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ABSTRACT

Background. Mangrove forests provide many ecosystem services, including the
provision of habitat that supports avian biodiversity. However, hurricanes can knock
down trees, alter hydrologic connectivity, and affect avian habitat. In 1995, Hurricanes
Opal and Roxanne destroyed approximately 1,700 ha of mangrove forest in Laguna
de Términos, Mexico. Since then, hydrological restoration has been implemented to
protect the mangrove forest and its biodiversity.

Methods. Since avian communities are often considered biological indicators of
ecosystem quality, avian diversity and species relative abundance were evaluated as
indicators of mangrove restoration success by comparing undisturbed mangrove
patches with those affected by the hurricanes. Using bird surveys, similarity analyses,
and generalized linear models, we evaluated the effects of water quality variables and
forest structure on the relative abundance and diversity of the avian community in
disturbed, restored, and undisturbed mangrove patches.

Results. Higher bird species richness and relative abundances were found in disturbed
and restored sites compared to the undisturbed site. After restoration, values of
frequency of flooding, water temperature, tree density, and the number of tree species
were more similar to that of the undisturbed site than to the values of the disturbed one.
Such variables influenced the relative abundance of bird guilds in the different habitat
conditions. Furthermore, some insectivorous bird species, such as the Yellow Warbler
and Tropical Kingbird, were found to be similarly abundant in both undisturbed and
restored sites, but absent or very low in occurrence at the disturbed site.

Conclusions. Collectively, our results strongly suggest that hydrologic restoration helps
to enhance niche availability for different bird guilds, including water and canopy
bird species. Our work can help inform management strategies that benefit avian
communities in mangrove forests and wetland systems.

Subjects Biodiversity, Conservation Biology, Ecology, Natural Resource Management
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INTRODUCTION

Mangrove forests provide valuable ecosystem services. These highly productive ecosystems
can prevent erosion, trap sediments, and provide wind protection for coastal communities
(Warren-Rhodes et al., 2011). Mangrove forests also support important nursery habitats
for a variety of organisms including pelagic and marine vertebrates and invertebrates,
mammals, and birds (Nagelkerken et al., 2008; Lee et al., 2014; Serafy et al., 2015). In
Mexico, mangroves provide important habitats for specialist species such as the Mangrove
Cuckoo (Coccizus minor), the Mangrove Finch (Camarhynchus heliobates), the Mangrove
Hummingbird (Amazilia buocardi), and the Mangrove Warbler (Setophaga petechia
bryanti) (Polidoro et al., 2010; Andrade et al., 2012; Gardner et al., 2012; Buelow & Sheaves,
2015). Mangrove forests can also improve water quality (Wang et al., 2010), and provide
economically important products. Nevertheless, it is estimated that about 35% of the
global mangrove cover has been lost, mainly due to forest clearance for fish farming,
urbanization, habitat fragmentation, and fuel and timber production (Valiela, Bowen ¢
York, 2001; Alongi, 2008; Donato et al., 2011).

In Mexico, four mangrove species are distributed along the Gulf of Mexico coast: red
(Rhizophora mangle), black (Avicennia germinans), white (Laguncularia racemosa), and
button (Conocarpus erectus) mangroves, covering approximately 742,000 hectares (ha)
(Giri et al., 2011). The estimated value of mangroves due to fisheries, carbon sequestration,
forestry coastal protection, erosion control, water treatment and other environmental,
recreational and traditional uses is about $80,000 to $194,000 USD per ha_lyr_1 (Salem ¢
Mercer, 2012; Costanza et al., 2014). Such a value represents up to a total of $59—143 billion
USD for the Mexican mangroves. Globally, Mexico ranks fourth in terms of total mangrove
area (Giri et al., 2011); however, as in other parts of the world, the rate of degradation of
mangrove forests in Mexico has been high in the past century. Mangrove cover has been
reduced by approximately 10% of the original area in the last 40 years, and about 2% (15,000
ha) of the area that remains has been classified as disturbed (Valderrama et al., 2014). In
most mangrove forests, there has been a loss of connectivity and a decrease in heterogeneity,
which has reduced faunal diversity, including avian populations (Mohd-Azlan, Noske &
Lawes, 2015; Hauser et al., 2017; Amir, 2018).

Because restoration can help mitigate climate change effects and the consequential
biodiversity loss (Nilsson ¢ Aradottir, 2013), interest in the ecological restoration of coastal
wetlands is currently growing (Palmer, Hondula ¢ Koch, 2014; Suding et al., 2015). The
disturbance of coastal wetlands is often accompanied by changes in hydrological patterns,
including the hydroperiod, which is defined as the amount of time, the frequency, and the
level with which a wetland is covered by water, a key factor determining success in wetland
restoration (Turner & Lewis, 1996; Zaldivar-Jiménez et al., 2010; Wortley, Hero & Howes,
2013). For instance, sediment deposition in the tidal channels affects the amount of time
and the frequency at which a mangrove is flooded (Woodroffe et al., 2016). These kinds of
changes affect the water quality and the composition of plant and animal communities
(Schaffelke, Mellors ¢» Duke, 2005; Krauss et al., 2006; Crase et al., 2013). Hence, the success
of ecological restoration can be assessed through a system of indicators that generate
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information about the recovery of wetland functions. Such a system might include
landscape features, biogeochemical processes (Cvetkovic & Chow-Fraser, 2011; Zhang et al.,
2012), ecosystem services, and the composition of biological assemblages (e.g., vegetation,
crustaceans, mollusk, and vertebrates) (Thornton ¢ Johnstone, 2015; Salmo, Tibbetts ¢
Duke, 2016). Therefore, species richness, abundance, and community structure can be
used to evaluate the biological outcomes of restoration efforts (Zhao et al., 2016).

