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Abstract: The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor
binding to the CACCC DNA motif and participating in the regulation of erythroid differentiation.
With combined use of microarray-based gene expression profiling and the promoter-based ChIP-chip
assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf−/−) mouse embryos,
we identified the pathways and direct target genes activated or repressed by EKLF. This genome-
wide study together with the molecular/cellular analysis of the mouse erythroleukemic cells (MEL)
indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another
DNA-binding hematopoietic transcription factor TAL1/SCL, known to be an Eklf activator and essen-
tial for definitive erythroid differentiation. Further identification of the authentic Tal gene promoter
in combination with the in vivo genomic footprinting approach and DNA reporter assay demonstrate
that EKLF activates the Tal gene through binding to a specific CACCC motif located in its promoter.
These data establish the existence of a previously unknow positive regulatory feedback loop between
two DNA-binding hematopoietic transcription factors, which sustains mammalian erythropoiesis.

Keywords: erythroid differentiation; EKLF/KLF1; gene knockout; TAL1/SCL; global gene expression
profiling; direct target genes; genomic footprinting of Tal1 promoter; transcriptional regulation

1. Introduction

Erythropoiesis is a dynamic process sustained throughout the whole lifetime of verte-
brates for the generation of red blood cells from pluripotent hematopoietic stem cells (HSCs).
In the ontogeny of mouse erythropoiesis, the major locations of HSC change orderly several
times, convert from embryonic yolk sac to fetal liver, and then to the spleen and bone marrow
in adult mice [1]. At each of these tissues, the multistep differentiation process of erythro-
poiesis is accompanied with a series of lineage-specific activations and the restriction of gene
expression, as mediated by several erythroid-specific/erythroid-enriched transcription factors,
including GATA1, TAL1/SCL, NF-E2, and EKLF [2–5]. Among the factors regulating erythro-
poiesis is the Erythroid Krüppel-like factor (EKLF/KLF1), a pivotal regulator that functions in
erythroid differentiation and fate decision through the bipotential megakaryocyte-erythroid
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progenitors (MEPs) [6–10], as well as the homeostasis of HSC [11]. Eklf is the first identified
member of the KLF family of genes expressed in the erythroid cells, mast cells, and their
precursors [12,13], as well as some of the other types of the hematopoietic cells, but at low
levels [6,14] (Bio GPS). The critical function of Eklf in erythropoiesis was initially demon-
strated through gene abolition studies, with the Eklf -knockout mice (Eklf−/−) displaying
severe anemia and dying in utero at around embryonic (E) day 14.5 (E14.5) [15,16]. The
impairment of the definitive erythropoietic differentiation is a major cause of embryonic
lethality in Eklf−/− mice, in addition to β-thalassemia [17,18].

EKLF regulates its downstream genes, including the adult β globin genes, through
binding of its C-terminal C2H2 zinc finger domain to the canonical binding sequence CCNC-
NCCC located in the promoters or enhancers [18–20] and the recruitment of co-activators,
e.g., CBP/p300 [21] and SWI/SNF-related chromatin remodeling complex [22,23], or co-
repressors [7,18]. Moreover, clinical associations exist between the Eklf gene and different
human hematopoietic phenotypes or diseases [10,24,25]. In erythroid progenitors, e.g., CFU-E
and Pro-E, EKLF is mainly located in the cytoplasm. Upon differentiation of Pro-E to Baso-E,
EKLF is imported into the nucleus and forms distinct nuclear bodies [20,26]. Genome-wide
analysis of the global functions of mouse EKLF through the identification of the direct
transcription target genes has been conducted using ChIP-Seq in combination with gene
expression profiling [27,28]. The results from these studies suggest that EKLF functions
mainly as a transcription activator in cooperation with TAL1/SCL and/or GATA1 to target
genes including those required for terminal erythroid differentiation [27,29]. However, much
remains to be reconciled between the two studies with respect to the diversity of the genomic
EKLF-binding locations and the deduced EKLF regulatory networks.

Besides EKLF, there are several other factors that have been shown to regulate erythro-
poiesis [2,5]. In particular, the T-cell Acute Lymphocytic Leukemia 1 (TAL1), also known
as the Stem Cell Leukemia (SCL) protein, plays a central role in erythroid differentiation as
well. The role of Tal1/Scl in primitive erythropoiesis has been demonstrated by the lethality
of Tal1−/− mice at E9.5 [30,31]. Studies using erythroid cell lines [32] or adult-stage con-
ditional Tal1 gene knockout mice [33,34] have shown the requirement of Tal1 in definitive
erythropoiesis. Another transcription factor known to play important roles in erythropoiesis
is the zinc-finger DNA-binding protein GATA1, which recognizes the consensus binding
box ((T/A)GATA(A/G)) [35–37]. The cooperative functioning of TAL1 and GATA-1 in the
regulation of erythroiepoiesis is closely associated with their physical associations at thou-
sands of genomic loci [38]. Interestingly, Eklf appears to be a downstream target gene of
the TAL1 factor. Whole-genome ChIP-seq analysis has identified the binding of the TAL1
protein on the Eklf promoter in primary fetal liver erythroid cells [39]. Furthermore, in the
Eklf gene promoter, the composite sequence of GATA-E box-GATA exists, which is a potential
binding site of the GATA1-TAL1 protein complex required for the expression of the Eklf gene
in a transgenic mouse system [40].

In the study reported below, we combined a promoter-based ChIP-chip technique
using a high-specificity anti-EKLF antibody and microarray-based gene expression profiling
to provide a genome-wide overview of the genes targeted by EKLF in the E14.5 mouse fetal
liver cells. Remarkably, Tal1 has turned out to be a direct target gene of EKLF, indicating
the existence of a positive feedback loop between Eklf and Tal1 for the regulation of
erythropoiesis in mammals.

