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The objective of this research was the evaluation of Fourier transforms infrared spectroscopy (FT-IR) and mul-
tispectral image analysis (MSI) as efficient spectroscopic methods in tandem with multivariate data analysis and
machine learning for the assessment of spoilage on the surface of chicken breast fillets. For this purpose, two
independent storage experiments of chicken breast fillets (n ¼ 215) were conducted at 0, 5, 10, and 15 �C for up
to 480 h. During storage, samples were analyzed microbiologically for the enumeration of Total Viable Counts
(TVC) and Pseudomonas spp. In addition, FT-IR and MSI spectral data were collected at the same time intervals as
for microbiological analyses. Multivariate data analysis was performed using two software platforms (a com-
mercial and a publicly available developed platform) comprising several machine learning algorithms for the
estimation of the TVC and Pseudomonas spp. population of the surface of the samples. The performance of the
developed models was evaluated by intra batch and independent batch testing. Partial Least Squares- Regression
(PLS-R) models from the commercial software predicted TVC with root mean square error (RMSE) values of 1.359
and 1.029 log CFU/cm2 for MSI and FT-IR analysis, respectively. Moreover, RMSE values for Pseudomonas spp.
model were 1.574 log CFU/cm2 for MSI data and 1.078 log CFU/cm2 for FT-IR data. From the implementation of
the in-house sorfML platform, artificial neural networks (nnet) and least-angle regression (lars) were the most
accurate models with the best performance in terms of RMSE values. Nnet models developed on MSI data
demonstrated the lowest RMSE values (0.717 log CFU/cm2) for intra-batch testing, while lars outperformed nnet
on independent batch testing with RMSE of 1.252 log CFU/cm2. Furthermore, lars models excelled with the FT-IR
data with RMSE of 0.904 and 0.851 log CFU/cm2 in intra-batch and independent batch testing, respectively.
These findings suggested that FT-IR analysis is more efficient than MSI to predict the microbiological quality on
the surface of chicken breast fillets.
1. Introduction

According to the Food and Agriculture Organization (FAO, 2019)
around 14 % of the world’s food is lost after harvest and before reaching
the retail level, including on-farm activities, storage and transportation.
A key to the reduction of food waste is to improve the efficiency of the
food system by monitoring each production stage carefully (FAO, 2019).
At the same time, consumers’ awareness and demand for high quality and
safe food has been continuously arisen, especially in the case of meat
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products. Poultry meat and more specifically chicken breast is one of the
most preferable products due to its high protein content and low price
(FAO, 2020). However, its susceptibility to spoilage (Dawson et al., 2013;
Rouger et al., 2017; Silva, et al., 2018) necessitates the rapid quality
assessment during production, transportation or retail in order to avoid
further food waste.

An alternative approach for rapid quality assessment, feasible by
technology and science evolution, is the implementation of spectroscopic
methods such as vibrational spectroscopy (FT-IR, NIR, Raman) (Argyri
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et al., 2013; Alamprese et al., 2016; Grassi and Alamprese, 2018),
hyperspectral and multispectral imaging (Liu et al., 2014; Qin et al.,
2013) and biomimetic sensors (e-nose, e-tongue) (Loutfi et al., 2015;
Wojnowski et al., 2017). These nondestructive methods can be combined
with microbiological, sensory and multivariate data analysis for the
development of models evaluating meat quality. In addition, the devel-
oped models accompanied by their datasets could be uploaded and
maintained in the cloud, updated constantly with new data in order to be
consultative to food industries (Nychas et al., 2016; Tsakanikas et al.,
2020).

In the last decade, the performance of instruments based on light
emission interaction with the surface according to its chemical and
physical properties (Hyper and Multispectral Imaging) or vibrational
spectroscopy (FT-IR) has been investigated in the evaluation of quality
characteristics of various food commodities (Prieto et al., 2009; Xiong
et al., 2015). Both spectroscopic methods have been proved promising
and effective for the development of predictive models assessing the
quality and microbiological load in many meat products (Pu, et al.,
2015). Specifically, for poultry products qualitative models have been
constructed and evaluated for the classification of intact chicken breast
fillets based on hyperspectral analysis (Yang et al., 2018). Moreover,
qualitative as well as quantitative models developed on spectral data
(400–1100 nm) could determine bacterial counts during spoilage of
chicken meat (Feng and Sun, 2013; Feng et al., 2013). Likewise, Alex-
andrakis et al. (2012) proposed FT-IR as effective method for the
discrimination of intact chicken breast muscle during spoilage. The po-
tential of FT-IR to accurately detect spoilage bacteria on the surface of
chicken meat has been also confirmed by Ellis et al. (2002).

