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SUMMARY

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to 

repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to 

apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-

dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 

(XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the 

damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. 

Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core 
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proteins and DNA, revealing the detailed structural architecture of this assembly. We describe 

monomeric and dimeric forms of this supercomplex and also propose the existence of alternate 

dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of 

several structural features within these NHEJ complexes negatively affects DNA repair.

Graphical Abstract

In brief

Non-homologous end joining (NHEJ) is a key mechanism that repairs DNA-double strand breaks. 

Using cryo-EM, Chaplin et al. present monomeric and dimeric structures of the core NHEJ 

proteins and reveal their structural architecture. Two long-range synaptic dimers are presented, and 

mutations of the dimer interfaces negatively affect DNA repair.

INTRODUCTION

In all kingdoms of life, the ability to repair DNA damage is essential. Non-homologous 

end joining (NHEJ) is nearly ubiquitous as a DNA repair mechanism and is one of the two 

main mechanisms utilized to repair DNA double-strand breaks (DSBs) in humans (Harper 

and Elledge, 2007). DSBs are one of the most dangerous type of DNA damage and, when 

left unrepaired, have the potential to lead to apoptosis, tumorigenesis, and cancer (van Gent 

et al., 2001). Fully understanding the spatial and temporal orchestration of the complex 

multicomponent process of NHEJ has long been a challenge; however, recent advances 

in cryoelectron microscopy (cryo-EM) have accelerated the structural understanding of 
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some of the proteins and complexes involved. In NHEJ, DSBs are first recognized by 

the Ku70/80 heterodimer, which subsequently recruits the DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs), a large protein kinase belonging to the phosphoinositide-3-

kinase-related kinase (PIKK) family (Hartley et al., 1995). Ku70/80, DNA, and DNA-PKcs 

together form the DNA-PK complex or holoenzyme (Gottlieb and Jackson, 1993; Hartley 

et al., 1995; Lees-Miller et al., 1990; Suwa et al., 1994; Walker et al., 1985). The cryo-EM 

structure of the DNA-PK holoenzyme has been solved to 6.6-Å resolution (Sharif et al., 

2017; Yin et al., 2017). We recently improved the resolution of the DNA-PK holoenzyme to 

3.5-Å resolution following density modification and revealed a dimer of DNA-PK mediated 

via the C terminus of Ku80, which had not been reported previously (Chaplin et al., 2021). 

This dimer provided new structural insights into the NHEJ mechanism, and we hypothesized 

its ability to act as a central stage for further recruitment and regulation of downstream 

NHEJ proteins.

In addition to the DNA-PK holoenzyme, canonical proteins involved in NHEJ include X-ray 

cross-complementing protein 4 (XRCC4) and the XRCC4-like factor (XLF), which have 

been shown to alternate in long helical filaments that are thought to aid in bringing the 

broken DNA ends together (Brouwer et al., 2016; Hammel et al., 2011; Mahaney et al., 

2013; Wu et al., 2011). The final step in NHEJ involves DNA ligase IV (LigIV), which 

acts to ligate the two broken ends and forms a constitutive complex with XRCC4 known 

as LX4 (Bryans et al., 1999). It has been proposed that formation of large assemblies is 

possible in a two-step mechanism, with an initial long-range synaptic complex formed prior 

to recruitment of LX4 and XLF in a short-range complex (Graham et al., 2016; Wang 

et al., 2018). To address whether DNA-PK is able to form higher-order multicomponent 

assemblies, we collected cryo-EM data for a complex of DNA-PK, LX4, and XLF, revealing 

the presence of NHEJ supercomplexes formed of all six proteins and DNA in monomeric 

and dimeric states. Here we discuss the molecular interactions within these complexes 

and the potential roles of alternate long-range synaptic assemblies in NHEJ pathway 

progression.

RESULTS

Cryo-EM structure of DNA-PK bound to LX4 and XLF

To attempt to visualize the higher-order multicomponent assembly, we collected cryo-EM 

data for a complex of DNA-PK, LX4 (full-length ligase and XRCC4), and full-length XLF 

using our previously optimized preparation of DNA-PK cryo-EM grids (Chaplin et al., 

2021). Following extensive particle classification, we obtained a map of a supercomplex 

of the core NHEJ proteins and DNA to 4.3 Å resolution (Figure S1). In this map, there is 

density clearly visible, in which we were able to dock the X-ray crystal structure of XRCC4 

with the BRCT (BRCA1 C-terminal) tandem repeats of LigIV(PDB: 3II6) and XLF (PDB: 

2R9A) in addition to DNA-PK (PDB: 6ZHA) (Figure S2; Figure 1). Although the construct 

for LX4 contains full-length LigIV, we do not observe density for the catalytic domain.
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BRCT1 of LigIV interacts with Ku70/80

The major interaction site between DNA-PK and LX4 involves the BRCT1 domain of LigIV 

and Ku70/80. The interaction of the BRCT1 domain and the Ku70/80 heterodimer has been 

predicted previously; however, specific sites were not identified (Costantini et al., 2007). 

