8, 0.2 - 2.4%
Var. expl.

Chromos. 5 (Figure
3b)

LOD = 0.4, 0.6% Var.
expl.

LOD = 0.9, 1.4% Var.
expl.

LOD = 0.1, 0.2% Var.
expl.

LOD = 1.0, 3.1% Var.
expl.

LOD = 3.0 - 3.1, 6.9 - 7.2%
Var. expl.

* Values describe the range of 3 different asymmetry measures.

Figure 4 An additional significant QTL for ovary size was
identified in the ABC5 backcross population. This QTL is
identical to the behavioral pln1 QTL, demonstrating pleiotropy as
predicted by the reproductive ground plan hypothesis of social
evolution in honey bees.
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the chromosome 11 QTL interval contains the NFAT
transcription factor related LOC408354, which is differ-
entially expressed in female larval development [46] and
LOC408367, the ortholog of a NADH dehydrogenase
and three unidentified transcripts that all differ in
expression between worker and queen developing ovar-
ies (Klaus Hartfelder, pers. commun.).
We consider the ortholog of the seven-up receptor as the

top functional candidate for the second major QTL (on
chromosome 6) because seven-up is a nuclear receptor
that can inhibit ecdysteroid signaling [47], controls cell
proliferation [48], and interacts with Krüppel [49], a gene
that has been implied in reproductive regulation in work-
ers of honey bees and bumble bees [50]. We consider the
transcription factor abnormal oocyte (LOC551371) a sec-
ond top candidate because preliminary data show an
exceptionally high dN/dS substitution ratio in this gene
when A. dorsata, whose workers have very high ovariole
numbers [51], is compared to A. mellifera (Dawid Adnew,

Ryan Kuster, Olav Rueppell, unpublished data). The top
candidates for the QTL on chromosome 13 are the ortho-
logs of Ajuba, a negative regulator of the Hippo pathway
that mediates tissue size by controlling cell proliferation
and apoptosis [52], midway, a diacylglycerol acyltransfer-
ase gene that has been linked to actin reorganization and
apoptosis in the Drosophila ovary [53] and bazooka, a reg-
ulator of IIS signaling [29] that shows differential expres-
sion between the high and low pollen hoarding strains
[45]. In addition, a putative AMP-binding, fatty acid Co-A
ligase gene (LOC726040) and the fumarylacetoacetase
gene (LOC552210) in this interval show differential
expression [46]. Functional candidates for ovary asymme-
try are even harder to prioritize because they include
genes that could influence ovary size (e.g. vitellogenin) and
genes dealing with stress resistance, such as a cytochrome
P450 monooxygenase (Cyp314a1) and Glutathione S trans-
ferase S1 (LOC411045).
Regardless of the molecular mechanism, our results

show that there are at least three major and several
minor QTL segregating in the two parallel crosses that
we have analyzed. The phenotypic effects range from
large, significant QTL to the pleiotropic effects of some
of the behavioral QTL that could only be detected by
specific tests. The most pronounced QTL was identified
in ABC3 on chromosome 11, with an allelic substitution
effect at the nearest marker (est8456) of six ovarioles for
average ovary size, explaining over 1/3 of the phenotypic
variance in this cross. This major effect could explain the
bimodality of ovary size in ABC3 workers in certain
environments [22]. Caste development in general is a
threshold process and it is possible that this QTL affects
a specific threshold for ovary development, causing a
major increase in ovary size that is modulated by minor
loci and environmental effects, including indirect genetic
effects [54]. A minor effect of this region on ovary size
was detected in ABC5 and this QTL was also identified
by our preliminary QTL mapping based on selective,
pooled genotyping of the same crosses [22]. In addition,
the other ovary size QTL that had been indicated by the
preliminary study in ABC3 [22] was detected by the indi-
vidual analysis as a suggestive QTL on chromosome 10.
In contrast, none of the QTL that were initially identified
only from ABC5 (on chromosomes 2, 4, and 8) could be