An important and challenging decision in the development of pre-
dictive models with spectral data is the performance of the optimum
machine learning algorithm resulting in efficient models that describe
more accurately the dynamics of microorganisms during spoilage. Until
now, many algorithms have been employed in the rapid assessment of
meat quality through several software applications (Chen, et al., 2011;
Kamruzzaman et al., 2015; Ropodi et al., 2016). SorfML is a publicly
available Web platform that has the flexibility to provide rapid screening
of experimental data by allowing the development and validation of a
variety of linear and non-linear algorithms (Estelles-Lopez et al., 2017;
Manthou et al., 2020). This leverage allows user to investigate data’s
tendency, exclude models with poor performance and compare the most
accurate ones. Additionally, it enables the comparison of different sen-
sors’ performance in order to facilitate the selection of the most reliable
analysis/sensor for food quality assessment.

The aim of this research was (i) to develop models derived from
different analytical instruments (FT-IR and MSI) assessing the microbi-
ological quality of chicken breast fillets during storage at isothermal
conditions, (ii) to assess the performance of different machine learning
algorithms and analytical platforms, based on a commercial software and
a publicly available Web platform, to monitor the population dynamics of
spoilage microorganisms during storage, and (iii) to infer on the potential
and limitations of each analytical tool.

2. Materials and methods

2.1. Experimental design

Chicken breast fillets (ca. 245–280 g per fillet) were obtained from a
Greek poultry industry and transported under refrigeration immediately
to the laboratory. The samples were supplied by the industry in plastic
packages (width: 25 cm, thickness: 90 μm, permeability of ca. 25, 90, 6
cm3 m-2day-1bar-1 at 20 �C and 50% RH for CO2, O2 and N2, respectively)
and stored aerobically at four isothermal conditions (0, 5, 10, 15 �C) for
up to 480 h depending on storage temperature. At regular time intervals,
spectral data (FT-IR and MSI) were collected from the surface of chicken
meat samples and correlated with microbiological data. Two indepen-
dent experiments were undertaken with two different chicken meat
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batches (batch 1: B1; batch 2: B2) and duplicate samples were analyzed
from each sampling point and storage temperature. Storage of samples
was terminated at 480 h at 0 �Cwhile for the highest storage temperature
(15 �C) the duration of the experiments was 168 h. All samples originated
from Ross strains broilers with the same feeding, farming and slaugh-
tering conditions. Feeding was customized by the company and
comprised of grain, wheat, maize, soya bean oil and meat and premix for
broilers (vitamin and mineral supplement). Chickens were slaughtered
after 3 months of age and all stages of production were in compliance to
EU regulations (823/2004, 824/2004, 834/2004 and 543/2008).

2.2. Microbiological analysis

A slice of 20 cm2 (maximum thickness: 2 mm) from the surface of
chicken breast fillet was removed aseptically using a sterile stainless steel
cork borer (2.5 cm in diameter), scalpel and forceps, added to 100 mL of
sterile quarter strength Ringer’s solution (Lab M Limited, Lancashire,
United Kingdom) and homogenized in a Stomacher device (Lab Blender
400, Seward Medical, United Kingdom) for 120 s at room temperature.
Serial decimal dilutions were prepared in the same medium and 1.0 or
0.1 mL of the appropriate dilutions were spread or poured on the
following media: a) Tryptic glucose yeast agar (Plate Count Agar, Biolife,
Milan, Italy) for the enumeration of Total Viable Counts (TVC) incubated
at 25 �C for 72 h; b) Pseudomonas Agar Base with selective supplement
cephalothin-fucidin-cetrimide (LabM Limited, Lancashire, United
Kingdom) for the enumeration of Pseudomonas spp. after incubation at
25 �C for 48 h. After incubation, typical colonies for eachmicrobial group
were enumerated and colony counts were logarithmically transformed
and expressed as log CFU/cm2. Further on, the primary model of Baranyi
and Roberts (1994) was fitted to the growth data of TVC and Pseudo-
monas spp. to determine the kinetic parameters of microbial growth
(maximum specific growth rate: μmax; lag phase duration).

2.3. Gas composition

Prior to microbiological analysis, the gas composition in the head-
space of the packages was analyzed using a Dansensor CheckMate 9900
gas analyzer (PBI-Dansensor A/S, Ringsted, Denmark) to monitor the
changes in the concentration (%) of O2 and CO2 during storage.