The crystal structure of XRCC4 with the BRCT tandem repeats of LigIV can be docked into 

this additional density of our cryo-EM map with a minor rotation of the BRCT1 domain 

relative to XRCC4 compared with the X-ray crystal structure (Figure S2F). Even though the 

cryo-EM map is at moderate resolution in this region, we can define an interaction interface 

between sections of the BRCT1 domain and the Ku70/80 heterodimer. Specifically, the 

BRCT1 domain sits in a groove created by the dimer interface between Ku70 and Ku80. The 

specific interaction sites are between loops of BRCT1 (residues 689–692 and 704–706) with 

Ku70 (residues 290–293 and 495–500). Sandwiched between these is an interaction between 

Ku80 residues 323–332 with a helix of the BRCT1 domain of LigIV (residues 706–715) 

(Figure 1A).

XLF interactions with XRCC4 and Ku70

The docking of XLF into the cryo-EM map shows a head-to-head interaction with XRCC4 

that has been described previously (Hammel et al., 2011; Malivert et al., 2010; Ropars et al., 

2011). Additionally, a clear interaction between the stalk of XLF (residues 170–182) and the 

von Willebrand A (vWA) domain of Ku70 (residues 214–222 and 185–196) is also observed 

(Figure 1B). We could not, however, observe a direct interaction between XLF and a Ku70 

homodimer in vitro using isothermal titration calorimetry (data not shown), and we therefore 

conclude that this is a weak or transient interaction that only occurs when the other core 

NHEJ proteins are bound. The binding of XLF to Ku70/80 has been the subject of many 

studies; however, this interaction was thought to be mediated solely by the Ku binding motif 

(KBM) at the C terminus of XLF and Ku80, with no proven interaction with Ku70 (Grundy 

et al., 2016; Li et al., 2008; Nemoz et al., 2018; Yano et al., 2008). We did not, however, 

observe any density corresponding to the flexible C-terminal tail of XLF containing the 

KBM. Nevertheless, compared with the DNA-PK structure alone (PDB: 6ZHA), the Ku80 

vWA domain appears to be in a slightly more open conformation (Figure S3). This may 

indicate that binding of LX4 and XLF can mediate a movement in this domain in a manner 

similar to binding of the KBM of XLF to Ku80 (Nemoz et al., 2018). The Ku70 domain 

remains in the same rotated orientation compared with apo-Ku70/80, as seen previously in 

the DNA-PK structure (Figure S3; Chaplin et al., 2021).

XLF mediates formation of an alternative DNA-PK dimer

While classifying particles from the DNA-PK-LX4-XLF dataset, we identified a dimeric 

form of the assembly that differs from the Ku80-mediated DNA-PK dimeric arrangement 

seen previously (Chaplin et al., 2021). The structure of this new dimer of DNA-PK at 

4.1-Å resolution is mediated predominantly via interactions within the circular cradle 

(Figure 2A). Specifically, the loop of residues 898–901 (loop 1) interacts with the loop 

of residues 2567–2572 (loop 3) on the opposite protomer. There is a further interaction 

between residues 946–950 (loop 2) and 2578–2583 (loop 4) (Figure 2B). The arrangement 

of this new dimer would allow the PQR and possibly the ABCDE phosphorylation clusters 
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on one protomer to be in close proximity to the kinase domain on the opposite protomer. 

Although the distance between the PQR phosphorylation cluster and the kinase domain 

cannot be measured confidently, an approximate decrease of ~20 Å is estimated from the 

monomeric to the dimeric supercomplex structure. The distance of the kinase domain to 

the ABCDE cluster cannot be measured precisely because the ABCDE loop is disordered. 

The juxtaposition of phosphorylation and kinase sites within the dimer may explain how 

these residues are phosphorylated when they are distant from the kinase active site within 

the DNA-PKcs monomer (Figure 2C; Figure S4). It is also apparent that the LX4 and 

XLF interactions with the DNA-PK monomer are largely maintained in this dimeric form, 

with a single XLF homodimer positioned along the dimer axis (Figure S4; Figure 2a). 

This central positioning of XLF allows it to interact with the vWA domains of Ku70 in 

both protomers. Remarkably, the arrangement of XRCC4-XLF-XRCC4 within this structure 

closely resembles the filament arrangement of these proteins as observed from X-ray crystal 

structures (Hammel et al., 2011; Mahaney et al., 2013; Wu et al., 2011). Compared with 

the monomeric supercomplex structure, XLF appears to have rotated to enable head-to-head 

interactions with both XRCC4 homodimers (Figure S5). We see this dimeric supercomplex 

form only in samples containing LX4 and XLF. A further dataset with XLF omitted showed 

density for LX4 bound to DNA-PK, but the new DNA-PK dimer form was not observed, 

indicating that the presence of XLF is crucial for formation of this alternative XLF-mediated 

DNA-PK dimer (Figure S6).