2. Result
2.1. Genome-Wide Identification of EKLF Target Genes by Microarray Hybridization and
Promoter-Based ChIP-Chip Analyses

We first carried out a gene profiling analysis to identify the genes regulated by EKLF.
The microarrays were hybridized with cDNAs derived from the E14.5 fetal liver RNAs of
four wild-type (WT) and four Eklf knockout (KO or Eklf−/−) embryos (Figure 1A). Overall,
there were 6975 genes with differential expressions levels between the WT and KO mice
(Figure 1B–D). Notably, the confidence index of the microarray hybridization analysis was
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approximately 70%, as the upregulation/downregulation of 8 out of 12 genes could be
validated by semi-quantitation RT-PCR analysis (data not shown).Fig. 1. Identification of EKLF target genes by global gene expression profiling
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Figure 1. Identification of EKLF target genes by global gene expression profiling. (A) Left panels,
representative appearance of E14.5 embryos of wild-type and Eklf−/− mice. Right panels, Western
blotting patterns of EKLF protein in E14.5 fetal lives. Actin was used as the gel loading control.
(B) Scatter plot comparing the gene expression profiles of the E14.5 fetal liver cells of WT and Eklf−/−

mice by Affymatrix array hybridization. Each gene on the arrays is displayed as a single dot on
a logarithmic (log2) graph. The genes up-regulated and down-regulated by EKLF are indicated by
the red and blue dots, respectively. (C) Overview of the workflow of ChIP-chip and microarray
expression profiling. The flow chart illustrates the procedures used for the analysis of the NimbleGen
promoter ChIP-chip data and Affymatrix differential expression profiling data. The number of genes
(SEQ_ID or Probe_Set) after data processing at each step is indicated in parentheses. (D) The Venn
diagram showing the overlapping between gene sets derived from the microarray hybridization
analysis (6975 genes) and ChIP-chip analysis (4578 genes) of the E14.5 fetal liver cells of WT and
Eklf−/− mice, respectively.
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We then performed a ChIP-chip analysis (Figure 1C) using a promoter-based mi-
croarray and the high-specificity polyclonal anti-mouse EKLF antibody (anti-AEK) [19,26];
(Figure 1). The probes on the ChIP-chip array were grouped into 21,536 sequence IDs
(SEQ_ID). The promoter of each annotated gene was defined as the region from −3.75 kb
upstream to 0.75 kb downstream of the transcription start site (TSS). The SEQ_IDs with at
least one significant peak were defined as the potential target binding sites of EKLF. Overall,
enriched EKLF-binding was present in 5323 SEQ_IDs, corresponding to 4578 promoters
(Figure 1C,D). We also validated the ChIP-chip data by ChIP-qPCR; 9 of 13 promoters on
the ChIP-chip list were bound with EKLF, as shown by this assay (data not shown).

The data from the ChIP-chip and the microarray gene profiling experiments were
then combined to identify the putative EKLF target genes. After matching between the
11,549 differentially expressed probe sets from the microarray data and the 5323 significant
SEQ_IDs from the ChIP-chip array data, 2391 SEQ_IDs (11.1%) from the ChIP-chip data and
3467 probe sets (7.7%) from the microarray hybridization data remained. In the end, the
combination of the two data sets resulted in 2644 distinct genes (Figure 1C and Table S1A).
This gene list included only genes with an altered expression level in the Eklf−/− fetal
liver at the p < 0.05 level, and with at least one statistically significant EKLF-binding site
(p < 0.0017) in the promoter region, without considering the fold change of expression and
enrichment of binding.

Upon filtering with the effect sizes of the ChIP-chip data (>0.25) and microarray
profiling data (>0.5), the number of EKLF-bound and regulated targets was reduced from
2644 to 1866, among which 1156 were down-regulated and 710 were up-regulated in the
E14.5 WT fetal liver (Figure 1C,D, Table S1B,C). The above data support the scenario that
the promoter-bound EKLFs could function as either a repressors or activators in vivo.
Notably, the promoters bound with and regulated by EKLF were distributed throughout
the mouse genome, with no obvious preference for any chromosome (Figure 2A,B).

2.2. Functional and Pathway Analysis of EKLF Target Genes

Previous reports by others using the Ingenuity Pathway analysis (IPA) and GeneGo
MetaCore analysis platform showed that EKLF target genes were associated with a variety
of cellular activities or pathways, including general cellular metabolism, cell maintenance,
cell cycle control, DNA replication, general cell development, and the development of
a hematologic system [28,41]. To gain further insight into the potential biological roles
and functions of EKLF, we applied the IPA software for the analysis of the putative
1866 direct target genes of EKLF. The analysis identified the top five over-represented
networks of the down-regulated EKLF targets and the up-regulated EKLF targets, respec-
tively (Table S2). The significance of the relevant networks was strengthened with use of
the higher cut-off score of 25 to ensure that reliable functional networks built by IPA were
eligible (Tables S2 and S3A,B). Our network analysis confirmed the previously established
association of the hematological system development/function with the up-regulated EKLF
targets [28]. Notably, the top network associated with either the down-regulated EKLF
targets or up-regulated EKLF targets was related to the metabolism and small molecule
biochemistry (Table S2). Additionally, the significant networks/functions associated with
the down-regulated EKLF targets were more broad than those with the up-regulated EKLF
targets (Table S2). Overall, our analysis was consistent with previous studies [27,28], in
that the promoter occupancy by EKLF also played important roles in the developmental
processes, other than erythropeisis and hematological development.
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Fig. 2. Global analysis of direct target gene promoters of EKLF in E14.5 fetal liver 
cells
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Figure 2. Chromosome distribution patterns from the global analysis of direct target genes of EKLF in
the E14.5 fetal liver cells. (A) The number of putative EKLF-bound promoters on the different mouse
chromosomes. (B) The percentage of promoters of the individual mouse chromosomes bound with
EKLF. (C,D) Distributions of the distances between the binding motif of TAL1 (C) and GATA1 (D),
and that of EKLF on the mouse genome in the E14.5 fetal liver cells. Upstream locations are indicated
by the “−” sign.