Because of their diverse roles within the trophic webs, bird communities are key
elements for describing the energetics of ecosystems (Wenny et al., 2011; Adame et al.,
2015; McFadden, Kauffman ¢ Bhomia, 2016), and are considered useful indicators of
ecosystem health (Canterbury et al., 20005 Bryce, Hughes ¢ Kaufmann, 2002; Catterall et
al., 2012). For instance, monitoring of pollutants such as DDT and organochlorines, and
the effects of variations in hydroperiod in the Everglades were carried out using water
and wading bird species (Frederick et al., 2009; Lavoie et al., 2010; Lantz, Gawlik & Cook,
2011; Boyle, Dorn ¢ Cook, 2012). Moreover, bird diversity has been used as an indicator
of temporal changes in mangrove health (Behrouzi-Rad, 2014), and to assess the impacts
of climate change and coastal development (Ogden et al., 2014). While avian community
monitoring can be a useful tool for evaluating the health of wetland ecosystems, its use
for assessment of ecological restoration has been rarely employed (Weller, 1995; Cui et
al., 2009; Gyurdcz, Bdnhidi & Csuka, 2011; Li et al., 2011; Catterall et al., 2012; Zou et al.,
2014).

Laguna de Términos is a coastal lagoon located in Mexico along the southwestern
coast of the Gulf of Mexico. It is the second largest coastal lagoon in Mexico, supporting
approximately 259,000 ha of mangrove forest (33% of all mangrove forest in Mexico) and
262 bird species, among other vertebrate taxa (Villalobos-Zapata ¢» Mendoza-Vega, 2010).
As a result, Laguna de Términos has been recognized as a Ramsar wetland of international
importance (Chape, Spalding ¢ Jenkins, 2008). However, due to fisheries, oil-extraction
activities, illegal timber exploitation, and urbanization, nearly 26% of the mangrove
habitat in this lagoon is considered degraded (Zaldivar-Jiménez et al., 2017). Additionally,
in 1995, the lagoon was affected by Hurricanes Opal (category 4) and Roxana (category
3), which destroyed 1,700 ha of mangrove (Pérez-Ceballos et al., 2013). Fallen trees blocked
some creeks (hereafter tidal channels), mainly the secondary ones. The silting of channels
altered the hydroperiod patterns and biogeochemical conditions, leading to the mortality
of adult trees and inhibiting the natural regeneration of the mangrove. Moreover, this
condition has led to a constantly increasing area of dead trees around the points affected
by the hurricanes. In order to increase the resilience of these mangrove forests, protect
their biological diversity, educate others, and contribute to the sustainable development
of the adjacent local communities, from October 2010 to November 2012, restoration
activities were implemented. In brief, restoration activities included an environmental and
social diagnosis, as well as the formulation of a management plan before the restoration
implementation. The primary restoration activity was the desilting and unblocking of the
main and secondary tidal channels. Where needed, new secondary channels were dug based
on the microtopography analysis of each site selected for restoration. Desilting, unblocking,
and channel digging were carried out by local women and men only by hand.
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Figure 1 Location of Bahamitas estuaries with different disturbance levels in Laguna de Términos,
Campeche Mexico.
Full-size &l DOI: 10.7717/peer;j.7493/fig-1

The objective of this study was to use the changes on the avian abundance and diversity
as indicators of the restoration success of a mangrove site. We specifically asked: (1)
whether the avian community structure differs between not obviously affected mangrove
patches and those affected by the hurricanes; (2) whether hydroperiod and water quality
influence the diversity or the abundance of birds; and (3) which species could be used as
indicator species of post-restoration recovery. The sampling was carried out on a landscape
mosaic with different strata: undisturbed patches, patches without restoration, and patches
three years after restoration. The water quality variation among the study sites, along with
the avian community diversity and abundance of species, were evaluated as indicators of

mangrove restoration success.

MATERIALS & METHODS
Study area

Laguna de Términos is a coastal wetland located in Campeche, Mexico. It covers about
150 km? and is connected to the Gulf of Mexico by two inlets at the east and west
sides of Isla del Carmen, a calcareous sandbar that supports 5,900 ha of mangrove,

of which around 26% are disturbed. The annual average rainfall and temperature are
approximately 1,420 mm and 27 ° C respectively (David ¢ Kjerfve, 1998). The study area is
an estuary known as Bahamitas, located on the east of Isla del Carmen (637787.52E,
2066226.35N, and 633872.60E, 2064181.96N UTM Q15, Fig. 1). The hydrological
restoration was implemented from October 2010 to November 2012 through desilting
and unblocking of natural tidal channels. Where needed, new secondary channels were
created to induce natural regeneration of the vegetation, and to enhance the water quality
(oxygenation and salinity) of 1,300 ha of disturbed mangrove through water exchange
(Zaldivar-Jiménez et al., 2017). The creation of new tidal channels relied on the modeling
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of hydrological flow-paths after analysis of a digital elevation model created from the

obtained microtopography data. All the work was undertaken by hand using shovels,

and involved local inhabitants (10 people ha=!), who were trained through workshops
on habitat restoration and environmental education, as well as being advised on social
and community organization for sustainable development through bird watching and
catch-and-release fishing (Zaldivar-Jiménez et al., 2017).