Two long-range synaptic DNA-PK dimer complexes

The distance between the two DNA double-strand ends in the XLF-mediated dimeric 

supercomplex is ~115 Å (Figure 3A); this compares exceptionally well with the previously 

measured distance between the two DNA ends in the proposed long-range synaptic dimer 

complex (Graham et al., 2016) as measured by single-molecule fluorescence resonance 

energy transfer (FRET). Strikingly, the distance between the two DNA ends in the 

previously published Ku80-mediated dimer (Chaplin et al., 2021) is also exactly ~115 

Å (Figure 3B). Because this distance has been proposed previously to represent the 

arrangement of DNA within long-range synaptic complexes, we propose that the two distinct 

DNA-PK dimers represent alternate forms of the long-range synaptic complexes.

Disruption of both long-range DNA-PK dimer forms affects end joining

To address whether dimerization of DNA-PK molecules affects NHEJ, DNA-PKcs 

expression constructs were designed to introduce alanine mutations that (1) disrupt the 

XLF-mediated dimeric supercomplex interface presented here (residues 898–900 > A [loop 

1] or 2569–2571 > A [loop 3]; Figure 4A); (2) disrupt the interaction between DNA-PKcs 

and the extreme C terminus of Ku80, part of the domain swap interaction in the DNA-PK 

dimer reported previously (residues R1854, K1857, K1913, and K1917 mutations 4XKR > 

A in DNA-PKcs; Figure 4B; Chaplin et al., 2021); or (3) disrupt both dimeric interactions. 

Unlike other end joining events, VDJ (variability, diversity and joining) recombination is 

exquisitely dependent on NHEJ. Thus, episomal VDJ recombination assays were performed 

using the DNA-PKcs-deficient cell strain V3. VDJ coding and signal joining mediated by 

any of the three mutants is less efficient (by roughly 2-fold) compared with wild-type DNA-

PKcs, illustrating the importance of the two types of DNA-PK dimers for efficient NHEJ 
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(Figure 4C). Moreover, combination of the 898–900 > A with the 4XKR > A mutations 

does not further impair joining (Figure 4C). All four DNA-PKcs mutant constructs were 

used in transient transfections (in DNA-PKcs-deficient 293T cells); after 48 h, cells were 

harvested and treated with calicheamicin and okadaic acid. The four DNA-PKcs mutants are 

expressed similarly, and all undergo calicheamicin-induced autophosphorylation at S2056 

and T2609 (Figure 4D), indicating that these mutations do not alter protein expression or 

phosphorylation levels. This also suggests that phosphorylation of S2056 and T2609 may 

occur when the dimers are no longer able to form, although, because the dimers are each 

mediated by several protein/protein interactions, it is possible that the mutants studied here 

can still form long-range synaptic complexes, albeit inefficiently.

We conclude that formation of DNA-PK dimers facilitates NHEJ. The observation that 

disruption of both dimer interfaces does not exacerbate end joining deficits suggests that 

these dimers function in a single NHEJ pathway in which one dimer forms prior to the other 

dimer or that dimerization facilitates ligation but is not absolutely essential (see the model in 

Figure 6). It may also be possible that the interplay between the two dimeric forms is more 

complex and that the importance of one or the other varies under various cellular conditions 

or in response to specific stimuli.

Structural rearrangements in the XLF-mediated DNA-PK dimer

Within the new dimeric supercomplex form of DNA-PK it is clear that there are major 

structural rearrangements compared with the monomeric supercomplex structure, with the 

most notable changes occurring within the head domain of DNA-PKcs. These include a 

general movement toward the N-terminal arm, resulting in lifting of the FRB (FKBP12-

rapamycin-binding) domain toward the dimer interface. In concert with these movements 

is a twisting of the head domain in relation to the circular cradle (Figure 5A; Videos S1 

and S2). Because the movement of the head domain, we now observe a direct interaction 

between regions encompassing residues 51–71 of the N-terminal arm and 3092–3100 of the 

head domain (Figure 5C).

In this dimeric supercomplex, we also observe extra density within the circular cradle of 

DNA-PKcs corresponding to part of the recently postulated plug domain (Hepburn et al., 

2021). We have modeled some of this region as residues 2721–2765, which form two new 

helices. Helix 2738–2765 is positioned down the central cavity of the circular cradle, making 

a direct interaction with the DNA end, and the second helix, corresponding to residues 

2721–2733, packs against helices on the surface of the circular cradle (Figures 5A and 5B). 

We do not however, observe any density for the remaining ~123 residues (residues 2598–

2721) encompassing the disordered region of the ABCDE phosphorylation cluster (residues 

2609–2647).