We also used IPA software to group the number of EKLF targets according to their respective
biological functions, regulatory pathways, and physiological functions (Tables S1 and S4A,B).
Of the top five molecular and cellular functions, cell death/survival, cellular assem-
bly/organization, and cellular function/maintenance were overrepresented in both the up-
regulated and down-regulated EKLF targets. Further enrichment analysis of the canonical
pathways using the IPA software revealed significant overrepresented pathways across the
same two genes lists (Tables S3 and S5A,B). The prominent enrichment of the up-regulated
EKLF targets was related to cell cycle control of the chromosomal replication, EIF2 sig-
naling, mitochondrial dysfunction, hypusine biosynthesis, and tryptophan degradation
III (Eukaryotic; Supplementary Figure S3). The enrichment of the down-regulated EKLF
targets was related to insulin receptor signaling, chondroitin sulfate degradation (Metazoa),
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gap junction signaling, nitric oxide signaling in the cardiovascular system, and PDGF
signaling (Supplementary Figure S4). Together, the above further established the specific
functions and associated biological pathways associated with the EKLF target genes.

2.3. Identification of Potential Transcription Factors Co-Regulating the EKLF Targets

As co-occurrences of specific transcription factor-binding motifs in the promoters
would suggest the cooperation of these factors in transcriptional regulation [42,43], we
searched factor-binding motifs across the EKLF-bound promoters, as described in the
Material and Methods. Specifically, the consensus transcription factor-binding motifs
were ranked based on how often a particular motif occurred within the sequence ID.
This observed frequency was applied to all the consensus transcription factor-binding
motifs identified within the EKLF-bound regions on each sequence ID (Tables S4 and S6).
As expected, the most abundant transcription factor-binding motif in the EKLF-bound
and regulated promoters was the consensus EKLF-binding sequence CACCC, which was
present a total of 2390 times in 2391 of the EKLF target sequence IDs, corresponding to
2143 times in 2644 distinct gene promoters. Consistent with Tallack et al. [27], the binding
motifs of known transcription factors functionally interacting with EKLF, such as TAL1 and
GATA1 [27], were also identified, which were present at least once in 2390 (2143 distinct
gene promoters) and 2384 (2139 distinct gene promoters) of the EKLF target sequence IDs,
respectively. In addition, the binding motifs of a number of other transcription factors
possibly interacting with EKLF functionally, such as PEA3, LVa, H4TF-1, and XREbf were
also identified in this way (Tables S4 and S6).

To investigate the functional cooperation between TAL1 and EKLF or between GATA1
and EKLF, we further analyzed the distance between the binding motifs of GATA1 or TAL1
and that of EKLF. Indeed, the distribution of the TAL1 binding motifs had the highest
frequencies between +100 bp and −100 bp from the EKLF binding motifs, indicating
a functional cooperation between TAL1 (or possibly Ldb1 complex) and EKLF. Moreover,
this cooperation likely acts through the binding of TAL1 upstream of the EKLF protein
(Figure 2C). The distribution pattern of the GATA1 binding motifs also supported the
cooperation between this factor and EKLF (Figure 2D), although there was no obvious
upstream/downstream preference between these two factors.

2.4. Likelihood of Tal1 Gene as a Regulatory Target of EKLF in E14.5 Fetal Liver Cells

Our motif analysis across the EKLF-bound promoters revealed that the binding motifs
of the transcriptional factor TAL1 had the highest frequency of co-occupancy with the
binding motifs of EKLF (Table S4). Interestingly, in the hematopoietic system, the tran-
scription factor duet EKLF-GATA1 or TAL1-GATA1 served as part of the specific activation
complex(es) in the erythroid cells [43–45], and both the Eklf gene [46,47] and the Tal1
gene [48,49] were activated by the GATA1 factor [28,29]. We thus further investigated
whether there was also an epistatic relationship between Eklf and Tal1.

Gene expression profiling by microarray hybridization revealed a 2.5-fold (effect size = 1.3139)
down-regulation of the Tal1 transcript in the E14.5 Eklf−/− fetal liver in comparison with the
wild-type E14.5 fetal liver (Table S1A). This microarray data were validated by RT-qPCR. As
shown, the level of Tal1 mRNA in the Eklf−/− fetal livers was decreased significantly, down
to 47% of the level detected in wild-type fetal liver (left histograph, Figure 3A). In parallel,
the TAL1 protein level in the Eklf−/− fetal livers cells was also down-regulated by 70% when
compared with the wild type (right panels and histograph, Figure 3A). Thus, not only the
TAL1 factor could activate the Eklf gene transcription [39,40], but the Tal1 gene might also
be a regulatory target of EKLF. As Eklf−/− mice and Tal1−/− mice both exhibited a deficit
of erythroid-lineage cells after the stage of basophilic erythroblasts [33,46], we suspected
that the promotion of erythroid terminal differentiation from pro-erythroblasts to basophilic
erythroblasts very likely required EKLF-dependent activation of the Tal1 gene transcription.



Int. J. Mol. Sci. 2021, 22, 8024 7 of 20

Fig. 3. Tal-1 as a direct target gene of EKLF
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Figure 3. Tal1 as a direct target gene of EKLF. (A) Left, bar diagram of the relative mRNA levels of Tal1,
Eklf, and βmaj in E14.5 fetal liver cells of the WT and Eklf−/− (KO) mice, as analyzed by RT-qPCR.
*** p < 0.001 by t test. Error bars, SEM. Middle panels and right histobar diagram, Western blotting
analysis of TAL1 and EKLF in the E14.5 fetal livers of WT and Eklf−/− (KO) mice. Tubulin was used
as the loading control. *** p < 0.001 by t test. Error bars, STD. (B) Top, expression levels of Tal1 and
βmaj in MEL cells without or with DMSO induction for 72 h. The gel patterns of the semi-quantitative
RT-PCR bands are shown on the left, and the histographs of the statistical analysis of the data are
shown on the right. * p < 0.05, ** p < 0.01, and *** p < 0.001 by t test. Error bars, SD. Bottom, Western
blotting analysis of the levels of the TAL1 protein in MEL cells during DMSO-induced differentiation.
Tubulin was used as the loading control. The statistical analysis of the data is shown in the bar
diagrams on the right. ** p < 0.01 by t test. Error bars, SD. (C) Analysis of the gene expression in
4D7 and 2M12 cells without and with doxycycline (Dox)-induced expression of Eklf shRNA. The
cells without or with induction by DMSO for 48 h were treated with doxycycline. The levels of
EKLF protein in the whole cell extracts were then analyzed by Western blotting, as exemplified in
the upper right panels. Tubulin was used as the loading control. RT-PCR analysis showed that the
knockdown of EKLF reduced the levels of total Tal1 mRNA and βmaj mRNA in DMSO-induced cells,
as exemplified in the upper left panels and statistically analyzed in the two histobar diagrams below.
The gel band signals were all normalized to that of actin. * p < 0.05, and *** p < 0.001 by Student’s t
test. Error bars, SD.
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2.5. EKLF As an Activator of Tal1 Gene Expression during Erythroid Differentiation