Sampling sites and forest structure

Based on the digital analysis of a Worldview 2013 image and subsequent field surveys, three
different patches for sampling were identified and selected according to their condition
of degradation: (i) First were undisturbed sites with well-established adult trees and no
significant human activities. Here, at least 80% of the trees were alive and there was no
evident alteration of the hydrological connectivity due to the effects of hurricanes. (ii)
Second were disturbed sites with all the trees dead, except for some few individuals at the
edges, and no seedling establishment or with no more than 10% of scrub mangroves alive.
(iii) Third were restored sites that showed similar conditions to the degraded site prior to
restoration activities implemented during 2010 and 2012 to allow water to flow in and out
through the topography of the wetland. After restoration (three years), this site already
showed the establishment of seedlings and some saplings, and no more than 50% of the
scrub mangroves were dead.

For each sampling site, two 10 m x 10 m random sampling plots were surveyed to
determine the forest structure and the number of live trees. On the same plots, measures of
diameter at breast height (DBH), canopy height, and basal area were collected to determine
the forest cover. Tree density was estimated by counts of all trees with DBH >2.5 cm
(Schaeffer-Novelli, Vale & Cintron, 2015). These data were used to investigate the effects of
the vegetation structure on bird abundance in each sampling site (McElhinny et al., 2005;
Azhar et al., 2013).

Hydrologic and water quality parameters

To assess the relationship of bird abundance with the water quality parameters, 11 sampling
points were established every 100 m within each survey site to measure the water depth, as
well as the temperature and salinity of surficial water of the tidal channels. Water depth was
measured using a ruler at the center of the tidal channels. Temperature and salinity were
recorded using a parametric probe, YSI-30 (YSI Incorporated, Yellow Springs, OH, USA).
The pH and oxidation reduction potential (ORP) were recorded using a portable tester,
HI916 (Hanna Instruments, Inc., Woonsocket, RI, USA). All these data were recorded
twice monthly. The hydroperiod patterns among the sampling sites were also compared
by contrasting the tidal range (the level of the flooding in cm), the flooding duration (the
time in hours that a site stand flooded), and the flooding frequency (the number of times
per month that a place floods). These measures were recorded during the entire sampling
period every 60 min using a HOBO U20-001-01-Ti logger placed at each sampling site.
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Birds survey

To estimate species richness and abundance, monthly bird surveys (December 2014 to
June 2015) were conducted by boat. This period of time was selected because it allows
finding both migrant birds in winter and residents species in spring and early summer.
Counting points (n =11 for each sampling site) were used to record bird species and count
individuals per species within each sampling site. We carried out a systematic sampling with
a randomly selected start point at each sampling area. Then, the next ten counting points
were separated 100 m from each other. Because a count at a particular point can be affected
by whether the neighboring points are above or below their averages (Pendleton, 1995),
we tested for independence of our counting points through a Pearson’s test of conditional
independence. Additionally, we used the function Moran included in the R package ape
(Paradis, Claude ¢ Strimmer, 2004) to treat the abundance data across counting points
with a Moran’s index test to ensure that they were not spatially biased. As recommended
for field methods in bird surveys (Gregory, Gibbons ¢ Donald, 2004), we used a minimum
of four visits to each counting point (four in winter and four in spring). To avoid double
count, a single observer counted individual birds at standard intervals of time (10 min).
To help deal with varying detectability of different species, observations were made for two
consecutive days (Bibby et al., 1992; Gregory, Gibbons ¢ Donald, 2004; Schmidt, McIntyre
& MacCluskie, 2013). To deal with species mimicry, besides song and call recognition, birds
were identified by a trained observer that sought field marks using 10 x 42 binoculars.
We recorded all species and individuals seen or heard within the first 20 m radius at each
counting point. All species and individuals observed on the vegetation, water, or flying
within the observation radius (up to 15 m above) were counted. We did not account for
passing or transient birds flying on the sampling areas that did not stop there to feed or
rest. The sampling effort was equivalent to approximately 77 h of surveying over the three
sampling sites. All bird species observed outside the sampling radius were also recorded
but not included in further analyses of species abundance. The reliability of our sampling
design concerning species detectability, temporal, and size representativeness was assessed
by the implementation of an evaluation framework for ecological research (Battisti, Dodaro
¢ Franco, 2014).

