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Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as
the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-
renewal to maintain the stability of the stem cell pool and differentiation to produce mature
spermatozoa. Dysfunction of SSCs leads to male infertility. Therefore, dissection of the
regulatory network of SSCs is of great significance in understanding the fundamental
molecular mechanisms of spermatogonial stem cell function in spermatogenesis and the
pathogenesis of male infertility. Furthermore, a better understanding of SSC biology will
allow us to culture and differentiate SSCs in vitro, which may provide novel stem cell-
based therapy for assisted reproduction. This review summarizes the latest research
progress on the regulation of SSCs, and the potential application of SSCs for fertility
restoration through in vivo and in vitro spermatogenesis. We anticipate that the knowledge
gained will advance the application of SSCs to improve male fertility. Furthermore, in vitro
spermatogenesis from SSCs sets the stage for the production of SSCs from induced
pluripotent stem cells (iPSCs) and subsequent spermatogenesis.
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INTRODUCTION

Early in human development, a small group of cells is set aside or allocated to become the germ cells
that give rise to the sperm and oocytes that will transmit genetic and epigenetic information to
subsequent generations (1). In males, the process of spermatogenesis maintains the production of
spermatozoa, the final cell carrier of inheritable material, throughout the lifetime of male mammals
(2). Continuous spermatogenesis depends on the appropriate self-renewal and differentiation of
spermatogonial stem cells (SSCs) throughout the life of the male (3). The SSCs are the resident stem
cell population that resides at the basal membrane of seminiferous tubules of the testis (4, 5). The
SSCs can undergo mitotic divisions for self renewal to maintain a steady stem cell pool or they can
differentiate through sequential and extensive processes into spermatozoa (6). The balance of self-
renewal and differentiation of SSCs is critical, not only for maintaining normal spermatogenesis but
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also for sustaining lifelong fertility (7). A tilt to self-renewal is a
risk factor for germ cell tumors, while a tilt towards
differentiation results in exhaustion of germ cell pools, leading
to male infertility (8). Numerous studies have demonstrated that
the balance between self-renewal and differentiation is precisely
controlled by a combination of intrinsic genetic and epigenetic
factors within SSCs as well as the extrinsic signals that eminate
from the somatic niche (9, 10).

Significantly, SSCs have extraordinary therapeutic potential
in assisted reproduction for male infertility (11, 12).
Transplantation of SSCs can restore spermatogenesis in
patients who suffer from impaired spermatogenesis (13). One
application example is fertility preservation of prepubertal boys
with cancer and undergoing chemotherapy (14). SSCs can be
isolated from testicular biopsy and cryopreserved before
chemotherapy, followed by stem cell transplantation into the
seminiferous tubules to restore fertility (15, 16). In addition,
germline gene therapy using SSCs has been proposed, albeit with
obvious concerns regarding legitimate ethical issues, as a
promising and feasible approach to treat endocrine disease and
metabolic disorders with germline gene mutations (17).
Currently, the major hurdle to the use of SSCs in assisted
reproductive technology is the difficulty of identificating and
isolating endogenous SSCs and directing their differentiation to
haploid cells in vitro.

This review provides a brief overview summary of some of
the existing knowledge and research progress regarding use of
SSCs for inducing spermatogenesis in vivo and in vitro for
fertililty restoration. We hope that this summary review may
spur further inquiries into details and ongoing studies of
practical applications of SSCs in human reproduction and
regenerative medicine.
REGULATION OF SSCS

Human germ cell development begins with the specification of a
small group of cells to form the primordial germ cells (PGCs)
(18), which are thought to arise from the dorsal amnion at the
onset of gastrulation (19). Following their specification, PGCs
actively proliferate and migrate to the developing gonad (20–22)
where they will occupy the genital ridge and undergo sex-
determination by entering either male or female sex-specific
developmental pathways (23). External signals from the somatic
environment determine the sex of PGCs (24). For male germ cell
development, once PGCs occupy the seminiferous tubules of the
male gonad, they are termed gonocytes (25), which later interact
with the niche cells to become spermatogonia (26). Note that
nomenclature is not universal or all inclusive as subtypes exist
(example: type A, type b, light and dark spermatogonia), different
stages of development are sometimes indicated (examples: early
or late spermagonia or undifferentiated and differentiating), or
reference to marker content (example: c-kit+ spermatogonia).