2.4. Spectra acquisition

2.4.1. Multispectral image analysis
MSI spectra were captivated via Videometer-Lab instrument (Video-

meter A/S, Herlev, Denmark) which frames surface reflectance of sam-
ples from 18 different monochromatic wavelengths (405–970 nm),
namely: 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850,
870, 890, 910, 940 and 970 nm. The organology of this sensor and the
image acquisition is thoroughly described in previous publications
(Dissing et al., 2013; Fengou et al., 2019). The result of the measurement
is a data cube comprised of spatial and spectral data for each sample of
size m�n�18 (where m�n is the image size in pixels) (Tsakanikas et al.,
2015). Furthermore, a segmentation process is required for the selection
of the Region of interest (ROI) on the samples surface. This process is
accomplished by Canonical Discriminant Analysis (CDA) and it is
implemented by Videometer-Lab version 2.12.39 software (Videometer
A/S, Herlev, Denmark).

2.4.2. FT-IR spectroscopy
FT-IR measurements were performed using a ZnSe 45 HATR (Hori-

zontal Attenuated Total Reflectance) crystal (PIKE Technologies, Madi-
son, Wisconsin, United States), and a FT-IR-6200 JASCO spectrometer
(Jasco Corp., Tokyo, Japan). The measurement crystal shows a refractive
index of 2.4 and a depth of penetration of 2.0 μm at 1000 cm-1. Spectra
were obtained at the wavenumber range of 4000 to 400 cm-1 using
Spectra Manager Code of Federal Regulations (CFR) software version 2



Fig. 1. Flowchart describing model’s development and validation though The Unscrambler and sorfML via data processing stage.

Fig. 2. Microbial counts of TVC (batch 1: blue line), Pseudomonas spp. (batch 1: orange line), TVC (batch 2: grey line) and) and Pseudomonas spp. (batch 2: yellow line)
on the surface of chicken breast fillet samples stored at 0, 5, 10 and 15 �C. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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Fig. 3. Spectrum of fresh (blue line, storage time: 0 h) and spoiled (red line,
storage time: 456 h) chicken breast fillet samples stored at 0 �C from MSI spectra
(wavelengths: 405–970 nm). (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Spectrum of fresh (blue line, storage time: 0 h) and spoiled (red line,
storage time: 456 h) chicken breast fillet samples stored at 0 �C from FT-IR
measurements (wavelengths: 1000- 2000 cm-1). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of
this article.)
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(Jasco Corp., Tokyo, Japan), by accumulating 100 scans with a resolution
of 4 cm-1 and a total integration time of 2 min.

2.5. Data analysis

2.5.1. PLS-R unscrambler
For the development of PLS-R models assessing TVC and Pseudomonas

spp. counts the statistical software Unscrambler © ver.9.7 (CAMO Soft-
ware AS, Oslo, Norway) was used. Prior to analysis, MSI data were pre-
treated by Standard Normal Variate (SNV) transformation for the
exclusion of collinear and “noisy” data (Bi et al., 2016). Likewise, FT-IR
spectral data were subjected to Savinsky-Golay pre-treatment (second
polynomial order, 1st derivative, 9-point window) (independent vari-
ables ¼ 829) to minimize baseline shifts and noise (Rinnan et al., 2009;
Alamprese et al., 2016). Additionally, wavenumbers in the range of
900–2000 cm-1 were utilized for the analysis as suggested by other re-
searchers (Argyri et al., 2013; Ropodi et al., 2018). Calibration and full
cross validation (leave-one-out cross validation) were conducted using
one batch (n ¼ 115) and prediction was implemented by the second
batch (n¼ 99). Independent variables for PLS-R models were the spectral
data acquired by MSI and FT-IR and TVC and Pseudomonas spp. counts
were considered as dependent variables.

2.5.2. Using SorfML for model development and validation
An alternative approach was investigated by the implementation of

the sorfML software (www.sorfml.com), in which nine algorithms were
considered for the prediction of TVC counts, namely Partial-least squares
(pls) (Geladi and Kowalski, 1986); Support vector machine with linear
kernel (svmLinear) (Cortes and Vapnik, 1995); Support vector machine
with radial basis function kernel (svmRadial); Random forests (rf)
(Breiman, 2001); K-nearest neighbours (knn) (Cover and Hart, 1967);
Principal component regression (pcr) (Jolliffe, 1982); Least-angle
regression (lars) (Loubes and Massart, 2004); Ridge regression (ridge)
(Hoerl and Kennard, 1970); Artificial neural network (nnet) (Jain et al.,
1996). Spectral data were mean-centered and standardized prior to
analysis. This modification allows every variable equal opportunity to
influence the final statistical model (Verboven et al., 2012). FT-IR spec-
tral data set was constricted from 800 to 4000 cm-1.

