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Abstract.	 [Purpose]	In	this	study,	we	verified	the	validity	of	the	step	time	and	walking	speed	obtained	from	the	
smartphone	gait	analysis	application	CareCoaching.	[Participants	and	Methods]	The	participants	were	66	indepen-
dent,	community-dwelling	adults	aged	65	years	or	older	who	performed	a	10-m	walking	test	twice	each	under	pre-
ferred-	and	slow-speed	conditions.	We	concurrently	measured	gait	motions	using	CareCoaching	and	the	OptoGait	
system	for	reference	data.	Both	systems	compute	walking	speed	and	step	time	as	gait	parameters.	We	examined	the	
concurrent	validity	of	these	parameters	by	using	intra-class	correlation	coefficients	(ICCs)	and	limits	of	agreement	
(LOAs)	with	Bland−Altman	analyses.	[Results]	In	the	preferred	walking	speed	condition,	the	ICCs	of	walking	speed	
and	step	times	between	the	CareCoaching	and	the	OptoGait	system	were	0.67	and	0.93,	respectively.	In	the	slow	
walking	speed	condition,	the	ICCs	for	walking	speed	and	step	time	were	0.78	and	0.97,	respectively.	In	addition,	
the	LOAs	for	step	time	were	−0.0941	to	0.1160	for	preferred	walking	speed	and	−0.0596	to	0.0883	for	slow	walking	
speed.	The	LOAs	for	walking	speed	were	−0.4158	to	0.0568	for	preferred	walking	speed	and	−0.3348	to	0.0523	for	
slow	walking	speed.	[Conclusion]	CareCoaching	showed	excellent	agreement	for	step	time	and	moderate-to-good	
agreement	for	walking	speed	in	independent,	community-dwelling	older	adults.
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INTRODUCTION

Fractures	due	to	falls	are	a	major	reason	why	older	adults	require	long-term	care	(LTC).	Not	surprisingly,	about	half	of	
these	 falls	 occur	 during	walking1),	 indicating	 that	 evaluating	 gait	 ability	 is	 indispensable	 for	 falls	 prevention.	However,	
properly	conducting	an	observational	 assessment	of	gait-related	 falls	 risk	can	be	difficult	 for	LTC	staff.	Misjudging	gait	
independence	level	can	lead	to	an	increased	risk	of	falls	or	excessive	physical	activity	restriction.

To	manage	such	problems,	an	LTC	facility	requires	a	device	that	can	simply	and	briefly	assess	gait	ability.	Although	some	
higher	accuracy	gait	analysis	devices	have	been	used	in	the	laboratory	and	study	field,	such	as	a	three-dimensional	motion	
analysis	system,	these	systems	are	difficult	to	apply	in	LTC	facilities.	Given	this	situation,	ExaWizards	Co.,	Ltd.	(Minato-ku,	
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Tokyo,	Japan),	has	developed	the	smartphone	and	tablet	application	CareCoaching.	This	app	computes	walking	speed	and	
step	time	as	gait	parameters	using	a	two-dimensional,	video-based,	skeleton	extraction	technology;	just	shooting	a	walking	
motion	from	the	front	plane	will	give	gait	parameters.	However,	to	date,	no	studies	have	examined	the	validity	of	the	gait	
parameters	obtained	from	the	CareCoaching	system.

A	previous	systematic	review	has	shown	that	some	studies	have	reported	the	validity	of	a	two-dimensional	video	gait	
analysis	 system	 as	 compared	 to	 a	 three-dimensional	motion	 analysis	 device2).	Most	 of	 these	 concurrent	 validity	 studies	
have	computed	gait	parameters	by	shooting	a	walking	motion	from	the	sagittal	plane.	However,	video	analysis	using	the	
sagittal	plane	has	two	limitations	for	clinical	settings.	First,	the	sagittal	plane	requires	a	more	secure	video-shooting	space	
than	that	needed	to	shoot	from	the	frontal	plane.	Second,	left–right	motion	cannot	be	measured.	Clinically,	performing	an	
observational	gait	analysis	from	the	frontal	plane	is	important	to	assess	mediolateral	gait	instability.	However,	few	studies	
have	examined	the	concurrent	validity	of	the	spatiotemporal	gait	parameters	obtained	from	two-dimensional	video	analysis	
done	from	the	frontal	plane.	Therefore,	the	computation	algorithm	for	gait	parameters	in	CareCoaching	is	a	novel	develop-
ment	with	clinical	applicability.