Table 5 Genetic effects of previously identified behavioral QTL on average ovary size

Backcross QTL Marker Mann-Whitney test Effect size (# of ovarioles)

ABC3 AFF4 At164 U(N = 87) = 1182.5 p = 0.035 2.8

ABC5 PLN1 est10110 U(N = 186) = 3008.5, p < 0.001 2.8

PLN2 AT110 U(N = 94) = 1423.0, p = 0.016 2.7

PLN3 est788 U(N = 189) = 3702.5, p = 0.052 1.4

AFF2 ahb2647 U(N = 186) = 5211.5, p = 0.015 1.9

Figure 5 Possible genetic model of the inheritance of the
observed transgressive ovary sizes, focusing on the two major
QTL on chromosome 6 and chromosome 11 in the two
backcrosses ABC3 and ABC5. Possibly different alleles are indicated
by subscripts. The crossing scheme does not allow for different alleles
from the Africanized ancestor to segregate at one locus. Thus, the
differences between ABC3 and ABC5 must be caused by dominance or
epistasis effects.
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reconfirmed. This difference in concordance could be
explained by the higher overlap of individuals used in the
preliminary and this study in ABC3 than in ABC5. How-
ever, the lack of overlap between the two studies in
ABC5 could also be due to differences in statistical
power or methodological problems that can compromise
pooled genotyping results [36].
The second major QTL was detected in ABC5 on

chromosome 6 with a similar allelic substitution effect
on ovary size (5.8 ovarioles) but no genotypic effect of
this region was detected in the parallel cross ABC3. The
consistent differences between the two crosses can only
be explained by non-additive genetic effects in these
backcrosses (Figure 5). The two queen mothers of
ABC3 and ABC5 share any allele from their AHB father
but only 50% of the alleles from their EHB mother.
Both backcrosses were sired by brother AHB drones
that share any specific allele with 50% probability. How-
ever, these paternal alleles are not segregating in the
backcrosses. Since the increase in ovary size is derived
from the AHB ancestor [22] and the segregating AHB
alleles are identical between ABC3 and ABC5, the effect
of these segregating alleles must depend on the identity
of another allele, either at the same or at a different
locus (Figure 5) to explain the differences between the
parallel ABC3 and ABC5 crosses. Such dominance or
epistatic effects are ubiquitous in the genetic architec-
ture of the pollen hoarding syndrome [26-28,36]. Our
results suggest that these effects may have also played a
part in the evolution of caste divergence, shielding cer-
tain segregating alleles for reproductive potential from
selection.
Previously it had been suggested that at least two

interacting loci with a recessive allele for large ovary
size were responsible for the phenotype of ABC3 and
ABC5, as well as several other parallel backcrosses that
did not show a high ovariole number [22]. The current
results indicate that the genetic basis is more complex
with three significant QTL, two suggestive QTL, and
several loci of minor influence, such as the pln and aff
QTL. The most likely explanation is that ABC3 workers
are fixed for a “large” ovary allele combination at several
loci (e.g. on chromosome six: 6Aj/6Ai = 6Aj/6E b in
Figure 5) that elevates the average ovary size and allows
segregating variation at the QTL on chromosome 11
(Figure 5: 11Ai/11Aj ≠ 11Ec/11Aj) to manifest itself.
Conversely, ABC5 workers carry alternative allele com-
binations that make only a small difference in ovary size
at the chromosome 11 QTL (Figure 5: 11Ai/11Ak ≈
11Eb/11Ak) but a large difference at the chromosome 6
QTL (Figure 5: 6Ai/6Ak ≠ 6Ec/6Ak). Additionally, several
segregating alleles of minor effects may contribute to
the elevated ovariole numbers in ABC5. Alternatively,
differential parental imprinting [55] could explain the

different phenotypes and QTL effects in the parallel
crosses.
Following [36], we analyzed ovary size as a composite