To further examine whether EKLF was an activator of Tal1 gene transcription in
erythroid cells, we first analyzed the expression level of Tal1 mRNA in cultured mouse
erythroid leukemic (MEL) cells during DMSO induced erythroid differentiation. Similar to
βmaj mRNA, the Tal1 mRNA was expressed in un-induced MEL at a basal level, which
was increased by 2–3 fold upon DMSO differentiation (top, Figure 3B). Consistent with
this, the protein level of TAL1 was also up-regulated during a 48 h period of DMSO-
induced differentiation, but was down-regulated subsequently (bottom, Figure 3B). The up-
regulation of the Tal1 gene supported the scenario that a sustained higher expression of the
Tal1 gene was required for erythroid differentiation. The biphasic expression profile of the
TAL1 protein further suggested that the requirement of TAL1 for MEL cell differentiation
was up to 48 h after DMSO-induction, which corresponded to the basophilic/polychromatic
stages of erythroid differentiation.

We then analyzed the Tal1 mRNA levels in two independent MEL cell-derived stable
clones, 4D7 and 2M12. As shown in Figure 3C, the knock-down of Eklf mRNA by the
doxycycline-induced shRNAs led to a significant reduction in the Tal1 mRNA under the
condition of DMSO-induced erythroid differentiation, but not in the un-induced MEL cells.
The latter result further supported that EKLF was not part of the regulatory program of Tal1
gene transcription in MEL cells prior to their differentiation. The data of Figure 3C indicate
that EKLF was required for the activation of Tal1 gene transcription during the DMSO-
induced erythroid differentiation of MEL cells. Together with the loss-of-function of Eklf
studied in the mouse fetal liver (Figure 3A), we conclude that while TAL1 is a known activa-
tor of Eklf gene transcription, EKLF also positively regulates Tal1 gene transcription during
erythroid differentiation from CFU-E/ pro-erythroblasts to the basophilic/polychromatic
erythroid cells.

2.6. Binding In Vivo of EKLF to the Upstream Promoter of Tal1 Gene

How would EKLF activate the Tal1 gene transcription during erythroid differentia-
tion? It could either directly activate the Tal1 gene through DNA-binding in the regulatory
regions of the gene, e.g., its promoter or enhancer, or indirectly through other transcrip-
tional cascades. In an interesting association with the above data of Tal1 expression in
the presence and absence of EKLF, the ChIP-chip analysis identified two regions with
significant reads of EKLF-binding, one of which (region I, 114,551,700–114,552,900 on
chromosome 4, NCBI 36/mm8) was located around the Tal1 gene in the E14.5 fetal liver
cells (Figure 4A, Tables S2 and S1A). In the mouse erythroid cells, the Tal1 gene encodes
a Tal1 mRNA isoform A (Figure 4B) consisting of five exons, with the most upstream exon1
located at 115,056,426–115,056,469 (NCBI 36/mm10). However, no CCAAT box or TATA
box or CACCC box could be found 300 bp upstream of this exon 1. Instead, we found these
motifs in a region ~860 bp upstream of isoform A exon 1 (Figure 4B,C; see also sequence in
Figure 5A). We thus suspected that exon 1 of the Tal1 gene might be longer than currently
documented in the database. Alternatively, there might be another exon upstream of the
exon 1 of isoform A.
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Figure 4. Identification and characterization of the authentic exon-1 and promoter of Tal1 gene.
(A) ChIP-chip promoter array data around the Tal1 gene region. The black bars indicate the signals
from the individual probes (“binding signals”). The blue regions I and II indicate the EKLF-binding signals
from ChIP-chip promoter array analysis of two different mouse E14.5 fetal liver samples (“binding peaks”).
The yellow region indicates the sequence ID (SEQ_ID). (B) RT-PCR validation of the newly identified exon
1 of Tal1 mRNA. Top, maps of the newly identified exon structure of Tal1 mRNA in comparison with that
of Tal1 isoform A. Exons 1–5 are represented by the black boxes. Middle, maps of the exon-1 of Tal mRNA
and Tal1 isoform A, respectively, are shown above the primers used for RT-PCR analysis of the Tal1 mRNA.
The sequences of the reverse primers AR-1 and AR-2 are derived from the exon 1 of Tal1 isoform A. AR-3
is derived from the exon 2 sequence. The reverse prime AR-4 is across exons 1 and 2. The sequences of
the forward primers PF-1 and PF-2 are from the predicted new exon-1, while PF-3 is from the upstream
region. Bottom, gel band patterns of the RT-PCR analysis of DMSO and MEL cell RNAs using different
sets of PCR primers. (C) ChIP-qPCR analysis of EKLF-binding to the Tal1 promoter. The map of the Tal1
promoter region is shown on the left, with the CACCC boxes (E1, E2, and E3), CCAAT boxes (C1 and
C2), the TATA box, and the transcription start site (TSS, +1) indicated. The four regions (a, b, c, d) are
bracketed by the four primer sets used in qPCR analysis of chromatin from DMSO-induced MEL cells
immunoprecipitated with anti-EKLF. The relative folds of the enrichment of the chromatin DNA samples
pulled down by anti-EKLF are calculated as the Cq values over those derived from use of the IgG and
shown in the right histograph. Error bars represent standard deviations from 3~7 biological repeats. The
statistical significance of the difference between the experimental and control groups was determined by
the two-tailed Student’s t test, * p < 0.05.
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Fig. 5. Genomic footprinting analysis of the promoter of Tal1 gene in MEL cells
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Figure 5. Genomic footprinting analysis of the promoter of Tal1 gene in MEL cells. (A) The protected
bases (#) and hyper-reactive bases (•) of the Tal1 promoter region in MEL cells after DMSO induction,
as deduced from the in vivo DMS footprinting analysis, are labeled on the DNA sequence. The
footprinting pattern indicates the binding of EKLF on the E3 box. (B) The representative autoradio-
graphs of the analysis of the upper strand of the Tal1 promoter region by in vivo DMS protection
and LMPCR assays are shown. Locations of different factor-binding motifs/boxes, i.e., E1, E2, E3,
CCAAT, and ATAAA, are indicated on the right of the gel patterns. Numbers on the left correlate
with those indicated on the sequence in (A). The patterns in the N and INV lanes are the results
from the in vitro and in vivo DMS cleavages, respectively. Only those residues consistently showing
differences from the controls are indicated. The sizes of the circles reflect the different extents of the
protection or enhancement of DMS cleavage in vivo vs. in vitro.