Therefore,	the	purpose	of	this	study	is	to	verify	the	concurrent	validity	of	gait	parameters	obtained	from	CareCoaching	as	
compared	with	the	parameters	obtained	from	the	OptoGait	system	as	a	reference.

PARTICIPANTS AND METHODS

We	designed	a	cross-sectional,	concurrent,	related-validity	study.	Participants	were	66	community-dwelling	adults	ages	
65	years	or	older	who	participated	in	a	1-day	physical	performance	check-up	at	Kobegakuin	University.	Inclusion	criteria	
were	as	follows:	Participants	(i)	could	walk	alone	with	or	without	walking	aids,	(ii)	did	not	have	self-reported	neurological	
disorders	affecting	their	mobility	or	balance,	and	(iii)	could	obtain	or	give	permission	to	shoot	the	videos.

We	conducted	this	study	with	the	approval	of	the	Research	and	Ethics	Committee	for	Humans	at	Kobegakuin	University	
(20-06),	and	we	gave	each	participant	an	oral	and	written	explanation	of	the	study’s	purpose	and	method	and	discussed	the	
protection	of	their	personal	information.	All	individuals	gave	their	consent	to	participate.

We	measured	gait	as	follows.	We	conducted	a	10-m	walking	test	twice	each	under	the	preferred-	and	slow	walking	speed	
conditions.	We	set	the	gait	analysis	section	as	the	5-m	middle	in	a	10-m	walkway	including	a	2.5-m	acceleration	and	decelera-
tion	section.	Because	this	section	was	short,	we	conducted	multiple	trials,	as	was	done	in	previous	studies3–5).

For	the	preferred	walking	speed	condition,	we	instructed	the	participants	to	“Walk	straight	until	the	marker	tape	at	your	
own	daily	usual	speed”.	For	 the	slow	walking	speed	condition,	we	 instructed	 the	participants	 to	“Walk	straight	until	 the	
marker	tape	more	slowly	than	your	own	usual	walking	speed”.	We	used	the	CareCoaching	and	the	OptoGait	systems	to	obtain	
the	gait	parameters	(see	Fig.	1	for	the	settings	for	both	systems).

CareCoaching	is	a	video	exchange	smartphone	or	tablet	app	equipped	with	gait	analysis.	This	system	utilizes	a	two-dimen-
sional,	video-based,	skeleton	extraction	technology	that	shoots	a	10-m	walking	video	from	the	frontal	plane.	CareCoaching	
estimates	the	5-m	long	gait	analysis	by	the	time-varying	rate	of	the	vertical	pixel	length	between	the	landmarks	of	the	neck	
and	middle	of	the	left	and	right	hip	joints	on	the	screen.	This	skeleton	extraction,	using	original	algorithms	from	ExaWizards	
Co.,	Ltd.	(pose	estimation	based	on	the	OpenPose	machine	learning	library	and	environment	detection),	estimates	the	coor-
dinates	of	the	head,	neck,	shoulder,	hip	joints,	knees,	and	feet	on	the	screen	pixels6).

In	this	study,	we	mounted	an	iPad	on	a	tripod	at	a	height	of	130	cm	from	the	floor	and	1	m	from	the	start	line	(Fig.	1).	We	
computed	the	gait	parameters	from	the	waveform-processed,	skeletal-coordinate	time	series	data.	The	screen	resolution	was	
720p	HD,	and	the	sampling	rate	was	30	frames	per	sec	(1/30th	of	a	sec).	We	computed	the	step	time	as	mean	value	using	the	
time	period	between	each	peak	point	in	the	waveform	obtained	from	the	ankle	joint	location’s	time	series	data	on	the	y	axis.	
We	calculated	the	walking	speed	as	5	m	divided	by	the	time	to	complete	the	estimated	5-m	walk.

Previous	studies	have	reported	high	validity	and	reliability	for	the	OptoGait	gait	analysis	device3,	7).	This	device,	which	
has	been	used	as	a	reference	in	a	previous	concurrent	validity	study8),	consists	of	a	pair	of	transmission−reception	1-m	bars	
equipped	with	96	LED	sensors	at	intervals	of	1	cm.	Walking	between	the	transmitting–receiving	bars	arranged	in	parallel	
generates	spatiotemporal	data	from	the	position	information	and	time	of	the	blocked	LED	sensor.	The	system’s	sampling	rate	
is	1/1000th	of	a	sec,	and	the	spatial	resolution	is	1	cm.	In	this	study,	we	set	the	OptoGait	system	with	a	measurement	range	
of	5	m	long	×	3	m	wide	(Fig.	1)	and	defined	the	step	time	as	the	time	from	heel	contact	on	one	side	to	heel	contact	on	the	
other	side.