variable consisting of a smaller and a larger side.
Although the correlation between the two sides was high
in both backcrosses, the two variables were affected
slightly differently by the QTL. Minimum ovary size
showed a stronger association with genotype at most, but
not all QTL. It may be that minimum size is less prone
to environmental influences than maximum size. The
two ovary size variables were also combined into differ-
ent measures of asymmetry to assess the intra-individual
plasticity of ovary size. The main conclusions did not dif-
fer significantly among the three specific measures. One
QTL for ovary asymmetry without an effect on ovary size
was identified in each cross. This is in contrast to our
results in two different crosses [36] and demonstrates
genetic elements in these regions that influence either
fluctuating or directional asymmetry of the ovary size in
honey bee workers. Based on our measurements, we can-
not distinguish between directional and fluctuating asym-
metry [56], but directional asymmetry seems more likely
for the following reasons: Evidence for directional asym-
metry in worker ovaries exists [57], major QTL are more
likely to be present for directional than for fluctuating
asymmetry [58], and no other striking asymmetries were
noticeable in bees with asymmetric ovaries.
In ABC5, we took the opportunity to analyze the

degree of worker ovarian activation under queenless con-
ditions and found one strong QTL on chromosome 6,
explaining approximately 3/4 of the phenotypic variation.
This extremely high value suggests monogenetic inheri-
tance but it is likely an overestimate due to the categori-
cal nature of the variable “ovary activation”. Although the
LOD traces are different between this ovary activation
QTL (most significant single marker: UN258) and the
ovary size QTL (most significant single marker: SV062)
in this genome region (Figure 1b), the two QTL overlap
extensively and may be due to the same molecular var-
iant. The region does not overlap with any of the minor
QTL for ovary activation reported in the anarchistic
strains that can activate their ovaries in the presence of
the queen [59] and thus we conclude that the degree of
ovary activation with and without a queen are not neces-
sarily related.
In contrast to a previous study [16], the ovary size and

the degree of ovary activation in the 14-day old workers
of the ABC5 sample were not linearly correlated.
Instead, workers with the largest ovaries often showed
only an activation score of 3, while workers with slightly
smaller ovaries more often had maximally developed
ovaries. This effect could be due to a combination of
the very large ovaries observed in this cross and the
competition for food when almost all workers start to

Graham et al. BMC Evolutionary Biology 2011, 11:95
http://www.biomedcentral.com/1471-2148/11/95

Page 10 of 14



develop their ovaries under queenless conditions.
Almost all workers in ABC5 had developed their ovaries
to some extent. Workers with very large ovaries may
not have had sufficient nutrients in the absence of sup-
porting workers [60] to simultaneously activate their
many ovarioles as effectively as workers with slightly
smaller ovarioles [22]. These data suggest that there
may be an optimal worker ovary size for individual
worker reproduction when a colony becomes hopelessly
queenless. In contrast, the maintenance of the observed
extensive genetic variation for ovary size is likely to be
due to selection on co-opted, new functions of the
reproductive control modules.

Conclusion
The presented data provides further support for the
RGPH of social evolution by demonstrating that several
behavioral QTL also affect ovary size in worker honey
bees. In addition, significant novel QTL were detected
for worker ovary size and asymmetry, as well as the
degree of ovary activation under queenless conditions
and a genetic model to explain the extreme phenotypes
was proposed. Evidence for non-additive effects exists,
although pair-wise epistasis among the novel QTL could
be excluded in both crosses. Some functionally interest-
ing candidate genes exist in these QTL that need to be
studied further. The exceptional phenotypic variation of
the two investigated crosses makes our results relevant
for the mechanistic understanding of honey bee caste
divergence and allowed us to test the RGPH in an inde-
pendent study system, exploiting a novel phenotypic
space.