To solve the issue, we carried out a semi-quantitative RT-PCR analysis of the MEL
cell RNAs using different sets of primers. As shown in the bottom panels of Figure 4B,
the use of the forward primer PF-3 with any one of four different reverse primes (AR-1,
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AR-2, AR-3, and AR-4) would not generate a RT-PCR band on the gel. On the other
hand, the use of the forward primer PF-1 or PF-2 together with the four reverse primers
generated RT-PCR bands, the lengths of which were consistent with the existence of an exon
(115,055,766–115,056,469, NCBI 36/mm10) consisting of the previously known isoform
A exon 1 at its 3′ region (diagram, Figure 4B). Based on these RT-PCR data and the common
distance (25–27 bp) between the promoter TATA box and transcription start site(s) of the
polymerase II-dependent genes, we suggest a map of the promoter region of Tal1 gene
upstream of the newly identified exon1, which contains the TATA box at −28, two CCAAT
boxes at −133 and −57, and three CACCC boxes (−788, −710, and −185) upstream of the
transcription start site or TSS (Figures 4C and 5A).

To validate the in vivo binding of EKLF in the newly identified Tal1 promoter, we
carried out a ChIPq-PCR analysis. As shown in Figure 4C, use of four different sets of
primers spanning different regions upstream and downstream of the Tal1 transcription
start site (TSS) indicated EKLF-binding to region b containing the distal CACCC boxes E1
at −788/E2 at −710, and to region c containing the proximal CACCC box E3 at −185.

2.7. Binding In Vivo of EKLF to the Proximal CACCC Box of Tal1 Promoter-Genomic
Footprinting Analysis

In order to examine whether EKLF indeed bound to the proximal CACCC box of the
Tal1 promoter in differentiated erythroid cells, we next carried out a genomic footprinting
assay of the Tal1 promoter in MEL cells before and after DMSO induction (Figure 5). As
shown, upon DMSO induction of the MEL cells, genomic footprints appeared at the distal
CACCC box E1 and more prominently the proximal CACCC box E3 at −185 (Figure 5). On
the other hand, the distal CACCC box E2 at −710 was not protected in MEL cells with or
without DMSO induction. Notably, the intensities of gel bands at −133, −132, −57, and
−56 appeared to be enhanced upon DMSO induction, suggesting a binding of factor(s)
at the two CCAAT boxes as well (Figure 5). These genomic footprinting data support the
scenario that EKLF positively regulates the Tal1 promoter activity through binding mainly
to the proximal promoter CACCC box E3. This would facilitate the recruitment of other
factors, including the CCAAT box-binding protein(s) to the Tal1 promoter.

2.8. Requirement of the Proximal CACCC Motif for Transcriptional Activation of the Tal1
Promoter by EKLF

To investigate whether EKLF was indeed an activator of Tal1 gene transcription
through binding to the proximal CACCC promoter box, we constructed a reporter plasmid
pTal1-luc, in which the Tal1 promoter region from −900 to −1 was cloned upstream of the
luciferase reporter. Three mutant reporter plasmids, pTal1(Mut E1)-Luc, pTal1(Mut E2)-Luc,
and pTal1(Mut E3)-Luc, were also constructed, in which the CACCC box E1, E2, or E3
was mutated (Figure 6A). Human 293T cells were then co-transfected with one of these
four reporter plasmids, plus an expression plasmid pFlag-EKLF. As shown in Figure 6B,
the luciferase reporter activity in the cells co-transfected with pTal1-Luc, pTal1(Mut E1)-
Luc, or pTal1(Mut E2)-Luc increased in a Flag-EKLF dose-dependent manner. However,
mutation at the E3 box of the reporter plasmid pTal1(Mut E3)-Luc prohibited this increase.
This result, in combination with the genomic footprinting data of Figure 5, demonstrate
explicitly that the binding of EKLF to the proximal CACCC box E3, but not the distal E1
or E2 box, in differentiated erythroid cells is required for the transcriptional activation of
the Tal1 promoter.
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Fig. 6. Transactivation of Tal1 promoter by Flag-EKLF in 293T cells.
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Figure 6. Transactivation of the Tal1 promoter by EKLF. (A) Linear maps of the wild type and three
mutant fragments, in which the CACCC box E1, E2, or E3 was mutated, and used for construction
of the reporter plasmids pTal1-Luc, pTal1(Mut E1)-Luc, pTal1(Mut E2)-Luc, and pTal1(Mut E3)-Luc,
respectively. (B) Luciferase reporter assay of the Tal1 promoter in 293 cells. The dose-dependence of
the luciferase (Luc) activity on the amount (ug) of pFlag-EKLF used in co-transfection is shown in the
bar diagram. * p < 0.05, *** p < 0.001 by t test. Error bars: STD. The elevated levels of the exogenous
Flag-EKLF upon co-transfection with increased amounts of the pFlag-EKLF plasmid were validated
by immunoblotting.