We	measured	motor	function	tests	as	sociodemographic	data	and	conducted	the	Five	Times	Sit-to-Stand	Chair	Test	(5CST)	
and	the	Timed	Up	and	Go	test	(TUG).	For	the	5CST,	we	measured	the	sit-to-stand	time	from	a	modular	pipe	chair	with	a	
45-cm	seating	height9).	For	the	TUG,	we	measured	the	time	to	stand	up	from	a	seated	position	in	the	pipe	chair,	walking	3	m,	
turning	around,	walking	back	to	the	chair,	and	sitting	down10).

A	self-administered	questionnaire	addressed	sociodemographic	data,	fear	of	falling,	and	falls	history.	Sociodemographic	
measures	 included	age,	gender,	height,	weight,	medical	history,	 and	number	of	medications.	We	obtained	 fear	of	 falling	
using	a	single-item	question:	“Have	you	ever	felt	afraid	of	falling	in	your	daily	life?”	Participants	responded	yes	or	no.	We	
obtained	participants’	past	1	year	falls	history,	asking	“Do	you	have	any	history	of	falling	in	the	previous	year?”	Participants	
answered	yes	or	no.	We	defined	falling	as	“an	event	that	resulted	in	the	participant	unintentionally	coming	to	the	ground	or	
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other	lower	level”.
We	performed	statistical	analyses	using	commercially	available	software	(JMP13.0;	SAS	Institute	Japan,	Tokyo,	Japan).	

To	verify	the	validity	of	the	gait	parameters	of	CareCoaching,	we	examined	the	agreement	of	these	parameters	obtained	from	
the	CareCoaching	and	OptoGait	systems	using	intra-class	correlation	coefficient	(ICC	2,	1)	and	the	95%	limits	of	agreement	
(LOA)	with	Bland−Altman	plot	analysis.	We	computed	the	ICCs	using	the	data	of	two	trials	together	following	the	process	
of	previous	studies3–5).	We	calculated	LOAs	as	follows:	LOA	=	average	of	the	absolute	difference	between	both	devices	±	
1.96	×	standard	deviation	(SD)	of	absolute	difference	between	both	devices.	The	criterion	value	of	ICC	to	judge	the	level	of	
agreement	was	followed	by	the	previous	study11).

RESULTS

Table	1	shows	the	sociodemographic	data	for	all	study	participants.	Table	2	shows	the	means	and	SDs	for	the	CareCoach-
ing	and	OptoGait	step	time	and	walking	speed,	as	well	as	their	ICCs	and	LOAs.

In	the	preferred	walking	speed	condition,	the	ICCs	of	walking	speed	and	step	times	between	the	two	systems	were	0.67	
and	0.93,	respectively.	In	the	slow	walking	speed	condition,	the	ICCs	of	walking	speed	and	step	time	were	0.78	and	0.97,	
respectively.	In	addition,	 the	LOAs	of	step	time	were	−0.0941	to	0.1160	for	 the	preferred	walking	speed	and	−0.0596	to	
0.0883	for	the	slow	walking	speed.	The	LOAs	of	walking	speed	were	−0.4158	to	0.0568	for	the	preferred	walking	speed	and	
−0.3348	to	0.0523	for	the	slow	walking	speed.	In	the	Bland–Altman	plot	analyses,	the	red	line	indicates	a	difference	between	
the	two	devices,	and	the	red	dotted	line	indicates	the	95%	LOA	(Fig.	2).

DISCUSSION

We	aimed	to	verify	the	concurrent	validity	of	step	time	and	walking	speed	for	the	CareCoaching	system	compared	with	

Fig. 1. 	 Setup	for	gait	parameter	acquisition	with	CareCoaching	and	OptoGait.
OptoGait	is	shown	in	the	two	blue	bars	that	longitudinally	connect	a	pair	of	transmission−reception	1-m	bars.	CareCoaching	is	installed	
on	the	tablet	terminal	and	mounted	on	a	tripod	at	a	height	of	130	cm	from	the	floor	and	1	m	from	the	start	line.	The	analysis	section	of	
both	devices	is	5	m.
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the	OptoGait	system	as	a	reference.	The	results	of	the	5CST	and	TUG	indicated	that	our	study	participants	are	independent,	
community-dwelling	older	adults.