Methods
Mapping populations
This study investigated the same two crosses that were
analyzed by Linksvayer et al. (2009). In brief, 12 European
honey bee (EHB) and 12 Africanized honey bee (AHB)
colonies were screened for ovary size. The phenotypic
extremes were crossed to produce hybrid queens by arti-
ficial insemination with sperm from a single drone.
These were then backcrossed by artificial insemination to
both parental colonies. The two analyzed crosses in this
study were both backcrosses to the AHB parent that
showed the highest mean and variance of worker ovary
size when reared in unrelated host colonies [22]. All 88
workers with complete phenotypic information and high-
quality DNA of the 94 collected workers from the most
extreme backcross (ABC3) were used as mapping popula-
tion. The second backcross (ABC5) was selectively geno-
typed, focusing on the 190 individuals with the most
extreme overall ovary size of the 344 workers with com-
plete data. ABC3 workers were dissected directly after
emergence. In contrast, ABC5 workers were kept in two

unrelated host hives for two weeks before collection. The
host hives had been made queen- and brood-less 10 days
prior to the introduction of newly emerged ABC5 work-
ers. This treatment leads to ovary activation in honey bee
workers [61], allowing the simultaneous analysis of ovary
size and activation.

Phenotyping
The abdomen was separated from head and thorax,
pinned ventral side up into a dissection dish, and opened
with two lateral cuts. After removal of the sternites, both
ovaries were carefully dissected out, placed on a micro-
scope slide, and viewed with a dark field compound
microscope in order to count the number of ovarioles
present in each ovary. The combination of the two
counts provided measures of minimum, maximum, and
average ovary size for each individual. In addition, three
measures of ovary asymmetry were calculated: the differ-
ence between the sides, the relative difference (difference
divided by the sum), and the ratio between the smaller to
the larger value. Furthermore, ovary activation was
scored using a 5-point scale [62]: 0 = undeveloped (rest-
ing ovarioles); 1 = oogenesis starting (presence of cells
swelling at top of ovariole and starting to descend); 2 =
slight development (eggs distinguishable from tropho-
cytes); 3 = moderate development (egg volume exceeds
that of the follicle); 4 = highly developed (eggs are fully
elongated). Since most variables showed significant
departures from normality, non-parametric statistics
were used where possible, employing the PASW 18.0
software package (SPSS Inc. Chicago, Il).

Genotyping
DNA was extracted from the head and thorax, using a
CTAB-phenol/chloroform protocol [25]. The concentra-
tion of the DNA was quantified with a Nanodrop® spec-
trophotometer and all samples diluted to 100 ng/ml.
These stocks were then diluted to template solutions of
10 ng/μl in low TE (0.3 mM EDTA). Based on the
results of pooled genotyping of select individuals of both
backcrosses with a panel of 1536 SNPs [22], 280 of
these SNPs were selected for individual genotyping. This
genotyping was performed by MALDI-TOF mass spec-
trometry (Sequenom, CA) with automated genotype
calling [63], according to Sequenom’s internal company
standards. The SNPs were genotyped in all 88 indivi-
duals of ABC3 and the 190 phenotypic extremes in
ABC5. Monomorphic loci and loci with <50% successful
base calling rates were omitted from the analysis.
For any remaining gaps in genome coverage that were

>30 cM, additional microsatellite markers located in
these genome regions were genotyped. These markers
were adapted from a published genome map of >2000
microsatellites [64] or designed from the published
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honey bee genome sequence [65]. Microsatellite regions
were PCR-amplified using a tailed primer approach [66]
to allow fluorescent detection of the PCR products on a
LiCor (Lincoln, Nebraska) Automated Sequencer (DNA
Analyzer 4300). For all loci a single touchdown PCR
protocol was used, decreasing the annealing temperature
from 68°C to 48°C [67]. PCR reactions were performed
in 10 μl, containing 10 ng of template DNA, 200 μM
dNTPs, 120 nM forward primer, 360 nM reverse primer,
50 nM of IRD-labeled M13 primer, 2 mM MgCl2, stan-
dard PCR buffer, and 0.2u of Taq polymerase. PCR
products were separated by electrophoresis on denatur-
ing, 6% polyacrylamide gels (length: 25 cm, thickness
0.25 mm) at 1000V for 2-3 hours. Microsatellite markers
were first amplified in a set of eight random individuals
to determine amplicon size by comparison to appropri-
ate size standards (LiCor, Lincoln, Nebraska) and screen
for polymorphism and amplification. Subsequently, sui-
table markers were amplified in all 88 (ABC3) or 96
(ABC5) individuals and PCR products of different size
and IRD label were multiplexed for genotype determina-
tion by gel electrophoresis.