The Niche
The architecture of the testes is characterized by two structurally
distinct compartments (Figure 1), the seminiferous tubule and
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the interstitial tissue (27). Within the seminiferous tubule, Sertoli
cells form a tight blood-testis barrier to divide the seminiferous
epithelium into basal and luminal compartments (28).
Developing spermatogonia reside on the basal membrane and
are further defined by three types of cells: undifferentiated
spermatogonia (quiescent SSCs), differentiating spermatogonia
(SSCs that undergo active mitosis), and differentiated
spermatogonia (29, 30). The Sertoli cells are the supporting
cells for the germ cell population in the testes and are essential
for maintaining normal spermatogenesis by providing the
cellular matrix and by secreting specific growth factors (31).
The surrounding interstitial space consists of various cell types
that include the Leydig cells, mesenchymal cells, and immune
cells, in addition to lymph vessels, nerve fibers, and connective
tissues (27). Leydig cells produce the hormone testosterone and
cytokines that may function both directly and indirectly to
regulate self-renewal of SSCs (32).

External and Intrinsic Factors
The fine-tuned balance between self-renewal and differentiation
of SSCs is regulated by the interplay of extrinsic and intrinsic
factors. GDNF, a growth factor produced by the somatic niche
cells, is critical for the maintenance of SSCs both in vivo and in
vitro (33). It regulates several essential downstream genes,
including the germ cell specific and ubiquitously-expressed
genes Nanos2, Etv5, Lhx1, T, Bcl6b, Id1, and Cxcr4, to promote
SSC self-renewal and inhibit differentiation (34–39). CXCL12/
CXCR4 (39), FGFs (33, 40), and VEGF-A (41) act in synergy
with GDNF to maintain SSC stem cell status. In contrast, retinoic
acid (RA), a hormone secreted primarily by Sertoli cells, plays an
indispensable role in inducing differentiation of SSCs by
downregulation of GDNF expression and activation of
differentiation-promoting factors, such as BMP and SCF (42–
45). Genetic ablation studies in mice indicate that several
transcription factors are involved in regulating SSC
maintenance and recruitment to spermatogenesis. The PLZF
transcription factor is expressed by SSCs and interacts with
GDNF signaling as one of the master regulators to promote
the self-renewal of SSCs (46, 47). Loss of PLZF results in
progressive germ cell loss, testicular hypoplasia, and infertility
(46–48). One of the downstream targets of PLZF is the SALL4
protein, which is required for the self-renewal of SSCs and
maintenance of ability to enter spermatogenic differentiation
(49). A potential upstream regulator of PLZF is PRMT5.
Disruption of the PRMT5 gene results in a dramatic reduction
of PLZF gene expression, and subsequent progressive loss of
SSCs leading to male infertility (50). Another transcription factor
important for maintenance of SSC self-renewal is FOXO1, which
regulates a number of genes that are preferably expressed in SSCs
(51). Deletion of the FOXO1 gene results in defects in SSC
maintenance and ultimately spermatogenic failure. In addition,
recent research has identified numerous microRNAs as critical
regulators in spermatogenesis. Some microRNAs regulate the
self-renewal of SSCs. For example, miR-202 plays a crucial role in
the maintenance of SSC stemness or self-renewal of the stem cell
population (52). Other microRNAs, such as miR-1908-3p (53),
miRNA-122-5p (54), and miRNA-31-5p (55), enhance the
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proliferation and inhibit the early apoptosis of human SSCs via
targeting key downstream pathways. Conversely, several
microRNAs facilitate differentiation via regulation of the
expression of genes associated with SSC differentiation. MiR-
34c promotes SSC differentiation by inhibiting the function of
the NANOS2 gene, leading to the up-regulation of meiotic-
related proteins, STRA8, in mice (56). Similarly, miR-486-5p
secreted by Sertoli cells stimulates differentiation of SSCs in mice
by up-regulating the expression of STRA8 and SYCP3 (57).
Further, impaired spermatogenesis is observed in mice carrying
a deficiency in miR-17-92 or a gene deletion of miR-17-92 (58,
59). miR-202 similarly regulates spermatogenesis via
orchestration meiotic initiation by preventing precocious
differentiation of mouse SSCs (52). Taken together, numerous
genes act to balance self-renewal and differentiation of SSCs.
FERTILITY RESTORATION THROUGH
IN VIVO SPERMATOGENESIS