3. Discussion

A well-coordinated group of transcription factors regulate similar or distinct sets of
target genes, which build up the diverse functional networks and biological pathways
governing the process of erythropoiesis. Among these factors are GATA1, FOG1, FLI1,
PU.1, TAL1/SCL, and EKLF [2–4,10]. Previously, global analyses by gene expression
profiling with the use of the microarrays have suggested the potential target genes and
genetic pathways that function in erythropoiesis, as regulated by GATA1, TAL1/SCL,
and EKLF [17,18,29,36,39,49]. Later, ChIP analysis in combination with next-generation
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sequencing and microarray hybridization further provided lists of genes that could be
regulated directly, through DNA-binding, by these factors [27,28,38,39,50]. Among the
factors the potential regulatory targets of which have been studied globally is EKLF. In
particular, the two sets of ChIP-Seq analyses have each provided a set of direct target
genes of EKLF in the mouse fetal liver cells [27,28]. The change of binding of EKLF to its
potential gene targets during differentiation from erythroid progenitors to erythroblasts in
the E13.5 fetal liver has also been analyzed [28]. However, these two studies have displayed
divergent data with respect to the identities of genes directly regulated by EKLF.

In this study, we analyzed the regulatory functions of EKLF in E14.5 mouse fetal
liver cells through the combined use of genome-wide expression profiling and a promoter
ChIP-chip assay. Unexpectedly, the number of direct gene targets (1866), as defined by the
occupancy of EKLF within −3.75 kb to +0.75 kb relative to TSS (1.2-fold enrichment) and
a >1.4 fold change in the expression levels upon depletion of Eklf in the gene knockout
mice, are significantly higher than those derived from Tallack et al. [27] and Pilon et al. [28].
As shown in Figure S5A, of the 1866 EKLF target genes that we identified, 257 genes (13.7%)
overlapped with the data set from Tallack et al. [27], and 231 genes (12.3%) overlapped with
the data set from Pilon et al. [28]. Furthermore, the number of overlapping genes between
those two data sets was only 199. Moreover, among the direct targets identified in the
three studies, only 55 (2.9% of 1866) were in common (Figure S5A). The inconsistencies of
the conclusions among the three groups with respect to the direct target genes of EKLF likely
resulted from the use of different antibodies; different approaches; different developmental
stages of the embryos analyzed; different mouse strains; different cell types; and, finally,
analyses using different peak calling methods. Moreover, we used 1.4-fold as the cutoff
line, rather than 2-fold chosen by the other two groups [17,28,29], when comparing the
WT and Eklf−/− expression profiles. This lower cutoff line may have allowed us to find
more candidate targets that display subtle expression differences, but have a prominent
functional significance. Notably, the use of a higher cut-off line, i.e., 2-fold instead of
1.4-fold, reached a similar conclusion (Supplementary Figure S5B).

One surprising outcome of our genome-wide study is the existence of a positive
feedback loop between the two well-known erythroid-enriched transcription factors, EKLF
and TAL1, in early erythroid differentiation. By loss-of-function analysis, we show that
EKLF also positively regulates the expression of Tal1 during erythroid differentiation
(Figure 3). In particular, the induced depletion of Eklf drastically lowers the expression level
of Tal1 in DMSO-induced MEL cells (Figure 3C). The combined data from the ChIP-chip,
genomic footprinting, and transient reporter assays further indicate that EKLF activates the
Tal1 gene transcription through binding to the proximal CACCC box in the newly identified
Tal1 promoter (Figures 4 and 5). Consistent with this scenario of mutual activations of
Tal1 and Eklf, the mRNAs of Tal1 and Eklf were both progressively up-regulated during
erythroid differentiation of the primary mouse fetal liver cells [51]. Thus, our finding of
the positive regulation of the Tal1 gene by EKLF demonstrates the existence of a Tal1-Eklf
positive feedback loop that promotes the mammalian erythroid differentiation in a tightly
regulated time window, from the transition of Pro-E to Baso-E of the erythroid lineage.

We propose the following scenario for the mutual activation of Tal1 and Eklf, as well as
the functional consequences of this positive feedback loop during erythroid differentiation.
In the erythroid lineage at the BFU-E/CFU-E/Pro-E stages, the two factors are already
expressed at basal levels. EKLF is retained by FOE in the cytosol [26], while the TAL1
protein positively regulates the expression of Eklf [38,39]. When the cells enter the Baso-E
stage, the EKLF protein is released from its physical interaction with FOE in the cytoplasm
and is imported into the nucleus [26]. The imported EKLF binds to the E3 box of the
Tal1 promoter to enhance the promoter activity of Tal1 (Figures 5 and 6). This positive
feedback loop rapidly amplifies both factors during erythroid terminal differentiation.
As a result, the EKLF-mediated activation of Tal1 may act as a valve that facilitates the
commitment of the erythroid lineage from MEP through promoting the differentiation
transition from Pro-E to Baso-E, thus sustaining the process after Baso-E. Furthermore,
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there is a high frequency of co-occupancy of EKLF and TAL1 in a number of promoters
that are active in erythroid cell lines or erythroid tissues (Table S4) [27–29]. Thus, the
Eklf /Tal1 loop would irreversibly promote erythroid terminal differentiation through the
up-regulation of not only Eklf and Tal1, but also their mutual downstream targets that are
crucial for erythroid differentiation. For the latter process, the EKLF and TAL1 proteins
may work within the same transcriptional complex(es) that bind to the composite CACCC
box-E box in the promoters of these downstream targets [45]. The positive feedback
regulatory loop between EKLF and TAL1, as identified in this study, provides a mechanism
ensuring the commitment to erythroid differentiation among the multiple lineages of the
hematopoietic system.

4. Material and Methods

4.1. Generation of Eklf−/− Mice

As described elsewhere [11], the generation of B6 mouse lines with homozygous
knockout of the Eklf gene, Eklf−/−, was carried out in the Transgenic Core Facility (TCF) of
IMB, Academia Sinica, following the standard protocols with the use of the BAC construct
containing genetically engineered Eklf locus and E2A-Cre mice.