We	found	that	the	ICCs	of	the	gait	parameters	between	the	two	systems	were	excellent	for	step	time	and	moderate-to-good	
for	walking	speed	according	to	the	criterion11).

The	step	times	obtained	from	CareCoaching	showed	excellent	concurrent	validity	with	that	of	OptoGait	in	both	walking	
speed	conditions.	The	agreement	between	the	two	systems	for	slow	walking	speed	was	higher	than	that	for	preferred	walk-
ing	speed	(ICCs	0.93	and	0.97,	respectively).	A	previous	study	has	investigated	the	concurrent	validity	of	gait	parameters	
obtained	from	a	two-dimensional	sagittal	plane	video	analysis	and	from	a	three-dimensional	motion	capture	system.	The	
level	of	 agreement	 for	 step	 time	was	excellent	 (ICC=0.998)12).	Thus,	 although	 the	 concurrent	validity	of	 step	 time	with	
CareCoaching	in	the	slow-speed	condition	was	similar	to	the	results	of	the	previous	study,	the	validity	under	the	preferred-
speed	condition	was	lower.	In	addition,	the	Bland–Altman	plot	analysis	showed	an	underestimation	error	in	step	time,	which	
increased	from	the	measurement	value	to	approximately	<0.45	sec.	These	results	indicate	that	the	step	time	obtained	using	
CareCoaching	has	an	error	depending	on	the	walking	speed.

Two	factors	may	have	 led	 to	 this	underestimation.	First	 is	 the	difference	 in	sampling	rate	between	CareCoaching	and	
OptoGait:	the	rate	of	CareCoaching	is	1/30th	of	a	sec	and	that	of	OptoGait	is	1/1000th	of	a	sec.	Thus,	if	the	gait	parameter	
is	<0.33	or	close	to	it,	CareCoaching	may	have	an	error.	Second,	CareCoaching	did	not	detect	enough	anatomical	landmarks	
during	the	ground	contact	and	toe-off	phases.	CareCoaching	computed	the	step	time	using	the	time	between	each	peak	point	
in	 the	 ankle	 joint	 landmarks	waveform	consisting	of	 the	differences	 in	 adjacent	 sampling	 frequencies.	Two-dimensional	
skeleton	extraction	by	machine	learning	is	always	estimated	in	a	state	in	which	landmarks	have	slight	fluctuations.	Thus,	
the	farther	the	analysis	target	is,	the	larger	the	error	of	estimation.	Previous	studies	using	similar	technology	have	reported	

Table 1.		Sociodemographic	data	for	all	participants	(n=66)

All participants

Demographic Mean	±	SD/ 
n	(%)

Age	(years) 73.7	±	6.1
Female 37	(56%)
Height	(cm) 155.7	±	8.7
Weight	(kg) 55.2	±	9.9
Hypertension 15	(23%)
Diabetes	mellitus 3	(5%)
Cardiovascular	disease 4	(6%)
Respiratory	disease 2	(3%)
No.	of	medications 1.7	±	2.0
Five	Times	Sit-to-Stand	Chair	Test	(sec) 7.11	±	1.8
Timed	Up	and	Go	test	(sec) 5.8	±	1.2
Previous	1-year	falls	history 7	(11%)
Fear	of	falling 33	(50%)
Mean	±	SD:	mean	±	standard	deviation.

Table 2.		Mean	gait	parameters	for	the	study	participants	(n=66)	and	the	concurrent	validity	of	the	gait	parameters	between	
CareCoaching	and	OptoGait

CareCoaching OptoGait
Gait	parameters Mean	±	SD Mean	±	SD ICC	(2,1) Agreement	level† LOA‡

Preferred	walking	speed
Step	time	(sec) 0.48	±	0.04 0.49	±	0.04 0.93 Excellent −0.0941	to	0.1160
Walking	speed	(m/sec) 1.62	±	0.26 1.44	±	0.21 0.67 Moderate −0.4158	to	0.0568

Slow	walking	speed
Step	time	(sec) 0.57	±	0.07 0.58	±	0.08 0.97 Excellent −0.0596	to	0.0883
Walking	speed	(m/sec) 1.21	±	0.26 1.07	±	0.22 0.78 Good −0.3348	to	0.0523