Statistical analyses

The data on hydroperiod and environmental variables were explored for normality
through Shapiro—Wilk tests, which are ratios of two estimates of the variance in a normal
distribution calculated from a set of observations (Royston, 1995). Data that met the
assumptions of normality and independence were analyzed using a one-way analysis of
variance (ANOVA) to compare the means between the data from all sampling sites. When
significant differences were found, ANOVA results were further examined through an
honestly-significant-difference Tukey’s test, a multiple comparisons procedure to find
the differences between all levels of a factor once the hypothesis of equality from the
ANOVA test is rejected. When the data did not meet the assumption of normality, we
used Kruskal-Wallis one-way analysis of variance by ranks, a non-parametric alternative to
ANOVA for multiple comparisons. To contrast the levels of a factor from this analysis, we
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used the function posthoc.kruskal.nemenyi.test from the R package PMCMR, a post-hoc
alternative to performing multiple comparisons for non-parametrics (Pohlert, 2014).
Species richness and abundance for each sampling site were calculated based on the
number of recorded individuals per species. Diversity was estimated using the inverse
of Simpson’s Index (1 X(n/N)?) which indicates greater diversity as the resulting value
approaches 1, while the dominance (the extent to which a taxon is more numerous
than others) was assessed through the Berger-Parker Index (d = Npax/Nr), in which
the lower the value of d results in a more even dominance in the sample (for details on
the formulae see Ingram (2008)). To reduce biases caused by non-detected species, the
expected species richness was calculated using the Jackl estimator, which is adequate to
estimate actual species richness when the number of sampling units is small (<20 samples or
individuals) or when the samples are not the same size. It uses the total number of observed
species in a set of samples, the total number of unique species in each sample, and the
number of samples for the calculations (Smith ¢ Van Belle, 1984; Gotelli ¢ Colwell, 2011).
Abundance and evenness (how equal the bird community is numerically) among sampling
sites were compared through rank-abundance curves. The curves were constructed as
implemented in the R package BiodiversityR (Kindt ¢» Coe, 2005). From the pooled data,
the total number of individuals was calculated to obtain their abundance (y-axis) and then
ranked from the most to the least abundant species (x-axis). Then, the same procedure
was implemented for each sampling location (Kindt ¢ Coe, 2005). Key bird species to
particular sampling sites were identified on the basis of their abundance through a one-way
Simper test carried out in PRIMER 7 (Anderson, Gorley ¢ Clarke, 2008). The Simper test
estimated the contribution of each species abundance to the total dissimilarity among the
sampling sites using Bray-Curtis distances, which helps find discriminating features within
habitats that explain differences in community composition (Clarke, 1993). Additionally,
we estimated the indicator species index value (IndVal) to find the value of particular
species to each sampling site as indicators of their condition. The IndVal uses both the
relative abundance (instead of the absolute abundance), and the relative frequency of
each species to estimate its value as a percentage (Roberts, 2016). We also investigated
the relationship between species abundance and environmental variables by means of
redundancy (RDA) and multivariate analyses through generalized linear models (glms).
The RDA was selected because there was a linear response of the abundance of birds to the
measured environmental variables. For both the RDA and the glms, the birds’ abundances
were used as the dependent variable, and habitat levels, environmental characteristics, and
forest structure were explanatory variables. The RDA test was carried out as implemented
in BiodiversityR while the glms were fitted through the R package mvabund (Wang et al.,
2012). The mvabund functions help test for interactions through multiple testing to predict
abundance between sites or treatments. The primary function of mvabund (manyglm) fits
a glm to each species in the dataset using a common group of environmental variables.
This approach uses a resampling-based hypothesis testing to infer which environmental
variables relate to multivariate abundances at community or taxon-specific levels (Wang
et al., 2012). The independence of the abundance estimates across sampling sites, as well
as the quadratic mean—variance and log linearity in the dataset, were checked through

Canales-Delgadillo et al. (2019), PeerdJ, DOI 10.7717/peerj.7493 7/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.7493

Peer

the functions plot and meanvar.plot as implemented in the same package before fitting
the models. Several glms were fitted to tests for variable effects. The data set included
the mangrove degradation condition as a categorical variable within the environmental
matrix. We performed the same analysis but with the data grouped by functional groups
according to the birds primary source of food: insectivores, nectarivores, scavengers,
macroinvertivores (polychaetes, mollusks, crustaceans), frugivores, omnivores, and meat
eaters (fishes, small reptilians, amphibians, and mammals). Because of the difficultly of
measuring this directly in the field, this group classification was sourced from literature
on local species (MacKinnon, 2013; Fagan ¢ Komar, 2016), and from specialized web
sources (https://www.allaboutbirds.org). Models were ranked according to the Akaike’s
information criterion (AIC) (Burnham & Anderson, 2002; Burnham, Anderson ¢& Huyvaert,
2011). All tests were set to be significant at 0.05 level, if not indicated otherwise.

RESULTS

Pearson’s test of conditional independence showed that although the sampling points in
each site were closely located, they were independent (x? =26.166,df =20, p = 0.1604).
Similarly, no evidence of spatial autocorrelation of the abundance was detected across
sampling points (Moran’s Index value = 0.0074, p = 0.3335).

Water quality parameters and forest structure

The frequency of flooding was approximately two and three times greater at the restored
and undisturbed sites, respectively, than at the disturbed one (ANOVA test F, 13 =12.47,
p = 0.003, Fig. S1). However, there were no significant differences among treatments in

tidal range or flooding duration (ANOVA test F, 15 =2.259, p = 0.133; F, 13 =2.416,p =
0.118, respectively).

Environmental variables such as salinity concentration, water depth, pH, and
temperature were found to be statistically different among sites (Table 1). The mangrove
structure also showed significant differences between sites in terms of the number of tree
species, basal area, and tree density (Table 1). However, due to the size of the remaining
live trees in the disturbed and restored sites, no statistical differences in the heights of trees
between sampled sites were observed (Fig. S2). Finally, the ORP values were not statistically
different between treatments. However, the ongoing water exchange due to the greater
frequency of flooding in the undisturbed and restored areas might indicate higher oxygen
concentration in the water (all ORP values were positive).

Species diversity and abundance
Fifty-three avian species were recorded in the surveys across the sampling sites (Table
S1). One of them, the Reddish Egret (Egretta rufescens) is near threatened while the rest
are of least concern according to the [UCN (2016). Regionally, five species are under
special protection, and one, the Yellow-crowned Night-heron (Nyctanassa violacea), is a
threatened species (SEMARNAT, 2010). For almost half of the recorded species (49%), the
populations are trending to increase while 24.5% show a decreasing trend (IUCN, 2016).
The total bird species richness was higher in the disturbed and restored than in the
undisturbed site, and, for all sampling sites, the observed species richness was lower
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Table 1 Comparison of the mean values of hydroperiod, water-quality parameters and forest structure between studied areas following
restoration at the restored site. Only statistically significant results are shown.