SSCs within the testicular tissues have the potential to complete
the entire process of spermatogenesis in vivo and produce
functional spermatozoa for fertility restoration (Figure 2).
Thus, cryopreservation of testicular tissue prior to gonadotoxic
treatment for prepubertal boys is proposed as a helpful strategy
for fertility preservation (60). To restore fertility through in
vivo spermatogenesis, testicular tissues could be either
autotransplanted to the same individual or the tissues might
be dissociated to obtain SSCs for autotransplantation.
Xenotransplantation would carry the obvious complication of
mixing of sperm from different individuals.
Transplantation of Testicular Tissues
Autotransplantation of testicular tissues has achieved success in
multiple animal models, which results in live offspring (61–65).
However, the approach has the risk of re-introducing
malignancy is a concern (66). Studies of xenotransplantation,
which transplants immature testicular tissue under the back skin
of immune-deficient animals, have been used to examine
potential complications including malignancy. In 2002, Nagano
and colleagues, for example, transplanted human SSCs into
immunodeficient mice for the first time (67). Human SSCs
survived in mouse testes for at least six months and
proliferated during the first month after transplantation.
Transplantation of SSCs
To avoid potential complications of malignancy, isolation of
SSCs from cryopreserved testicular tissues followed by
transplantation has been proposed as the leading alternative
stratgey. To separate SSCs from somatic cells, antibodies that
recognize human SSC-specific proteins are used for FACS
(fluorescent-activated cell sorting) or MACS (magnetic-
activated cell sorting) for sorting SSCs from other cell types.
Antibodies that have been shown to be useful for sorting SSCs
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include GFRa (68), GPR125, ID4 (69), ITGA6 (70), SSEA4 (71),
PLPPR3 (72), and OCT4 (73). An alternative to cell sorting is to
take advantage of different physical properties between SSCs and
somatic cells such as velocity sedimentation and differential
affinity to extracellular matrices on the culture plate (74–78).
Once isolated, SSCs are cultured with growth factors shown to be
optimal or essential for SSC maintenance [GDNF, BFGF, EGF,
and LIF (79–81)].

A major limitation of SSC transplantation in vivo, for fertility
restoration in clinical practice, is the scarcity of SSCs within the
testicular tissue. This has necessitated exploration of alternatives
including the establishment of a robust in vitro culture system to
maintain and expand human SSCs. Extensive effort has been
focused on optimization of culture conditions for long-term
maintenance and propagation of human SSCs. Multiple culture
substrates, including hydrogel, matrigel, and laminin, have been
shown to promote the propagation of human SSCs under feeder-
free conditions (82). Currently, several markers are used for the
verification of human SSCs. However, many of these markers are
also expressed in testicular somatic cells. For example, UCHL1,
which was used to identify SSCs from humans, is also expressed in
Leydig cells and nerve fibers (83). The most stringent assay to
assess the function of SSCs is to generate offspring after
homologous transplantation. However, despite success in animal
models, including non-human primates, no studies are reporting
the generation of human functional spermatozoa following
autotransplantation or xenotransplantation of testicular tissue or
isolated human SSCs for fertility restoration.
FERTILITY RESTORATION THROUGH
IN VITRO SPERMATOGENESIS

The establishment of a system to recapitulate spermatogenesis and
generate spermatozoa in vitro can not only be directly applied in
assisted reproduction, such as in vitro fertilization (IVF) or
intracytoplasmic sperm injection (ICSI), but also provide a
convenient system to study the molecular mechanisms and
genetic causes for male infertility. Building a functional somatic
microenvironment is critical for in vitro spermatogenesis. Several
strategies, including exploitation of intrinsic somatic
microenvironment by organotypic culture, two-dimensional
culture, and three-dimensional culture of testis cell suspensions.

Organotypic Culture
Since 1959, a gas-liquid interface was used to culture testicular
fragments of the adult rats (84). In this culture system, the
differentiation of SSCs was limited up to pachytene
spermatocytes (85). In 2003, round spermatids were observed
after two weeks of culture in a gas-liquid interface culture system
(86). Several other organotypic culture systems have been
developed to recapitulate the entire process of spermatogenesis
in vitro. One of the breakthroughs in the research was reported in
2011 with the demonstration of live offspring that were generated
from in vitro-produced haploid germ cells (87). In this study,
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testicular tissue fragments from neonatal mice were cultured on
an agarose gel-based organ culture system. Subsequently,
microfluidic technology was adopted for organ culture, with
the goal of providing a better culture environment for SSCs by
facilitating the exchange of gases, nutrients, and waste products
(88). Recently, successful recapitulation of human testicular
organogenesis from fetal gonads was achieved, and in vitro-
derived haploid spermatids were shown to undergo meiotic
recombination (89).

Two-Dimensional Culture
2D culture systems with testis cell suspensions have been widely
used for SSC proliferation and differentiation with two primary
types of 2D culture systems most common: (1) SSCs cultured on
mitotically-inactivated feeder cells, (2) SSCs co-cultured with
somatic cells (90). Using the support of 2D culture sytems,
numerous studies have reported that haploid male germ cells
could be induced (91–95), and offspring can be produced from
these in vitro derived haploid male germ cells in rodent (96).
However, the 2D culture system has not been optimized for
human germ cells. This may be due to the lack of spatial structure
of seminiferous tubules and proper interactions between germ
cells and somatic cells.