4.2. Gene expression Profiling by Affymetrix Array Hybridization

The E14.5 mouse fetal livers from WT and Eklf−/− mouse fetuses were homogenized
by repeated pipetting in phosphate-buffered saline (PBS) (10 mM phosphate, 0.15 M NaCl
[pH 7.4]). The total RNAs were then isolated with Trizol reagent (Invitrogen, Carlsbad,
CA, USA) and were subjected to genome-scale gene expression profiling using the Mouse
Genome Array 430A 2.0 (Affymetrix, Inc., Santa Clara, CA, USA). The standard MAS5.0
method was applied to normalize the gene expression data. The gene expression values
were log-transformed for later comparative analysis. Statistical analysis was carried out
using R 3.0.2 language (R Development Core Team, 2013, http://www.R-project.org,
accessed on 21 July 2021)

4.3. Identification of Differentially Expressed Genes

The genes with differential expression patterns between the WT and Eklf −/− mice
E14.5 fetal liver were first identified using a two-sided two sample t-test with the signifi-
cance level at 0.05. As the set of probes for each annotated gene should all exhibit the same
direction or sign when comparing the WT and Eklf−/− samples, this consistency check
was used to remove 257 ambiguous genes from the gene list. After filtering by the p-value
threshold, a subset containing 12,277 statistically significant probe sets was obtained.

4.4. Identification of EKLF-Bound Targets by Using NimbleGen ChIP-Chip Array Hybridization

The E14.5 mouse fetal liver cells were cross-linked, sheared, and the EKLF bound-
chromatin complexes were immuno-precipitated (ChIP) with the AEK antibody [20] and
rabbit IgG, respectively. The DNA was then purified from the immunoprecipitated chro-
matin samples using a QIAquick PCR purification kit (Qiagen, Hilden, Germany) and
amplified by the Sigma GenomePlex WGA kit for hybridization with the Roche NimbleGen
Mouse ChIP-chip 385 K RefSeq promoter arrays.

There were 768,217 probes on the NimbleGen 385 K ChIP-chip array. These probes
were grouped into 21,536 sequence IDs, each of which contained 5 to 320 probes that ranged
from 49 bp to 74 bp in length. The distances between the probes in the same sequence ID
ranged from 100 bp to 3700 bp. In general, these sequence IDs are located in the promoter
regions of the genes, roughly from −3.75 kb to +0.75 kb, relative to the transcription start
site (TSS). The sequence ID was assigned a gene name when the gene’s coding sequence
overlapped with the region from 10 kb upstream to 10 kb downstream of the sequence
ID. In this way, 652 sequence IDs were found to be located in the intergenic regions and
20,884 sequence IDs were near the coding regions of the genes.

http://www.R-project.org
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To identify the binding targets of EKLF, the moving window with a size equal to
5 was adopted to test the hypothesis on a positive mean value using a one-sided t-test
with the significant level set at 0.0017. This smaller cut-off value was chosen to account
for the multiple comparisons. Specifically, there were 35 probes in each sequence ID,
and the adjusted p-value was derived by (1 − (1 − 0.0017)30)~0.05. The moving window
was applied to each sequence ID separately. Finally, the results were summarized at the
sequence ID level, and a sequence ID would be defined as a target site of EKLF if there was
a significant peak in the sequence ID.

4.5. Matching between Affymetrix Probes and NimbleGen ChIP-Chip Probes

The E14.5 fetal liver gene expression data obtained from the Affymetrix array hy-
bridization analysis allowed us to further reduce the false positives from the ChIP-chip
dataset. To do this, the annotation strategy used in annotating the sequence IDs in the ChIP-
chip array was adopted to match the probes from these two platforms by gene symbols.
After this procedure, there were a total of 78,634 matched pairs between the ChIP-chip
sequence IDs and Affymetrix probes.

4.6. Co-Occurrence of Binding Motifs and Relative Distance Distribution

First, 226 known transcription factor-binding motifs were extracted from the previous
report [28]. For each of these binding motifs, the number of sequences in the mouse
genome bearing the motif was sorted. The top co-existing binding motifs with EKLF
were then further investigated. The relative distance between a co-existing motif and the
EKLF-binding motif was calculated for each sequence ID. However, when multiple binding
motifs existed in the same sequence ID, multiple distances would be generated. In that case,
the shortest distance was selected as the representative distance in that sequence ID. The
relative distance distribution was then plotted to inspect the potential localization biases.
The existence of a localization bias provided further indication that two transcription
factors might interact in certain way to regulate the particular target gene(s).

4.7. Functional Enrichment Analysis

An analysis was carried out with the use of IPA (Ingenuity® Systems, www.ingenuity.
com, accessed on 21 July 2021) to identify the genes significantly associated with specific bi-
ological functions and/or diseases in the Ingenuity Knowledge Base. Right-tailed Fisher’s
exact test was used to calculate the p-value, determining the probability that each biological
function and/or disease assigned to that data set was due to chance alone. The list of genes
with significant EKLF-binding enrichment and deemed to be expressed differentially in
WT and KO mice fetal livers was imported into IPA. The up-regulated and down-regulated
EKLF targets were first mapped to the functional networks available in the IPA database,
and then ranked by scores computed with the right-tailed Fisher’s exact test mentioned
above. As listed in Table S3A,B, this analysis identified significant over-represented molec-
ular and cellular functions (p value < 0.05) associated with the imported up-regulated and
down-regulated EKLF targets that were eligible (score > 25), with significance scores of
26 and 34, respectively (Figures S1 and S2).

4.8. ChIP-qPCR

The ChIP-PCR analysis followed the procedures of Daftari et al. [52]. The soni-
cated cell extracts from formaldehyde cross-linked E14.5-day mouse fetal liver cells were
immuno-precipitated with anti-EKLF and purified rabbit IgG, respectively. The precip-
itated chromatin DNA was purified and analyzed by quantitative PCR (qPCR) in the
Roche LightCycle Nano real-time system. The sequences of the primers used for q-PCR
designed by our lab are listed in Table S7. Each target gene was amplified with one set
of primers flanking the putative EKLF-binding CACCC motif(s) and two sets of non-
specific primers bracketing the regions located upstream and downstream of the CACCC
motif(s), respectively.

www.ingenuity.com
www.ingenuity.com
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4.9. Plasmid Construction