Another point of attention in the sorfML software analysis was the
splitting procedure of the data sets, which consisted of two phases
(Fig. 1). In the first one, the dataset (one batch) was separated randomly
into training and testing sets with a 70%–30% split. Each machine
learning algorithm was applied to the training set using repeated k-fold
cross validation (k ¼ 10, repeats ¼ 3) and grid search to obtain best
performing models with the optimal parameters. After model develop-
ment, prediction was undertaken by the test set to assess overall per-
formance which is firmly depended on the random training/test split
undertaken. In order to provide an appropriate and unbiased outcome,
Monte Carlo cross validation was implemented (k¼ 100) for a number of
times with different training and test splits, and giving an average of the
performance of all iterations (Xu and Liang, 2001). In the second phase,
one batch was trained with k-fold cross validation (k ¼ 10, repeats ¼ 3)
and the best model was validated on the other batch (B1 on B2: B1 as
training set and B2 as testing one; B2 on B1: B2 as training set and B1 as
testing one).

2.6. Model performance indexes

The assessment of model performance was based on the calculation of
the root mean squared error (RMSE) (Sant’Ana, Franco & Schaffner,
2012; Feng et al., 2013), mean absolute error (MAE) (Sang, Lü, Zeng,
Zhang & Zhou, 2008), coefficient of determination (R2) (Asuero et al.,
2006) and accuracy index. Unlike classification models, accuracy in the
case of quantitative models could be defined as TVC predictions within 1
log CFU/cm2 off the actual (observed) values (Estelles-Lopez et al.,
2017). Supplementary to these metrics, r (correlation coefficient) was
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computationally calculated via the Unscrambler software. Eventhough
the above mentioned performance metrics were calculated, models ac-
curacy on prediction was assessed based on RMSE values.

3. Results

3.1. Microbiological analysis

The microbial population of TVC and Pseudomonas spp. on the surface
of chicken breast fillets for each storage condition is presented in Fig. 2.
The initial load of TVC was 3.3 and 2.9 log CFU/cm2 in B1 and B2,
respectively. Likewise, Pseudomonas spp. was enumerated at the begin-
ning of storage at 2.0 and 2.1 log CFU/cm2 for B1 and B2, respectively.
Storage temperature seemed to significantly influence the growth of
chicken’s microbiota as inferred by the respective kinetic parameters for
TVC and Pseudomonas spp. as derived by the primary growth model of
Baranyi and Roberts (1994) (supplementary material, Table A). Specif-
ically, the lag phase duration and μmax of Pseudomonas spp. of chicken
samples stored at 0 �C were 72.2 h and 0.036 h-1, respectively. On the
contrary, samples stored at 15 �C exhibited μmax and lag phase duration
of Pseudomonas spp. at 0.241 h-1 and 8.8 h, respectively.

TVC and Pseudomonas spp. counts in B1 and B2 presented variations
during storage at 0 and 5 �C but always within the range of � 1 log unit.
At the end of storage, TVC and Pseudomonas spp. counts on samples from

http://www.sorfml.com


Table 1
MSI model performance parameters (slope, offset, Latent variables LVs,) and metrics (r, RMSE, R2, MAE, Accuracy %).

TVC N LVs slope offset Correlation coefficient r RMSE R2 MAE % Accuracy

Calibration 115a 9 0.768 1.177 0.876 0.752 0.768
FCV 115a 9 0.719 1.428 0.807 0.931 0.651
Prediction 100b 0.534 3.139 0.604 1.359 -0.025 1.042 59
Pseudomonas spp.
Calibration 115a 10 0.818 0.817 0.904 0.724 0.818
FCV 115a 10 0.766 1.035 0.843 0.920 0.712
Prediction 100b 0.597 2.930 0.664 1.574 -0.117 1.276 51

a Data set from batch 1.
b Data set from batch 2; LVs: Latent variables; FCV: Full-cross validation.