The plug domain has recently been proposed to function as a block on the DNA end. This 

is in agreement with the positioning of this helix in our structure as it sterically hinders 

progression of the DNA end within DNA-PKcs (Hepburn et al., 2021). However, in our 

structure, it appears that the two strands of the DNA are splitting around this helix, with the 

5′ end of one strand of DNA making interactions with Lys 452 and Tyr 408 and the 3′ end 

of the other strand interacting with Arg 2228 (Figure 5B Video S3). The residues within this 
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helix that directly interact with the DNA ends are residues 2743–2746 (YARK). To address 

the functional relevance of the DNA end interaction with this helix, a DNA-PKcs expression 

construct was generated substituting YARK > AAAA. This construct was tested in VDJ 

episomal end joining assays. Joining is reduced by approximately 2-fold. We conclude 

that DNA end interaction with this novel helix in the circular cradle facilitates NHEJ. 

Experiments are underway to assess whether the interaction of the 5′ and 3′ DNA ends is 

important for end joining.

DISCUSSION

In this study, we present monomeric and dimeric NHEJ super-complex cryo-EM structures 

consisting of DNA-PK, XRCC4, LigIV, and XLF. In these structures, we can see how 

LigIV, XRCC4, and XLF are able to interact with DNA-PK. An interaction between the 

BRCT1 domain of LigIV and Ku70/80 has been described previously (Costantini et al., 

2007). Our structural data confirm this interaction and allow us to identify specific regions 

of the BRCT1 domain and the Ku70/80 heterodimer involved in this interaction. Previous 

reports have inconsistent conclusions regarding whether this interaction is DNA independent 

(Costantini et al., 2007). Our structure confirms that there are no direct contacts between the 

BRCT1 domain and DNA; however, it is clear that formation of the Ku70/80 heterodimer 

is essential to create the BRCT1 domain binding pocket and may enhance stability and, 

therefore, binding.

The interaction we observe between the stalk of XLF and the vWA domain of Ku70 has 

not been predicted in earlier work, and this may be due to the interaction being weak or 

transient in nature. However, the interaction between XLF and the Ku70/80 heterodimer 

has been localized previously to the vWA domain of Ku80. Interactions between many 

NHEJ proteins and the Ku70/80 heterodimer have been proposed, predominantly via KBMs, 

including Werner syndrome protein (WRN), aprataxin- and PNK-like factor (APLF), Cyren 

(MRI), and PAXX. XLF also contains a KBM at its far C terminus, shown previously to 

bind to the vWA domain of Ku80, causing an opening in the structure (Nemoz et al., 2018). 

In our supercomplexes containing XLF, we also observe an opening in the vWA domain of 

Ku80, which may indicate binding of the C-terminal KBM of XLF (Nemoz et al., 2018).

From our cryo-EM data we were able to reveal a dimeric form of DNA-PK mediated by a 

central XLF homodimer. Recently, single-molecule fluorescence imaging in Xenopus laevis 
egg extract demonstrates that a single XLF homodimer facilitates assembly of a synaptic 

complex in NHEJ (Carney et al., 2020; Graham et al., 2018). We observe the central role 

of XLF in our dimeric form of DNA-PK that would ultimately allow correct positioning 

of DNA ends prior to ligation. Before our structures presented here and those published 

very recently (Chen et al., 2021a), such complexes involving NHEJ core proteins have 

been postulated, but structural data were limited to low-resolution solution scattering and 

integrative modeling.

Within the dimeric supercomplex structure, there are significant structural rearrangements 

within the kinase and FAT domain (FRAP [FKBP12-rapamycin–associated protein]) of 

DNA-PKcs. Recent cryo-EM data have also demonstrated movements within these domains 
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in an active form of DNA-PK (Chen et al., 2021b). The structural rearrangements we 

observe in our dimeric supercomplex structure are in general agreement with the monomeric 

DNA-PK complex VI structure from Chen et al. (2021b), in which the kinase domain is 

reported to be in an active conformation (Figure S6). It should also be noted that, in an 

additional cryo-EM dataset collected with XLF omitted we also observed movements within 

the head domain, as seen in the dimeric supercomplex containing XLF. However, in the 

data with XLF omitted, these structural changes were in conjunction with dimerization of 

DNA-PK via the C terminus of Ku80 rather than the XLF-mediated dimer form (Figure 

S7). This suggests that these structural rearrangements are induced by the combination of 

dimerization and LX4 binding regardless of which dimeric form is assembled. Furthermore, 

in our XLF-mediated dimeric supercomplex structure, we observe that the PQR and ABCDE 

phosphorylation clusters appear to be in closer proximity to the kinase domain of the 

opposite DNA-PK protomer (Figure 2C). However, when this dimer form is mutated, 

phosphorylation is still detected (Figure 4D). Therefore, although autophosphorylation may 

occur in trans (in the dimeric form), it appears that phosphorylation can also occur in the 

monomer DNA-PK complex (cis conformation). It has been reported previously that cis 
and trans phosphorylation can occur (Meek et al., 2007) and that either mechanism may be 

important for certain steps of the NHEJ pathway (Lu et al., 2008).