Variable Disturbed Restored Undisturbed Test df P Post hoc
Flooding frequency (times/month) 2.71 9.00 14.42 F=12.47 2.00 0. 003 R-D=0.038
U-D < 0.001
Flooding duration (h) 588.14 404.42 314.71 F=2.41 2.00 0.118 -
Tidal range (m) 0.09 0.09 0.05 F=225 2.00 0.133 -
Salinity (PSU) 34.93 34.12 33.28 x2=10.25 2.00 0. 005 U-D=0.004
pH 8.15 8.11 8.02 F=12.32 2.30 0. 001 U-D <0.001
U-R=0.023
Redox potential 82.09 91.18 85.18 x2=3.42 2.00 0.180 -
Temperature (°C) 28.02 29.94 28.87 x>=11.81 2.00 0. 002 R-D=0.001
Depth (cm) 54.62 74.96 117.54 F =31.87 2.00 <0. 001 U-D < 0.001
U-R<0.001
R-D=0.043
No. of tree species 1.09 1.36 1.90 x*=12.16 2.00 0. 002 U-D=0.008
Tree density (trees/ha) 345 763 709 x> =6.45 2.00 0. 039 R-D=0.035
Basal area (m?) 1.29 4.31 7.02 x2=15.39 2.00 <0. 001 U-D < 0.001
Notes.

In the Test column, F is for ANOVA and x? is for Kruskal-Wallis rank sum test. In the Post hoc column, comparisons between pairs of sites (R = restored, D = degraded, U =

undisturbed), were tested for significance using either HDS Tukey’s or Nemenyi’s tests. A dash means that the test was not carried out for that variable.
than expected (Table 2). This result is consistent with our empirical knowledge of the
bird community found in the vicinity of our sampling sites. For instance, species such
as the migrant Lesser Scaup (Aythya affinis), the Northern Pintail (Anas acuta), and the
American Wigeon (Anas americana), as well as the resident mangrove inhabitants, the
Muscovy Duck (Cairina moschata) and the White-fronted Parrot (Amazona albifrons)
(both with important population declines in Mexico), were expected but not observed.
Diversity indexes showed that there was a clear dominance of few species belonging to
the families Ardeidae and Threskiornithidae, especially in the restored site. Even though
our sampling effort captured most of the species richness in the study area, the species
saturation curve did not reach a flat shape at the end of the surveys (Fig. 53). Accordingly,
an increased sampling effort might be necessary to show the true richness of the study area.
When pooled data were analyzed, the most abundant species were the Least Sandpiper
(Calidris minutilla), the Mangrove Warbler, the Black-bellied Whistling Duck (Dendrocigna
autumnalis), the Green Heron (Butorides virescens), the White Ibis (Eudocimus albus), and
the Great-tailed Grackle (Quiscalus mexicanus). Because birds detected in flight were only
about 10% of all counts and because there were no statistical differences in the abundance
between the whole set of data vs. the data that excluded birds detected in flight (Wilcoxon’s
test with continuity correction, W = 1505.5, p = 0.7716), for further analyses, we used the
full dataset. Species abundance and evenness were similar for undisturbed and disturbed
sites. Although the restored site showed higher bird abundance, this was also the location
with the least evenness in species distribution. For instance, higher numbers of species such
as the Least Sandpiper and the White Ibis, which depend on mangrove habitats with open
or semi-open forest structure, were observed in the restored mangrove patches, while the

Canales-Delgadillo et al. (2019), PeerdJ, DOI 10.7717/peerj.7493 9/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.7493#supp-3
http://dx.doi.org/10.7717/peerj.7493

Peer

Table2 Avian community diversity indexes at the study locations.

Habitat n Observed richness Mean £ SD Expected richness 1-Simpson Berger parker
Undisturbed 11 28 527 £2.28 44.2 0.906 0.207
Restored 11 41 9.00 £ 3.38 46.3 0.893 0.230
Disturbed 11 41 9.36 + 2.20 54.5 0.945 0.133

Notes.

n, number of sampling points.

condition
— disturbed

S
8

restored

''''' undisturbed

Abundance (counts of individuals)

20

Species rank

Figure 2 Ranking of the abundance of bird species by sampling site. Only the six most abundant
bird species for each site are shown: Least Sandpiper (LS), Yellow Warbler (YW), White Ibis (WT),
Green Heron (GH), Great Egret (GE), Tropical Kingbird (TK), Great-tailed Grackle (GG), Magnificent
Frigatebird (MF), American White pelican (AWP), Black-bellied Whistling Duck (BWD), Green
Kingfisher (GK), and Roseate Spoonbill (RS).