Fig. 5. Predicted versus observed TVC and Pseudomonas spp. counts after MSI models validation. Blue line depictures the line of equity (y ¼ x) and red lines indicate
� 1 log unit area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. b coefficients of PLS-R model for MSI analysis per monochromatic
wavelength from 405 to 970 nm. Dashed bars represent data per wavelength
that influenced more model’s performance.
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B1 were 6.2 and 5.7 log CFU/cm2, respectively. Similarly, for B2 samples
the level of final TVC and Pseudomonas spp. counts was 6.3 and 5.5 log
CFU/cm2, respectively. For B1 at 5 �C the number of TVC and Pseudo-
monas spp. after a period of 360 h was 6.8 and 6.6 log CFU/cm2,
respectively, while for B2 at the same storage conditions, TVC and
Pseudomonas spp. counts were 7.6 and 6.2 log CFU/cm2, respectively.
This difference in microbial counts was expected as samples of B1 and B2
were collected with an interval of 4 months (winter-spring) to take into
account seasonal variation. It is also worth noting that in all storage
conditions, the final number of TVC ranged between 6.2-7.6 log CFU/
cm2, unlike other studies reporting spoilage level of poultry meat at
7.0–8.0 log CFU/cm2 (Rouger et al., 2017). The lower TVC counts during
spoilage of poultry meat observed in this work could be attributed to the
non-permeable film used by the poultry company as packaging material.
Indeed, the percentage of CO2 inside the packages at the end of storage
was 14.3 % and 47.5 % for samples stored at 0 �C and 15 �C, respectively
(Supplementary material, Fig. A).

3.2. Spectral measurements

Typical MSI and FT-IR spectra of fresh (0 h corresponding to 3.3 log
CFU/cm2) and spoiled (456 h corresponding to 5.9 log CFU/cm2) chicken
breast fillet samples are illustrated in Figs. 3 and 4, respectively. The
comparison of reflectance in MSI spectra between fresh and spoiled
samples confirmed the role of myoglobin in meat color assessment
(570–700 nm). Concerning FT-IR spectra, the contribution of the ab-
sorption bands in the range of 1400–1800 cm-1 for the prediction of the
microbial counts on the surface of samples is highlighted in Fig. 4. The
absorbance in this region is mainly related to the metabolic fingerprint of
samples which is derived from the metabolic activity of microorganisms
during spoilage procedure (Alexandrakis et al., 2012).
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3.3. Models assessing microbial population via MSI analysis

Performance metrics (r, RMSE, R2, MAE, accuracy) as well as linear
parameters (slope, offset) are provided in Table 1 for PLS-R model cali-
bration, cross-validation and prediction, estimating the level of TVC and
Pseudomonas spp. on the surface of chicken breast fillets via MSI analysis.
More specifically, RMSE and r values ranged between 0.752-1.359 log
CFU/cm2 and 0.604–0.876, respectively for the estimation of TVC counts
when B1 was used as training set and B2 as testing set. Similar perfor-
mance was observed for PLS-R model assessing Pseudomonas spp. counts.
In this case, the values of r increased from 0.665-0.905, while RMSE
exhibited values in the range of 0.724–1.574 log CFU/cm2. Additionally,
a graphical approach of these linear models is represented in Fig. 5 where
predicted vs observed TVC and Pseudomonas spp. counts are illustrated.
Beta coefficients of the models are provided in order to comprehend the
contribution of specific wavelengths to model development. As



Fig. 7. Performance metrics (Accuracy, MAE, RMSE, R2) of MSI models with intra-batch validation.
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demonstrated in Fig. 6, six of the 36 spectral variables were important in
model optimization as their beta coefficients significantly differed from
those of the other wavelengths. Wavelengths influencing PLS-R model
were 630, 645 and 660 nm. Likewise, high values of b coefficients
noticed at 850, 890 and 940 nm.

Results for MSI spectral data after the implementation of 9 algorithms
via sorfML platform consisting of internal testing on B1 and B2, averaged
over 100 iterations (Monte Carlo cross validation) are shown in Fig. 7.
RMSE values ranged from 0.717 to 1.387 log CFU/cm2, MAE from 0.554
to 1.158, R2 from -12.064 to 0.725 and accuracy from 43.5 % to 84.1 %.
The highest performance was achieved with nnet with RMSE value of
0.717 log CFU/cm2 on B1 and 0.752 log CFU/cm2 on B2. Additionally,
other machine learning algorithms such as ridge, lars, pcr, pls and
svmLinear performed equally well with RMSE values below 0.78 log
CFU/cm2.

Following the same approach, results for batch-on-batch are provided
in Fig. 8. A less satisfactory performance can be observed compared to
intra-batch testing, with RMSE values ranging from 1.252 to 1.995 log
CFU/cm2, MAE from 0.993 to 1.710, R2 from -23.368 to 0.246 and ac-
curacy from 27 to 56 %. More specifically, the models developed on B1,
predicted TVC population from B2 with around 0.3 higher performance
on RMSE values. In contrast to intra-batch case, the highest performance
was accomplished by lars with RMSE of 1.252 log CFU/cm2. Model’s
optimization with B1 exhibited low values of RMSE (1.251 versus 1.544
log CFU/cm2 for lars model). However, in the case of B2 as a calibration
data set, R2 values presented improved values, especially when lars, pls
and ridge algorithms were applied.