Three-Dimensional Culture
To better mimic the testicular niche, various 3D culture systems
have been developed. In 2006, testicular cells isolated from rats
were cultured on collagen gels to mimic the composition of the
basal membrane of seminiferous tubules (97). Later, the soft-agar
culture system (SACS) was developed (98), and mice haploid
germ cells from undifferentiated germ cells were generated in this
Frontiers in Endocrinology | www.frontiersin.org 4
system in 2012 (99). The SACS system also supports the
differentiiation of SSCs of non-human primates. The most
commonly used alternate material in 3D culture system is
methylcellulose. The methylcellulose culture system (MCS) also
supports the differentiation of immature germ cells.

In order to artificially reproduce the in vivo form and function
of the seminiferous epithelium, a 3D engineered blood-testis
barrier (eBTB) system was designed in 2010 (100). Testicular
peritubular myoid cells were first cultured on the underside of
culture inserts, and then germ cells and Sertoli cells were added
on top of the inserts. The testicular cells from neonatal mice form
the aggregate by culturing on a V-shaped plate. The aggregate
plated on the top of agarose gel blocks, and the haploid male
germ cells were obtained after 30-51 days of incubation (101).

The 3D decellularized testicular scaffold with hyaluronic acid
and chitosan provides the condition for the differentiation and
proliferation of mice SSCs (102). The proliferation and self-
renewal of mice SSCs was stimulated by culturing on the 3D
scaffold consisting of alginate hydrogel with Sertoli cells (103).
The mice germ cells were cultured in 3D printed one-layer
scaffolds at the air-medium interface simulating the tubule-like
structure. This culture system provided the condition for long-
term survival and differentiation (104).

Soft agar and agarose gel are the most common material used
to establish the 3D culture system for human SSCs. A soft agar
culture system has been shown to support the proliferation and
differentiation of human SSCs (105). Another material that has
been used in 3D culture systems for human SSCs is a
polycaprolactone (PCL) nanofiber matrix (106). This material
may mimic the physical form of collagen fibers in the natural
extracellular matrix (107).
FIGURE 1 | Schematic diagram of the niche of SSCs and the regulatory factors involved in maintaining the stemness and self-renewal of SSCs. Undifferentiated SSCs
are localized at the basement membrane. Germ cells maintain the close contact with the Sertoli cells inside the seminiferous epithelium. Peritubular myoid cells surround
the seminiferous tubules to form testicular cords. The interstitial compartment consists of many somatic cell types including Leydig cells, mesenchymal cells and immune
cells. Bioactive factors in the niche play crucial role in self-renewal and differentiation of SSCs. CXCL12/CXCR4, FGFs, and VEGFA act in synergy with GDNF to maintain
SSCs. Retinoic acid (RA) induces the differentiation of SSCs by downregulation, at least in part, of GDNF expression and activation of SCF and BMP4. Transcription
factors, PLZF and FOXO1, are involved in regulating SSCs maintenance and spermatogenesis by acting on a subset of downstream target gene. MicroRNAs, including
miR-1908-3p, miR-112-5p and miR-31-5p, also act as critical regulators in spermatogenesis.
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CONCLUSION AND PERSPECTIVES

With the development of technologies, including -omics at the
single-cell level, lineage-tracing, spermatogonial transplantation,
and in vitro culturing and differentiation, we start decoding the
secrets of SSCs. However, the application of SSCs to treat male
infertility necessitates extensive studies to ensure safety and
efficacy. An efficient culture condition for human SSCs to
ensure their propagation, as well as proper animal models for
xenotransplantation, will assist in assessing safety and efficacy as
indicated by recent studies (108). Furthermore, establishing a
robust system for in vitro spermatogenesis is also helpful for
pharmaceutical or toxicological studies for new drugs. Finally, in
vitro spermatogenesis from SSCs sets the stage for the production
of SSCs from induced pluripotent stem cells (iPSCs) and
subsequent spermatogenesis. For example, studies are
underway to integrate data and practices from divergent fields
to promote spermatogenesis from iPSCs via co-culture with
Frontiers in Endocrinology | www.frontiersin.org 5
Sertoli cells in a 2D-, 3D- or a modified environment, similar
to those used in other physiological systems, that might more
faithfully mimic spermatogenic dynamics including circulation
(109, 110).
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