Full-size Gal DOI: 10.7717/peerj.7493/fig-2

Mangrove Warbler, the Tropical Kingbird (Tyrannus melancholicus), and the American
White Pelican (Pelecanus erythrorhynchos) were the least abundant at this site (Fig. 2).
The RDA model was statistically significant (Pseudo- Fs 24 =2.57, p = 0.030), but only
a small part of the variation in species abundance within sampling sites was explained
by environmental variables since the proportion of unconstrained variance was larger
than that of the constrained (0.53 and 0.46, respectively, after 500 permutations for all
eigenvalues). When only the first eigenvalue was analyzed, no significant influence of the
environmental variables on birds abundance was observed (Fig. S4); however, a trend in
some variables such as water temperature, salinity, and tree density to influence the number
of birds across sampling sites was detected (Pseudo- F; 24 =17.97, p = 0.055). To explore
the effects of environmental variables on the abundance of birds further, five glms were
fitted: one with only environmental variables and not accounting for habitat condition and
others that included habitat condition and multiple interactions between environmental
variables; however, none of these reached convergence. Thus, the analysis was restricted
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Figure 3 Abundance of bird functional groups by site. In the restored site, the abundance of guilds such
as macroinvertivores and insectivores increased as compared with the disturbed site.
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to additive models between habitat condition and environmental variables. Because pH
and water depth showed high correlation with salinity (Spearman’s rank correlation Rho
= 0.486, p = 0.001; Rho = —0.595, p = 0.001, respectively), these two variables were
dropped from the models. According to the AIC scores, the best models showed significant
effects of the environmental variables and forest structure on the abundance of bird species
(Table S2). Habitat condition, i. e., the condition of the mangrove as disturbed, restored or
undisturbed, showed more substantial effects on the number of detected birds as well as on
the distribution of the bird guilds across sites (Fig. 3). Additionally, vegetation cover, as well
as the number of tree species, also significantly positively influenced the birds’ abundance
(Table 3A). When the same models were fitted to each single species, neither environmental
variables nor the habitat condition showed significant effects on the estimated abundances
(Padj = 0.730-0.900 for all species and all variables). The multivariate analysis by functional
group showed that only detectability significantly influenced the abundance of bird guilds,
while the other variables did not show significant effects on the abundance of any of the
analyzed functional groups (Table 3B). Similar to the univariate results by species, no
significant result was observed when functional groups were analyzed separately (Padj =
0.172-0.932 for all groups and all variables).

Key species in mangrove forests

According to the similar percentage analysis, wader bird species, such as the Least Sandpiper,
the White Ibis, and the Great Egret (Ardea alba) are more associated with the disturbed site.
Insectivores such as the Yellow Warbler and the Tropical Kingbird, along with the Green
Heron, were more associated with the undisturbed habitat condition. The species associated
with the restored site were the Least Sandpiper, the insectivorous Yellow Warbler, and the
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Table 3 Results of the multivariate analysis (best fitted glm). The greater the deviance, the stronger the
effects of the environmental variables on the abundance of bird species (A) and the abundance of func-
tional groups (B).

A B
Site feature Deviance p Deviance p
Habitat condition 162.50 0.012 22.598 0.110
Water temperature 113.29 0.001 - -
Redox 82.83 0.029 - -
Water salinity 71.86 0.040 - -
No. Tree species 83.02 0.003 8.623 0.388
Basal area 82.33 0.023 6.053 0.605
Tree density 76.50 0.035 6.719 0.490
Basal area: Tree density 45.00 0.157 - -
Detectability - - 17.780 0.019

Notes.
Either dash is for variables not included in the models, or for models not reaching convergence when including those variables.

Green Heron (Table 4). Even though the estimated IndVal value suggested that three bird
species might be considered indicators of the different habitat conditions, these results
were not significant (Table 5).

DISCUSSION

The restored tidal channels allowed more frequent water exchange between the Bahamitas
estuary and the Laguna de Términos, which increased the frequency of flooding. This,
in turn, improved the mangrove soil quality by decreasing the salinity and enabled the
natural regeneration of the forest cover. Such changes positively impacted the abundance of
insectivorous birds. When comparing the undisturbed and restored sites with the disturbed
areas, in the latter, larger duration of flooding favors anaerobic conditions, hindering the
oxidation and enabling the rising of soil sulfides concentration (Reddy ¢ Delaune, 2008),
which affects the ecophysiological functioning of individual plants and is toxic to aquatic
fauna (Lamers et al., 2013). On the other hand, the lack of connectivity with the main
lagoon and the absence of mangrove vegetation, as well as the low water exchange and
higher rate of evaporation are factors causing higher pH and salinity conditions (Tam et
al., 2009; Molnar et al., 2014). These conditions are also likely inhibiting the establishment
and growth of seedlings and plants. This effect has been observed in other areas of
Laguna de Términos (Agraz-Herndndez et al., 2015). By contrast, the undisturbed site
showed more frequent water exchange and dense vegetation cover, leading to slower
evaporation rate and lower salinity, as posited by Lee et al. (2008). Although there were not
yet statistical dissimilarities between the disturbed and the restored sites, only three years
after restoration, the opening and desilting of tidal channels brought down the porewater
salinity values (Fig. 4) and other components of water quality in the restored site, being
overall more similar to the undisturbed site than to the disturbed one, which probably
helped to increase the tree canopy cover, litterfall production and tree growth (Kathiresan
¢ Bingham, 2001; Kathiresan, 2002; Polidoro et al., 2010; Kamali & Hashim, 2011). This
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Table 4 Similarity analysis of species abundance among sites. In (A), the comparison of Undisturbed
(UN) vs Restored (RS) is shown, (B) Undisturbed vs Disturbed (DS), and (C) Restored vs Disturbed.
Species are ordered by their contribution according to the dissimilarity:standard deviation ratio (D/SD).

(A) Av. dissimilarity = 76.83
Av.Abund UN Av.Abund RS Contribution (%) D/SD
Yellow Warbler 1.45 1.14 6.11 1.21
Green Heron 0.89 1.08 7.35 1.12
White Ibis 0.84 0.56 5.84 1.04
Double-crested Cormorant 0.31 0.70 4.72 0.96
Tropical Kingbird 0.61 0.09 3.72 0.89
Great-tailed Grackle 0.26 0.88 6.32 0.65
Least Sandpiper 0.09 1.14 5.55 0.58
(B) Av. dissimilarity = 80.93
Av.Abund UN Av.Abund DS Contribution (%) D/SD
Yellow Warbler 1.45 0.79 6.3 1.30
Green Heron 0.89 0.67 5.32 1.18
White Ibis 0.84 1.03 6.32 1.15
Great Egret 0.44 0.93 5.63 1.01
Tropical Kingbird 0.61 0.27 3.52 1.01
Least Sandpiper 0.09 1.19 6.68 0.95
(C) Av. dissimilarity = 75.41
Av.Abund RS Av.Abund DS Contribution (%) D/SD
Green Heron 1.08 0.67 5.02 1.27
Yellow Warbler 1.14 0.79 4.43 1.18
White Ibis 0.56 1.03 4.90 1.08
Great Egret 0.62 0.93 4.84 1.08
Yellow-crowned Night-Heron 0.49 0.63 3.59 1.07
Least Sandpiper 1.14 1.19 8.23 1.05
Reddish Egret 0.53 0.53 3.24 1.02
Double-crested Cormorant 0.70 0.34 3.59 1.00