3.4. Models assessing microbial population via FT- IR analysis

The findings of models predicting TVC and Pseudomonas spp. counts
126
with FT-IR measurements are shown in Figs. 9–12. Performance metrics
for PLS-R models are also provided in Table 2 for calibration, cross-
validation and prediction procedures where B1 was used for model
development and B2 for testing. For the estimation of TVC on chicken
breast, RMSE and r demonstrated values 0.739–1.029 log CFU/cm2 and
0.679–0.882, respectively. PLS-R model for Pseudomonas spp. via FT-IR
exhibited r values of 0.739–0.916 and RMSE values were from 0.683
to 1.077 log CFU/cm2. The influence of each spectral variable is illus-
trated in Fig. 10 in terms of beta coefficients of the PLS-R models per
wavenumber. The main region between 1004 to 1222 cm-1 contained
interesting information and therefore had great impact on model devel-
opment. Absorption bands of 1230–1403 cm-1 were considered as
important for the prediction of TVC and Pseudomonas spp. Beta co-
efficients of 1432–1498 cm-1 as well as 1549- 1584 cm-1 and 1658- 1704
cm-1 had impact on model construction.

The results for intra batch training for FT-IR data are summarized as a
heatmap in Fig. 11 containing also the performance metrics for the 9
algorithms. RMSE values ranged from 0.857 to 1.536 log CFU/cm2, MAE
from 0.669 to 1.164, R2 from -3.129 to 0.546, and accuracy from 50.0 to
75.9 %. As Fig. 11 indicates, prediction on B2 was more accurate than B1
based on RMSE values. Nnet exhibited acceptable performance on B1
with 1.047 log CFU/cm2 for RMSE, while lars and svmLinear algorithms
performed better with RMSE being at 0.904 and 0.954 log CFU/cm2,
respectively for B2.

Likewise, batch-on-batch prediction metrics are represented in
Fig. 12. In comparison toMSI models, FT-IRmodels predicted TVC counts
satisfactory when B1 was used as training set. RMSE values ranged from
0.851 to 3.924 log CFU/cm2 while training model on B1 and validating
on B2 outperformed the second model around significantly with 55%
lower RMSE. More specifically, nnet accomplished the lowest RMSE
(0.851 log CFU/cm2) and MAE (0.67 log CFU/cm2) over the other



Fig. 8. Performance metrics (Accuracy, MAE, RMSE, R2) of MSI models with batch-on-batch validation. Model B1 on B2 was developed via batch 1 and tested via
batch 2. The reversed procedure was followed for B2 on B1.

Fig. 9. Predicted versus observed TVC and Pseudomonas spp. counts after FT-IR models validation. Blue line depictures the line of equity (y ¼ x) and red lines indicate
� 1 log unit area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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algorithms as well as models trained on B2 and validated on B1.

4. Discussion

The initial population of TVC and Pseudomonas spp. was 3.1 (�0.29)
and 2.1 (�0.15) log CFU/cm2, respectively, which is considered low
compared to published data where the respective counts for TVC and
Pseudomonas spp. were above 5.0 and 3.5 log CFU/cm2, respectively
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(EFSA, 2016; Rouger et al., 2017). As presented in Fig. 2, the final pop-
ulation of microbiota was considerably low in the case of samples stored
at 0 �C in comparison to the threshold of spoilage of other meats (ca.
7.0–8.0 log CFU/cm2) (Nychas et al., 2008). Unlike literature (Rouger
et al., 2017), Pseudomonas spp. counts were enumerated at the final
sampling point at 0 �C below 7 log CFU/cm2 (Al-Nehlawiet al., 2013),
due to the fact that packaging film did not permit diffusion of gases.
Therefore, the produced CO2 from microbiota’s metabolic reactions



Fig. 10. b coefficients of PLS-R model for FT-IR analysis for each wavelength
within 1000–1800 cm-1.
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acted as modified atmosphere packaging (Koutsoumanis et al., 2008;
Liang et al., 2012; Holl et al., 2016). The differences between and within
batches could be attributed to animals’ variations (Marcato et al., 2006),
alterations of nutrition (Sakomura et al., 2015) as well as by the time of
the year (winter-summer), slaughtering and distributing to retail points
(Nychas et al., 2008; Collins et al., 2015). It is worth noting that the 2
analyzed chicken breast fillet samples per sampling point could not be
from the same chicken as they were randomly selected.