Mouse Eklf cDNA was derived by the RT-PCR of RNA from DMSO-induced MEL cells
and was cloned into the vector pCMV-Flag (Invitrogen), resulting in pFlag-EKLF. Plasmids
for the luciferase reporter assay were constructed in the following way: Tal1 promoter
region from −1 to −900 relative to the transcription start site of the newly identified Tal1
exon 1 was amplified by PCR of mouse genomic DNA, with the addition of a XhoI cutting
site at the 5′ end and a HindIII site at 3′ end, and cloned into the XhoI and HindIII sites in the
psiCHECK™-2 Vector (Promega, Madison, WI, USA), resulting in the plasmid pTal1-Luc.
Tal1 promoter DNA fragments with the putative EKLF-binding CACCC box(es) mutated
were generated by fusion PCR, using the endogenous Tal1 promoter as the template. The
sequences of the three mutated CACCC boxes and their flanking regions in these fragments
were E1 box, 5′-CAGGCAAAACCAGGGACCAcatatTTAAAAATGATTCCCCTTCTCAAG-
3′; E2 box, 5′-CAATAGCTCTTCAGTTAGCGGTGAAGGCTCATGAAcatatCCAC-3′; and
E3 boxes, 5′-GAGTTATTGACACAGCCCTGTcatatCCTCCCCCCACTG-3′. The inserts of
all of the plasmids were verified by DNA sequencing before use.

4.10. Cell Culture, Differentiation, DNA Transfection, and Knockdown of Gene Expression

The murine erythroleukemia cell line (MEL) was cultured in Dulbecco’s modified
Eagle medium containing 20% fetal bovine serum (Gibco, Carlsbad, CA, USA), 50 units/mL
of penicillin, and 50 µg/mL of streptomycin (Invitrogen). For the induction of differentia-
tion, the cells at a density of 5 × 105/mL were supplemented with 2% dimethyl sulfoxide
(DMSO; Merck) and the culturing was continued for another 24 to 72 h. DNA transfection
of the MEL cells and K562 cells was carried out using the TurboFect transfection reagent
(Thermo Scientific, Waltham, MA, USA) and Lipofectamine® 2000 transfection reagent
(Life Technologies, Carlsbad, CA, USA) respectively.

For knockdown of the Eklf gene expression, MEL cell line-derived clones 4D7 and
2M12 [7] were maintained in 20 µg/mL of blasticidin (Invitrogen) and 1 mg/mL of G418
(Gibco). Differentiation of the 4D7 and 2M12 cells was induced by 2% dimethyl sulfoxide
(DMSO; Merck) for 48 h. The expression of shRNA targeting and the knocking-down Eklf
was induced with the addition of 2 µg/mL of doxycycline (Clontech, Kusatsu, Japan) for
96 h, as described in Bouilloux et al. [7].

4.11. RNA Analysis

The total RNA from the MEL cells and fetal liver suspension cells were extracted with
the TRIzol reagent (Invitrogen). cDNAs were synthesized using SuperScript II Reverse
Transcriptase (RT) (Invitrogen) and oligo-dT primer (Invitrogen). Taq DNA polymerase
was used for semi-quantitative RT-PCR analysis of the cDNAs. Quantitative real-time PCR
(qPCR) analysis of the cDNAs was carried out using the LightCycler® 480 SYBR Green
I Master (Roche Life Science, Penzberg, Germany) and the products were detected by a
Roche LightCycler LC480 Real-Time PCR instrument. The primers used for the qPCR
analysis were designed following previous reports or from the online database PrimerBank:
http://pga.mgh.harvard.edu/primerbank, accessed on 21 July 2021. The primers used for
validating the microarray data and for Tal1 exon 1 identification by RT-PCR were designed
by our lab. The sequences of the DNA primers used in semi-quantitative RT-PCR and
real-time RT-qPCR are available upon request.

4.12. Western Blotting Analysis and Antibodies

Whole-cell extract of MEL or mouse fetal liver cells were analyzed by polyacrylamide
gel electrophories (PAGE) and Western blotting, following the standard protocols. Enhanced
chemiluminescence (ECL) detection system (Omics Biotechnology Co., Taipei, Taiwan) was
used to visualize the hybridizing bands on the blots. Goat anti-TAL1 antibodies, sc-12982 and
sc-12984, were purchased from Santa Cruz, Inc., Anti-Flag (M2), anti-Tubulin(B-5-1-2), and
anti-β-Actin (AC-15) mouse antibodies were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The anti-EKLF antibody (anti-AEK) was homemade [19].
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4.13. Reporter Assay

For the luciferase reporter assay in 293T cells, 1 µg of each of the wild-type pTal1-Luc
plasmid or its mutant forms were transfected into 4 × 105 /mL of cells. The total amount
of transfected DNA was kept at 0~3 µg, with the addition of 0~3 µg of empty vector
pCMV-Flag. After 24 h, the luciferase activities were measured using the Dual-Luciferase®

Reporter Assay System (Promega). Firefly luciferase activity was used as an internal control
and Renilla activity was used to monitor the transactivity of the Tal1 promoter and its
mutant forms.

4.14. In Vivo Genomic Footprinting

The status of nuclear factor-binding in the living MEL cells was investigated by
dimethyl sulfate (DMS) cleavage in vivo and ligation-mediated PCR (LMPCR), as described
previously [53–56], with some modification. The distal promoter region was analyzed
with primer set D (P1[5′-885 GCTCACAAA CT CCT GTTTCAGAGGAG-860 3′], P2 [5′-
867CAGAGGAGCTAATGTT CTGCCTTCTTC-840 3′], and P3 [5′-867 CAGAGGAGCTAA
TGTGTCTGCCTTCTTCTAG-837 3′]), the central promoter region was analyzed with
primer set C (P1[5′-817GACATTAATACAGGCAAAACCAGG GACC-790 3′], P2[5′-798CCA
GGGACCAC ACCCTTAAAAATGATTCC-770 3′], and P3[5′-798CCAGGGACCAC ACC
CTTAAAAATGATTCCCC-768 3′]); and the proximal promoter region was analyzed
with primer set P(P1[5′ 320GAAAGAAAAACCCAG A TACTCCTCAGC-294 3′], P2 [5′-
287GGTTCCTACAATGTACCTATGG GCTTC-261 3′], and P3[5′-287GG TTCCTACAATG
TACCTATGGGCTTCAATG-257 3′]). Different batches of DMS-treated cells were analyzed
several times to check for consistency of the protection patterns. The relative intensities of
the bands on the autoradiographs were estimated in an AlphaImager 2200 (Clontech).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22158024/s1.
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