Analyses
SNP and microsatellite data were combined and initially
assembled into linkage groups according to their pre-
dicted physical genome locations. Using Mapmaker 3.0
[68] this marker order was then verified by maximum
likelihood analysis and linkage distances between mar-
kers estimated, using the Kosambi map function. Mar-
kers that led to a significant (>5% and >5 cM) map
extension or deviation from the high-density reference
map [64] were re-genotyped and/or rescored to exclude
flawed data. In cases when assembly problems persisted,
the responsible marker was removed from the data set
or it was placed in a different genome region as deter-
mined by linkage analysis. Between-marker intervals that
differed in length by more than 50% between our maps
and the high-density reference map [64] were reduced
to the smaller interval length as a conservative basis for
the subsequent QTL mapping because large gaps might
produce artifactual QTL [30].
QTL mapping was performed with the MapQTL 4.0

software package [69]. Single marker analyses and inter-
val mapping was used in all cases, but multiple QTL
model (MQM) mapping was only used in ABC3 because
the selective genotyping of ABC5 does not allow MQM
analysis [69]. For all analyses, a LOD ≥ 2 was considered
suggestive and included as co-factors in MQM mapping
and a LOD ≥ 3 was considered significant [25]. In addi-
tion, empirical significance thresholds were determined
for each trait and cross separately by genome-wide per-
mutation tests [70]. Pair-wise epistasis between all identi-
fied significant and suggestive QTL in both backcrosses

was tested by assessing the interaction terms of two-fac-
torial ANOVAs using the nearest genetic marker as fac-
tors. Significance thresholds were Bonferroni-corrected
to account for the multiple testing. Higher-order interac-
tions could not be evaluated in a meaningful way due to
limited sample size. The 1.5 LOD support intervals of
each QTL were directly determined from the interval
mapping LOD functions to define the 97% confidence
interval for each QTL location [29].
The genotypic effect on average ovary size was evalu-

ated for one closely linked SNP or microsatellite marker
near each pln and aff QTL to test for the predicted
pleiotropy of these QTL. As an additional, more conser-
vative test of overlap between segregating genetic varia-
tion for worker ovary size and previously mapped
behavioral QTL, the exact probability of overlap
between the pln and aff QTL and the detected QTL for
ovary size was calculated. The meeting probability of the
ith ovary QTL with any of the behavioral QTL was com-

puted as pi = 1 − (1 − wi)
2

2
− (1 − wT)2

2
, where wi is the

fraction of the 97% CI of the ith ovary QTL to the over-
all physical size of the honey bee genome (236 Mb; [65])
and wT is the ratio of the combined length of the 97%
CI of the behavioral QTL to overall genome size. These
probabilities were multiplied to calculate the probability
of multiple QTL overlaps and summed to account for
independent possibilities of a given amount of overlap.
All candidate genes in the 97% confidence intervals of

the QTL were determined from the official GLEAN set
[65] to search for functional candidate genes. All genes
and putative gene entries were evaluated based on dif-
ferential gene expression [46] and known functions of
their homologs, as listed in the NCBI database http://
www.ncbi.nlm.nih.gov/gene and FLYBASE http://flybase.
bio.indiana.edu/.
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