For MSI spectral data, model performance metrics predicted RMSE
from 0.739 to 1.536 log CFU/cm2. For the prediction of TVC and Pseu-
domonas spp. counts with PLS-R models, RMSE was 1.359 and 1.574 log
CFU/cm2, respectively. It needs to be noted that all developed models
presented the tendency of overestimating the predicted counts. The
increased RMSE values could be further improved (reduced) by applying
alternative algorithms and sample splitting. Indeed, the assessment of
TVC counts by sorfML platform showed satisfactory results, especially in
the case of intra-batch validation and nnet algorithm. In this model,
Fig. 11. Performance metrics (Accuracy, MAE, RMSE
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RMSE presented the lowest value (0.717 log CFU/cm2) while for ridge
model RMSE was 0.769 log CFU/cm2. On the contrary, for batch-on-
batch validation, three algorithms were considered acceptable for the
evaluation of TVC counts, with lars model having RMSE of 1.252 log
CFU/cm2 followed by pls and ringle models with1.319 and 1.262 log
CFU/cm2, respectively.

FT-IR models showed satisfactory prediction of counts, with perfor-
mance metrics achieving better values than MSI. For PLS-R models, TVC
and Pseudomonas spp. counts were predicted with RMSE being 1.029 and
1.078 log CFU/cm2, respectively. For intra batch testing, nnet algorithm
for B1 and lars for B2 were considered effective for the evaluation of TVC
counts, with lars having lower RMSE (0.905 log CFU/cm2) than nnet
(1.047 log CFU/cm2). In contrast, in batch-on-batch validation, RMSE
value for nnet (B1 on B2: 0.912 log CFU/cm2) were higher than lars
where RMSE had the lowest value (0.851 log CFU/cm2).

The differentiation of model performance for the 2-sensor analysis
highlights the important role of splitting process, data set selection and
algorithm during model’s optimization. One significant factor for accu-
rate prediction is inter-batch variability. Moreover, MSI results on intra-
batch performance and its low RMSE suggested that this analysis could be
applicable for internal validation or quality control in the production
line. The latter option has been confirmed via experiments performed in
the production line of chicken products at industrial level (Spyrelli et al.,
2020). Furthermore, the fundamental role of training and testing data set
definition is demonstrated by FT-IR lars model during B1 on B2 valida-
tion, which significantly outperformed batch-on-batch performance of
MSI (RMSE: 0.851 vs 1.251 log CFU/cm2). Additionally, several models
of FT-IR were able to attain respectable prediction on different data sets.

Another step affecting model’s performance is the selection of the
appropriate cross-validation procedure. Leave-one out cross validation
, R2) of FT-IR models with intra-batch validation.



Fig. 12. Performance metrics (Accuracy, MAE, RMSE, R2) of FT-IR models with batch-on-batch validation. Model B1 on B2 was developed via batch 1 and tested via
batch 2. The reversed procedure was followed for B2 on B1.

Table 2
FT-IR model performance parameters (slope, offset, Latent variables LVs,) and metrics (r, RMSE, R2, MAE, Accuracy %).

TVC N LVs slope offset Correlation coefficient r RMSE R2 MAE % Accuracy

Calibration 115a 5 0.777 1.128 0.882 0.739 0.777
FCV 115a 5 0.654 1.805 0.778 0.989 0.609
Prediction 99b 0.493 2.883 0.679 1.029 0.416 0.861 65
Pseudomonas spp.
Calibration 115a 5 0.839 0.723 0.916 0.683 0.839
FCV 115a 5 0.669 1.528 0.749 1.155 0.549
Prediction 99b 0.682 1.767 0.739 1.077 0.481 0.894 65

a Data set from batch 1.
b Data set from batch 2; LVs: Latent variables; FCV: Full-cross validation.
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(LOOCV) implemented for PLS-R models is a variant of k-fold cross-
validation which removes only one sample at a time from the training
set and considers it as a test set. Subsequently, for this case k is equal to
the number of objects. This method may be useful for small database size
presenting the problem of the inability to divide the data set into fairly
sized subsets for training and test sets. However, this cross-validation
approach can lead to overfit when the sample size is not large enough,
and thus, results in high prediction error (Beruetta et al., 2007). In
contrast, k-fold validation separates training data into k random groups,
trains the model on k-1 groups and evaluates it on the remaining group.
This is iterated for each unique group, and for repeated k-fold cross
validation, the whole process is repeated for the specified times. Over-
lapping within training and testing data set was avoided (k ¼ 100) with
Monte Carlo cross validation by repeating the process outlined above for
a number of times with different training and test splits and by averaging
the performance of all iterations (Xu and Liang, 2001). Regarding
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machine learning algorithms implemented for intra- and batch on batch
models, artificial neural network (nnet) and least-angle regression (lars)
exhibited better performance metrics overall than other models. The
former algorithm is considered as a suitable for spectral data sets due to
its high tolerance to noisy data. On the other hand, the accuracy of lars
might be explained by its ability in dealing with correlated predictors
which are abundant in the existing datasets. Moreover, overfitting could
be eliminated by reducing predictors range while simultaneously this
reduction could lead to an increasement of the generalising ability of the
models (Hesterberg et al., 2008).