One of the most striking features of the new dimeric structure is the ordering of a helix 

(residues 2737–2765) within the circular cradle of DNA-PKcs. This helix encompasses 

part of the recently described plug domain (Hepburn et al., 2021). It is clear from our 

structure that this helix directly contacts the DNA end. It is unclear what the precise role 

of this helix is, although it appears to act not only as a block for the DNA but also 

to potentially split the double-stranded DNA, with the two strands separating around the 

helix and contacting independent sites within DNA-PKcs (Figure 4B). The splitting of the 

DNA ends around this novel helix suggests a potential mechanism for end processing by 

DNA-PKcs. It has been shown recently that, although hairpin ends are extremely efficient 

in promoting DNA-PK’s autophosphorylation of ABCDE sites, hairpin ends do not promote 

PQR autophosphorylation or phosphorylation of DNA-PK’s many other substrates (Meek, 

2020). Several previous studies have suggested that strand separation at the DNA termini 

enhances DNA-PK’s catalytic activity (Hammarsten et al., 2000; Jovanovic and Dynan, 

2006; Pawelczak et al., 2005, 2011; Pawelczak and Turchi, 2008). Moreover, this model 

would be entirely consistent with work of Graham et al. (2016), who have shown that 

NHEJ specific end-processing is limited to the short-range complex and that end processing 

not only requires the presence of core NHEJ factors but also DNA-PK’s catalytic activity. 

Phosphorylation of the ABCDE sites is the only DNA-PK phosphorylation that has been 

shown to promote end processing. It should be noted that we used Y-shaped DNA in our 

cryo-EM samples, and although we believe the Y end is at the end of Ku70/80, it may be 

possible that the Y end is interacting with the helix and being split either side.

Remarkably, the distance between the DNA ends in the XLF-mediated dimer as presented 

here and the previously shown Ku80-mediated DNA-PK dimer (Chaplin et al., 2021) are 

identical at ~115 Å (Figure 3). This distance is in agreement with that proposed from 

single-molecule FRET experiments to represent a long-range synaptic assembly (Graham 

et al., 2016). We therefore propose that both of these dimeric forms of DNA-PK represent 
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alternate long-range synaptic complexes. Additionally, our mutational data illustrate the 

importance of both of these long-range synaptic dimers for efficient end joining. In the XLF-

mediated complex, we do not observe density for the catalytic domain of LigIV, potentially 

because of the flexible linker and inability of the catalytic domain to access the DNA 

end, precluded by DNA-PKcs. A recent publication has, however, managed to visualize the 

catalytic domain of LigIV in a low-resolution cryo-EM short-range synaptic complex. In this 

assembly, where DNA-PKcs was not included, the DNA ends are now able to join together, 

illustrating the transition of the long-range XLF-mediated dimer to the short-range complex 

(Chen et al., 2021a). In this short-range synaptic complex, the catalytic domain of LigIV 

can be visualized, and this may be due to this domain being stabilized by binding of two 

DNA ends simultaneously (Chen et al., 2021a). This complex also illustrates that the core 

NHEJ proteins can assemble to form a short-range synaptic complex even in the absence of 

DNA-PKcs. This may explain why we do not observe an additive effect when both DNA-PK 

dimers are mutated because synapsis can still occur in the absence of DNA-PKcs (Figure 

4). We propose a potential mechanism for NHEJ in which DNA-PK is recruited to the DSB 

and has the potential to form one of the long-range synaptic dimers (Ku80mediated or XLF 

mediated) before DNA-PKcs is phosphorylated and removed, allowing the DNA ends to be 

brought together and the catalytic domain of LigIV to ligate the DNA ends together in the 

short-range synaptic complex (Chen et al., 2021a).

We demonstrate the fascinating ability of the NHEJ machinery to remodel in response to 

DSBs. It is striking that, from our structural data, XLF and LX4 make no direct interactions 

with DNA-PKcs; rather, the interactions with DNA-PK are via the Ku70/80 heterodimer. 

This allows a scenario where DNA-PKcs could be removed from the assembly to leave 

a ligation complex composed of only Ku70/80, LX4, and XLF. These structures likely 

represent only a snapshot of the possible assemblies that could be formed in response 

to DNA damage. It is well established that multiple additional accessory proteins can 

be recruited to the NHEJ machinery, and, accordingly, we expect to find different NHEJ 

supercomplex assemblies with the presence of different accessory factors, processing 

enzymes, or even DNA-end configurations, highlighting the dynamic character of this 

pathway.

Limitations of the study

Although we present monomeric and dimeric NHEJ supercomplex structures and identify 

new protein-protein interactions, measurement of these interactions using the proteins (such 

as Ku70 and XLF) in isolation gives undetectable affinities. Therefore, although we show 

that these interactions form in the context of the supercomplex structure, we cannot show the 

importance of some of these interactions without the stability of all the proteins and DNA.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Amanda Chaplin (ac821@cam.ac.uk).
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Materials availability—Materials supporting the findings of this manuscript are available 

from the corresponding authors upon reasonable request.