Table 5 Indicator species index (IndVal) values for key species within each sampling site. A percentage
> 25% and a p-value 0.05 mean that the selected species are good indicators for a given habitat condition.

Species Habitat condition IndVal (%) p

Tropical Kingbird Undisturbed 39 0.068
Blue-winged Teal Restored 29 0.057
Mangrove Swallow Disturbed 27 0.951

effect in mangroves has been demonstrated in other sites of the coast of Campeche, where
higher rates of litterfall production are associated with lower water salinity (Chan-Keb et al.,
2018). Besides the fishing and mud-foraging species characteristic of estuarine areas (Kobza
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Figure 4 The observed changes in porewater salinity though time at the restored site from the begin-
ning to the end of the hydrological restoration (2011-2012), and two years later. The horizontal lines in
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ues.
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et al., 2004), higher litterfall productivity, in turn, broadens the spectrum of resources by
increasing niches for insectivorous birds’ prey species in the restored sites.

Both the disturbed and restored sites showed higher bird abundance and species
richness than the undisturbed one. This is similar to the findings reported in structurally
complex habitats and island setting, which are found to be more diverse if their habitats
show heterogeneity (Acevedo ¢ Aide, 2008; Jones, Marsden ¢ Linsley, 2003), even if they
are disturbed, as were two of our study sites. The results from the models highlight
the fact that more heterogeneous habitats such as the restored site and, to some extent,
the disturbed one result in more species-rich places, allowing for the existence of more
structured bird communities than in the more homogenous undisturbed site (Bcldi, 2008).
This effect is present because high-quality undisturbed mangrove patches surround the
disturbed and restored mangrove sites, increasing their heterogeneity. Additionally, while
canopy species such as insectivorous birds might use bushes and dead trees from the
restored and disturbed sites to feed or rest, bird species that prefer open and semi-open
habitats (sandpipers, avocets, cormorants, etc.) are not present in the densely vegetated
undisturbed mangrove. They take advantage of the open areas at the disturbed site,
which are adequate foraging niches for waders because of the long-lasting floods there.
Accordingly, the high abundance of these species could be indicative of sites with impacts
affecting the hydroperiod or the vegetation cover. Because of mangrove forests being
structurally homogenous when compared to other forest habitats (Mohd-Azlan, Noske
¢ Lawes, 2015), the number of bird species recorded was not as high as expected when
surveys include other types of tropical forests. This outcome might also be due to habitat
preferences of the different bird species recorded, or could be the effect of short-term
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monitoring (Canterbury et al., 2000). However, the effects of the sampling duration and
size might be negligible, since the heterogeneity of the forest structure traits, such as
cover and composition, results in a more complex assemblage of bird communities at
the landscape level (Kroll et al., 2014). Hence, the avian community structure might be
more influenced by the heterogeneity, diversity and phenology of the mangrove forest than
by the size of the sampled sites (Mohd-Azlan, Noske ¢& Lawes, 2012). Moreover, Chacin
et al. (2015) demonstrated that hydrological fragmentation does not always negatively
affect avian abundance since the loss of hydrological connectivity might result in prey
concentration, facilitating forage activities for some species of fishing birds. We agree with
this hypothesis but only if tidal patterns allow a cyclic interruption-reconnection of the
main and secondary tidal channels to allow flooding and drainage of the mangrove sites.
The results of the multivariate analysis supported this idea. Moreover, it demonstrated that
bird abundance was more influenced by habitat condition (i.e., hydroperiod and forest
structure) than by the measured water parameters. Although there were no clear biological
effects of the measured water parameters on the abundance of the birds in our study area,
they surely determine resource availability because of their effect on the primary producers,
and hence on the presence of the benthonic, fish and crustacean communities (Holguin,
Vazquez & Bashan, 2001; Sandilyan ¢ Kathiresan, 2015), on which many bird species feed.

As the characteristics of the habitat influence the distribution of wading species, the sites
with less canopy cover provide better foraging areas for waders (Bancroft, Gawlik ¢& Rutchey,
2002; Curado et al., 2013). Additionally, the selection of open and semi-open areas likely
reduces the predation risk and increases the foraging efficiency of wading species (Pomieroy,
20065 Chacin et al., 2015). Notwithstanding, while tall and broad canopy vegetation might
negatively affect the foraging efficiency of water birds, it might become more beneficial
for the insectivores (Tavares ¢ Siciliano, 2013). Thus, the presence of wading and diving
species, together with canopy and undergrowth species using the edges of primary habitat
and the emerging vegetation within the restored site, may have influenced the proportions
of bird abundance and richness in the study area.