The influence of certain wavelengths to MSI model development was
documented via b coefficient values for PLS-R models (Fig. 6). Reflec-
tance intensity at 570–700 nm is related to the presence of respiratory
pigments such as myoglobin (570 nm), oxymyoglobin (590 nm) and
metmyoglobin (630 nm) (Panagou et al., 2014; Pu et al., 2015). Fatty
acids and fat within the food matrix were mainly responsible for the
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intensity at 928 and 940 nm while reflectance at 910 nm is evidence of
protein denaturation (Kamruzzaman et al., 2015; Ropodi et al., 2018).
Proteins and proteolysis products are in abundance in chicken meat,
especially in chicken breast (Lin et al., 2011) and hence absorption band
at 910 nm is considered as one of the most significant wavelengths for
quality assessment on chicken breast fillets. Moreover, O–H second
overtones observed at 750 and 970 nm are related to the moisture con-
tent in the raw samples (Dixit et al., 2017; Xiaobo et al., 2010). The in-
fluence of muscle pigments and water content on the classification of
chicken breast fillets was also highlighted by Yang et al. (2018), where
samples were successfully classified in different quality grades.

The b coefficients of PLS-R models (Fig. 10) for FT-IR spectral data
revealed the important contribution of certain wavelengths in model
development. Absorption bands at 1011, 1032 and 1111-1143 cm-1 were
related to polyglycines, polysaccharides (C–O stretch) and amines (NH2
rock/twist), respectively (Bocker et al., 2007). Specifically, the absorp-
tion at 1032 cm-1 which corresponds to polysaccharides, could be asso-
ciated to biofilm formation by Pseudomonas spp. on stored chilled meat
(Liu et al., 2015; Wickramasinghe et al., 2019, 2020). Additionally, high
absorption occurred in the regions of 1222–1230 cm-1, 1284-1289 cm-1

and 1345-1352 cm-1 which are linked to the presence of lipids, nucleic
acids (asym PO2-stretch), amines from free amino acids and amide III
(Argyri et al., 2014). The critical role of amides and free amines for the
prediction of spoilage in meat is presented via high b coefficients at 1369-
1426 cm-1 and 1464- 1567 cm-1 (B€ocker et al., 2007). These outcomes are
in compliance to the existing literature where absorption bands of 1650,
1550 and 1400- 1200 cm-1 are linked to amide I, II and III and subse-
quently to the proteolytic activity of Pseudomonas spp. on meat (Nychas
and Tassou, 1997; Ellis et al., 2002). Especially for chicken breast anal-
ysis via FTIR and NIR spectroscopy, the estimation of spoilage in intact
chicken breast muscle was influenced by the absorption bands at 1080,
1550 and 1640 cm-1 and the increased content in free amino acids and
peptides as a result of proteolysis during storage maintenance (Alexan-
drakis et al., 2012). In another study the estimation of microbial spoilage
was attempted at 600- 1110 cm-1 where the findings indicated the region
of 1000–1060 cm-1 corresponding to protein functional group, such as
R-CO-NH2, R-NH2,R-CO-NH-R and R-NH-R as the most significant (Lin
et al., 2004).

5. Conclusion

The results of multivariate data analysis showed the impact of vari-
ation among and within batches on model performance and subsequently
the important role of data selection for model development and valida-
tion. Moreover, the perplexity of choosing the suitable machine learning
approach and the necessity of comparison between models was under-
lined in order to select the most accurate approach. FT-IR analysis was
proved to be the most appropriate technique for the assessment of
spoilage on the surface of chicken breast fillets while lars and nnet al-
gorithms predicted satisfactorily the microbial loads of TVC on the sur-
face of chicken breast fillets. Further on, additional experimental data as
well as validation with data from dynamic storage conditions simulating
the distribution stage could lead to the improvement of the above-
mentioned models.
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