Data and code availability

• All data generated or analyzed during this study are included in this published 

article (and its supplementary information files). Cryo-EM density maps have 

been deposited in the Electron Microscopy Data Bank and atomic coordinates 

have been deposited in the RCSB Protein Data Bank. PDB: 7NFE; EMD: 12301 

and PDB: 7NFC; EMD: 12299.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work/

paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

DNA-PKcs deficient V3 cells, which is a Chinese hamster ovary cell strain that lacks 

DNA-PKcs, cultured according to Neal et al. (2016); it was the generous gift of Dr. Martin 

Gellert, NIH. LX4 was transformed in BL21(DE3) E. coli cells and grown in LB media at 

37°C, 200 rpm until 0.5 mM IPTG was added and incubated overnight at 16°C, 180 rpm. 

XLF and Ku70/80 were expressed in SF9 insect cells (Chaplin et al., 2021).

METHOD DETAILS

Purification of DNA-PKcs and Ku70/80—DNA-PKcs and full-length his-tagged 

Ku70/80 were expressed and purified according to Chaplin et al. (2021).

Overexpression and purification of LX4—A vector encoding full-length His-tagged 

XRCC4-DNA ligase IV (LX4) was transformed into BL21(DE3) E. coli cells. Single 

colonies were picked and grown in LB starter cultures before being transferred into 1 L 

LB media and grown at 37°C, 200 rpm. Once an OD600 of ~0.6 was reached cultures were 

induced with 0.5 mM IPTG and incubated overnight at 16°C, 180 rpm before harvesting. 

Cells were harvested by centrifugation (5,020 x g, 20 min, 4°C) and re-suspended in lysis 

buffer (50 mM Tris, pH 8.0, 5% glycerol (v/v), 150 mM NaCl, 2 mM β-mercaptoethanol, 20 

mM imidazole, 10 Protein Inhibitor Cocktail tablets, 20 mg/ml deoxyribonuclease I). LX4 

was then purified according to the protocol for Ku70/80 as described according to Chaplin et 

al. (2021).

Expression and purification of full-length XLF—A construct containing full-length 

10-His-tagged XLF was expressed in insect cells. Following expression cell pellets were 

resuspended in lysis buffer (20 mM Tris, pH 8.0, 5%, 50 mM KCl, 50mM NaCl, 5 mM 

β-mercaptoethanol, 25 mM imidazole, 2 Protein Inhibitor Cocktail tablets per 1 L) and 

cells sonicated. The resulting lysate was then mixed with 2 µL benzonase (25 kU stock) 

and MgCl2 to a final concentration of 5 mM and left of ice for 20 min. The lysate was 

then centrifuged (20 min, 30,000 g, 4°C). The supernatant was purified using Ni-NTA 

resin (QIAGEN) previously equilibrated with lysis buffer and eluted using the lysis buffer 

containing 300 mM imidazole. Eluted XLF was bound to a Resource Q Sepharose anion 
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exchange column in buffer A (20 mM Tris, pH 8.0, 50 mM KCl, 50 mM NaCl, 5 mM 

β-mercaptoethanol, 1 mM EDTA) and eluted using a linear gradient of buffer A with 850 

mM NaCl. Finally, the protein was dialysed into a final buffer 10 mM Tris, pH 8.0, 150 mM 

NaCl, 5mM β-mercaptoethanol before being stored at −80°C for further use.

DNA annealing—Biotinylated Y-shaped 42–55 bp dsDNA were synthesized and annealed 

as described previously (Chaplin et al., 2021). DNA sequences used for annealing can be 

found below.

Y-shaped DNA Forward

Biotin-

CGCGCCCAGCTTTCCCAGCTAATAAACTAAAAACTATTATTATGGCCGCACGCGT

Y-shaped DNA Reverse

ACGCGTGCGGCCATAATAATAGTTTTTAGTTTATTGGGCGCG

Formation of NHEJ super complexes—Proteins were concentrated using a centricon 

(Amicon) with a 30 kDa cut-off and buffer exchanged into 20 mM HEPES, pH 7.6, 200 

mM NaCl, 0.5 mM EDTA, 2 mM MgCl2, 5 mM DTT. Purified Ku70/80 full-length was 

then mixed with Y-shaped 42–55 bp DNA before being mixed with purified DNA-PKcs, 

LX4 and XLF in a 2:2:2:2 ratio. The complex was then briefly centrifuged to remove any 

precipitate/aggregates.