Because our sampling sites are located within a landscape matrix of disturbed and
undisturbed patches, the geographical distribution of the study locations likely influenced
the number of species found in each sampling site. For example, recordings of birds
common to undisturbed sites, such as the Mangrove Warbler, were relatively frequent in
the restored and disturbed sites because this species uses features of the disturbed areas
as rest spots or merely in the movement between undisturbed patches, as other species
do (Mohd-Azlan, Noske ¢ Lawes, 2015). This behavior might prevent the identification
of particular species from each sampling location just on the basis of observation. Thus,
estimates of abundance might be a better indicator. For instance, the abundance of the
Mangrove Warbler was higher in both undisturbed and restored areas, although we
recorded this species in all studied sites. Additionally, based on the species-by-species
abundance, we obtained evidence of non-random use of the restored site as foraging
habitats for this and other insectivores (Table 4).

The regrowth of vegetation cover induced by the restoration activities, demonstrated
by the increase in the height (0-55 cm) of the mangrove scrub and increased recruitment
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(0-79 individualsha™!) (see Echeverria-Avila et al., 2019), improved the availability of
resources and, hence, the presence and the abundance of insectivorous birds such as the
Mangrove Warbler and the Tropical Kingbird. A very close relative of the former, the Yellow
Warbler (Setophaga petechia), has been considered a key species because of its sensitivity to
changes in environmental conditions and specific habitat needs (Lowther et al., 1999), and
because its populations may change according to the habitat management practices and
food availability (Salgado-Ortiz, Marra & Robertson, 2009). Since the higher abundance of
the Mangrove Warbler was apparently related to the undisturbed areas, it demonstrates its
importance as an indicator of habitat with negligible impacts, or of habitats showing signs
of recovery. Also, the open and semi-open areas in the restored site contributed to the
higher availability of resources for different bird guilds (Ortega-Alvarez ¢ Lindig-Cisneros,
2012; Buelow & Sheaves, 2015). These areas were more attractive to birds which usually
flock in large groups and forage on the ground, mud or inundated areas, leading to higher
abundances than in the densely-vegetated undisturbed site. Even though the IndVal was
non-significant, both approaches used to identify key species suggested that insectivores
better represented the undisturbed site. According to the Simper analysis, the species that
best represents the restored mangrove is a meat-eater (the Green Heron), whereas the
IndVal suggested that an omnivore (the Blue-winged Teal [Anas discors]) could be an
indicator for this site. This lack of coincidence might relate to differing information used
by each approach. While Simper uses only the information regarding abundance, IndVal
uses the relative abundance and also incorporates the relative frequency of occurrence.

Additionally, the presence of species such as ibises and wood storks is considered evidence
of success after the implementation of restoration activities (Ortega-Alvarez ¢ Lindig-
Cisneros, 2012; Zhao et al., 2016). This is because they depend mostly on communities of
vertebrates and invertebrates that are sensitive to changes in water and soil quality, induced
among other factors, by the alteration of the hydroperiod (Ogden et al., 2014). Accordingly,
the presence and abundance of the insectivorous and wading bird species similar to those
found in the study area are important elements by which to evaluate and monitor the
effectiveness of habitat restoration projects in mangrove ecosystems.

Implications for Conservation

There is no doubt that natural phenomena, such as hurricanes, contribute to habitat
heterogeneity. However, severe climatic events may alter the microtopography and
hydrological connectivity and make difficult post-hurricane natural regeneration.

Such is especially the case in habitats that depend on recurrent flooding and drainage
(hydroperiods) such as mangroves. By altering the hydroperiod, dead mangrove areas
may increase in size through time. The loss of the vegetation cover and the alteration of
the environmental conditions may, in turn, lead to biotic homogenization (Martinez-
Ruiz & Renton, 2018). After degradation due to loss of hydrological connectivity occurs
in mangroves, restoration of water flow through deblocking of main and secondary tidal
channels increases the habitat heterogeneity, allowing the resettlement of ecosystem services
and strengthening the ecological relationships and structure of the biotic communities
living there. It may also improve the hydro-edaphic factors, such as nutrients, water level,
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and porewater salinity (McKee et al., 2002), from which the micro and macrobenthos, as
well as fisheries and birds, are dependent.

Long flooding periods limit the abundance of wading birds, especially the small species
foraging on the macrobenthos. Thus, identifying degraded areas and monitoring the
hydroperiod, before and after hydrological restoration, will allow for better conservation
strategies for the mangroves and their avian communities. As the hydrological connectivity
improves mangrove heterogeneity by regenerating vegetation, avian communities can
become more diverse, acquiring a higher number of species from different functional
groups. Thus, densely vegetated mangroves, together with the restoration of patches
unable to regenerate themselves, are essential to maximizing the abundance of specialized
bird guilds.

To realize the positive effects of restoration activities, it is necessary to create a link
between the restoration programs and the local communities through environmental and
economic development education. For instance, birdwatching and sport fishing (catch and
release) can be alternatives to socio-economic growth for the benefit of human coastal
communities through the development of a green touristic industry in restored places
(Skelton & Allaway, 1996).

We expect that the restoration activities implemented will increase and maintain the
habitat’s heterogeneity in the medium and the long term and will strengthen the resilience
of the mangrove forests.

CONCLUSIONS

The restoration activities in the estuaries of Laguna de Términos first helped the natural
regeneration of the mangrove forest through the water movement caused by the opening
and desilting of tidal channels, making tidal periodicity comparable to that of natural
conditions while also reducing water salinity. In addition, water exchange likely favored
fish and crustacean production and the appearance of mudflat and shallow water zones,
which are attractive foraging areas for different bird guilds. Consequently, habitat
heterogeneity and the availability of resources increased, and the avian community became
more diverse, especially regarding the abundance of insectivorous birds in the restored
areas.
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