Mean	±	SD:	mean	±	standard	deviation;	ICC:	intra-class	correlation	coefficient;	LOA:	limit	of	agreement.
†Agreement	level	was	the	reference	values	of	ICCs	to	judge	the	level	of	agreement	reported	in	a	previous	study12).
‡LOA	=	average	of	the	difference	between	both	devices	±	1.96	×	SD	of	the	difference	between	both	devices.
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errors	caused	by	lower	sampling	rate,	fluctuations	in	estimated	joint	landmark	locations,	and	increasing,	and	decreasing	of	
the	subject	size	on	the	screen2,	12–14).	Therefore,	when	measuring	step	time	with	CareCoaching,	we	can	calculate	with	high	
accuracy	data	for	older	adults	with	a	slower	walking	speed	(mean	of	1.07	m/sec),	but	an	underestimation	can	occur	with	older	
adults	with	a	faster	walking	speed	(mean	of	1.44	m/sec).

The	walking	speed	obtained	from	CareCoaching	showed	moderate-to-good	concurrent	validity	with	that	from	OptoGait.	
The	agreement	between	the	two	systems	in	slow	walking	speed	conditions	was	higher	than	that	in	preferred	walking	speed	
conditions	(ICCs	0.67	and	0.78,	respectively).	A	previous	study	has	reported	excellent	concurrent	validity	of	walking	speed	
obtained	 from	 two-dimensional,	 sagittal	 plane	video	data	 (ICCs=0.972)12).	Thus,	 our	 study	 indicates	 that	 the	 concurrent	
validity	of	walking	speed	obtained	from	frontal	plane	video	data	might	be	lower	than	that	from	sagittal	plane	video	data.	In	
addition,	from	the	Bland–Altman	plot,	walking	speed	with	CareCoaching	was	generally	overestimated	as	compared	to	that	of	
OptoGait.	The	Bland–Altman	plot	also	showed	that	the	faster	the	walking	speed,	the	larger	the	overestimation	error.

We	consider	that	the	cause	of	the	overestimation	is	similar	to	the	cause	of	the	decreased	ICCs	in	step	time,	such	as	a	lower	
sampling	rate	and	landmark	location	data	fluctuation	in	skeletal	extraction.	We	calculated	the	estimated	walking	speed	from	
the	time-varying	rate	of	the	number	of	pixels	on	the	screen’s	y	axis	at	the	midpoints	of	the	neck	and	both	hip	joints.	Therefore,	
the	estimated	time	taken	to	walk	5	m	maybe	be	shortened	because	of	the	low	sampling	rate	and	slight	landmark	fluctuations	
by	the	skeletal	estimation	when	the	participant	is	far	away.	In	addition,	the	Bland–Altman	plot	suggested	that	the	walking	
speed	in	CareCoaching	tends	to	be	overestimated	when	exceeding	approximately	1.0	m/sec.

To	improve	such	issues,	it	is	necessary	to	measure	the	sagittal-	and	front	plane	values	with	multiple	cameras	simultane-
ously	and	to	increase	the	sampling	rate.	On	the	other	hand,	the	Bland–Altman	plot	indicated	that	if	 the	walking	speed	is	

Fig. 2.	 	Bland−Altman	plots	for	CareCoaching	and	OptoGait	of	paired	differences	versus	average.
A,	Bland−Altman	plots	of	step	time	in	the	preferred	walking-speed	condition.	B,	Bland−Altman	plots	of	step	time	
in	the	slow-speed	condition.	C,	Bland−Altman	plots	of	walking	speed	in	the	preferred	walking-speed	condition.	D,	
Bland−Altman	plots	of	walking	speed	in	the	slow-speed	condition.
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approximately	<1.0	m/sec	for	both	devices,	the	error	between	the	two	devices	would	decrease.	However,	our	study	cannot	
generalize	the	results	to	older	adults	who	reduced	their	preferred	walking	speed	to	<1.0	km/sec.	Therefore,	further	studies	are	
needed	for	older	adults	requiring	some	physical	care	or	social	support.

To	summarize,	this	study	shows	that	CareCoaching	can	obtain	excellent	validity	for	step	time	and	moderate-to-good	valid-
ity	for	walking	speed	in	independent,	community-dwelling	older	adults.	However,	walking	speed	may	be	over	interpreted	
in	this	type	of	individual.	On	the	other	hand,	our	results	suggest	that	CareCoaching	could	obtain	gait	parameters	with	high	
validity	in	older	adults	with	a	walking	speed	of	<1.0	km/sec.	However,	we	cannot	generalize	these	results.	Therefore,	further	
studies	are	needed	using	older	adults	requiring	some	physical	care	or	social	support.
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