Cryo-EM grid preparation—Aliquots of 3 µL of ~2.5 mg/ml of the NHEJ super complex 

samples were mixed with 8 mM CHAPSO (final concentration, Sigma) before being applied 

to Holey Carbon grids (Quantifoil Cu R1.2/1.3, 300 mesh), glow discharged for 60 s at 

current of 25 mA in PELCO Easiglow (Ted Pella, Inc). The grids were then blotted with 

filter paper once to remove any excess sample, and plunge-frozen in liquid ethane using a 

FEI Vitrobot Mark IV (Thermo Fisher Scientific Ltd) at 4°C and 95% humidity.

Cryo-EM data acquisition—All cryo-EM data presented here were collected on a Titan 

Krios in the Department of Biochemistry, University of Cambridge and all data collection 

parameters are given in Table S1.

Image processing—13680 movies were collected in accurate hole centering mode using 

EPU software (Thermo Fisher). CTF correction, motion correction, and particle picking 

were performed using Warp (Tegunov and Cramer, 2019). 749185 particles picked by 

boxnet2 masked neural network model in Warp were imported to CryoSPARC (Punjani et 

al., 2017a, 2017b) for all subsequent processing. These particles were initially subjected 

to two-dimensional (2D) classification. The initial 2D classes were predominantly of poor 

visible quality (in part due to the complete random orientation of particles on the grid 

due to the addition of CHAPSO). However, a small number of classes clearly represented 

views of DNA-PK, and 25517 particle selected from these classes were used to generate 

initial ab initio 3D volumes representing DNA-PK assemblies. The remaining 723668 

particles were also used to generate several ab initio 3D volumes to represent particles 
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that do not contain DNA-PK. Particles corresponding to different classes were selected and 

optimized through multiple iterative rounds of heterogeneous refinement as implemented 

in CryoSPARC. This process initially used the entire population of picked particles and all 

initial 3D volumes, and through the iterative process particles not representing DNA-PK 

assemblies were discarded, while volumes representing DNA-PK were sub-classified to 

represent various structural states (apo-DNA-PK, super complex monomer, super complex 

dimer etc.) The process of separating sub-assemblies of DNA-PK was also aided by 

3D variability analysis in CryoSPARC (Punjani and Fleet, 2021). The best models were 

then further refined using homogeneous refinement and finally non-uniform refinement in 

CryoSPARC. The classification process is summarized schematically in Figure S1. The 

final reconstructions obtained had overall resolutions (Table S1), which were calculated by 

Fourier shell correlation at 0.143 cut-off.

Structure refinement and model building—The model of the DNA-PK monomer and 

dimer (PDBs 7NFE and 7NFC) were used as initial templates and rigid-body fitted into 

the cryo-EM density for the super complexes in UCSF chimera (Pettersen et al., 2004) and 

manually adjusted and rebuilt in Coot (Emsley et al., 2010). Extra density for LX4 and XLF 

were docked using PDB 3II6, and PDB 2R9A in UCSF chimera (Pettersen et al., 2004) and 

again manually adjusted and rebuilt in Coot (Emsley et al., 2010). The new helix in the 

center of DNA-PKcs and changes in the head domain were remodelled using Coot (Emsley 

et al., 2010). Namdinator (Kidmose et al., 2019) was used to adjust the final structures 

and several rounds of real space refinement were then performed in PHENIX (Afonine et 

al., 2018) before final validation. All structures were refined and validated before being 

deposited into the PDB with codes shown in Table S1.

Episomal end-joining assay—Episomal end-joining assays were performed as 

described previously (Neal et al., 2016). Briefly, DNA-PKcs deficient V3 cells were 

co-transfected with either the 290-RFP/CFP coding joint or 289-RFP/CFP signal joint 

substrates, with either no RAGs, RAGs only, or RAGs plus wild-type or mutant DNA-PKcs 

constructs. Two mutants were created of the new dimeric supercomplex, loop 1 residues 

898–900 to alanine, loop 3 residues 2569–2571 to alanine and one of the previous DNA-

PK dimer, where Lys1913, Lys1917, Arg1854 and Arg1857 were all mutated to alanine’s 

(4XKR > A). We also created a double mutant of 898–900 (loop 1) to ala from the new 

dimer together with 4XKR > A from the previous dimer. Cells were analyzed by flow 

cytometry; % of cells expressing CFP/RFP is indicated as % recombination. Results were 

compiled from at least four experiments; ****p < 0.0001, ***p = 0.0002.

Immunoblots—Immunoblot analyses of whole cell extracts of DNA-PKcs deficient 293T 

cells, transiently transfected with either no DNA-PKcs, wild-type DNA-PKcs, or mutant 

DNA-PKcs (898–900 > A, 2569–2571 > A, 4XKR > A and 898–900 > A+4XKR > A). 

48 hours after transfection, cells were treated or not with 40nM calicheamycin and 1uM 

okadaic acid for 30 minutes. The DNA-PKcs antibody (working concentration, 1:1000; 42–

27) was the generous gift of Tim Carter. DNA-PKcs phospho-specific antibodies utilized 

include anti-phospho-S2056 (working concentration, 1:1000; Abcam 18192), and a rabbit 
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anti-phospho-T2609 reagent, a generous gift of Dale Ramsden (working concentration, 

1:500) (Neal et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Two-tailed unpaired t tests were utilized to compare recombination rates in transfections 

with wild-type versus mutant DNA-PKcs using Prism9 software, details can be found in 

Figures 4 and 5 legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cryo-EM of NHEJ supercomplex structures consisting of DNA-PK, XLF, 

XRCC4, and LigIV

• Description of two dimeric long-range synaptic complexes

• Mutations in these dimeric NHEJ complexes negatively affect DNA repair

• A model of NHEJ consisting of long- and short-range synaptic dimer 

complexes
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Figure 1. The structure of the assembly of DNA-PK, XRCC4, XLF, and the BRCT tandem 
repeats of LigIV
(A) The overall structure of DNA-PK, XRCC4, XLF, and LigIV BRCT tandem repeats in 

a monomeric form. DNA-PKcs is shown in gray, Ku70 in orange, Ku80 in green, XLF in 

pink, XRCC4 in blue, DNA in yellow, and LigIV BRCT repeats in red. The cryo-EM map to 

4.3-Å resolution is shown as a gray transparent surface. The inset shows an enlarged view of 

the interaction between the BRCT1 domain of LigIV (red) and Ku70/80 (orange and green, 

respectively).

(B) The overall structure of DNA-PK, XRCC4, XLF, and LigIV BRCT tandem repeat 

monomer rotated by 180° and proteins colored according to (A). The inset shows an 

enlarged view of the interaction between the stalk of XLF (pink) with Ku70 (orange).
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Figure 2. The structure of the dimeric NHEJ supercomplex containing DNA-PK, XRCC4, XLF, 
and the BRCT tandem repeats of LigIV
(A) The overall assembly of the supercomplex XLF-mediated DNA-PK dimer in two 

orthogonal orientations. DNA-PKcs is shown in gray, Ku70 in orange, Ku80 in green, XLF 

in pink, XRCC4 in blue, DNA in yellow, and LigIV BRCT repeats in red. The cryo-EM map 

to 4.1-Å resolution is shown as a gray transparent surface.

(B) Two orientations of the dimer interface with loop 1 (L1; residues 898–901) shown in 

pink, loop 2 (L2; residues 946–950) in yellow, loop 3 (L3; residues 2567–2572) in blue, and 

loop 4 (L4; residues 2578–2583) in purple, with protomer A in light gray and protomer B in 

darker gray.

(C) A top view of the DNA-PKcs components of the dimer in two shades of gray. The 

kinase domains (yellow) are shown in close proximity to the PQR (red) and ABCDE (blue) 

phosphorylation clusters on the opposite protomer (red).
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Figure 3. Long-range synaptic complexes
(A) NHEJ supercomplex dimer (XLF-mediated DNA-PK dimer [PDB: 7NFC], this work). 

DNA-PKcs is shown in gray, Ku70 in orange, Ku80 in green, XLF in pink, XRCC4 in blue, 

DNA in yellow, and LigIV BRCT repeats in red. The DNA is shown below the structure in 

yellow, with the distance between the DNA ends indicated.

(B) The Ku80-mediated DNA-PK dimer (Chaplin et al., 2021) with DNA-PKcs is shown in 

gray, Ku70 in orange, Ku80 in green, and the DNA in yellow. The DNA is shown in yellow 

below the structure, with the distance between the DNA ends indicated.
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Figure 4. Disruption of DNA-PK dimer interfaces prevents recombination
(A) The structure of the NHEJ dimer supercomplex with DNA-PKcs is shown in gray, Ku70 

in orange, Ku80 in green, XLF in pink, XRCC4 in blue, DNA in yellow, and LigIV BRCT 

repeats in red. Inset: enlarged view of the supercomplex dimer interface with L1 (residues 

898–900) is shown in cyan and L3 (residues 2567–2570) in blue.

(B) The structure of the previous DNA-PK dimer (PDB: 6ZHE) with DNA-PKcs is shown in 

gray, Ku70 in orange, and Ku80 in green (Chaplin et al., 2021). Inset: enlarged view of the 

dimer interface, with the four basic residues interacting with the C terminus of Ku80 shown 

in red.

(C) Episomal end-joining assays analyzing the effects of DNA-PKcs dimer interface 

mutations. DNA-PKcs-deficient V3 cells were co-transfected with the 290-RFP/CFP (red 

and cyan fluorescent protein) coding joint (left) or 289-RFP/CFP signal joint (right) 

substrates with no R (RAG1+RAG2), R, or R plus wild-type or mutant DNA-PKcs 

constructs as indicated. The wild type is shown in white, 898–900 > A (L1) in cyan, 2569–

2571 > A (L3) in blue, 898–900 > A and 4XKR > A in purple, and 4XKR > A in red. Cells 

were analyzed by flow cytometry; the percentage of cells expressing CFP/RFP is indicated 

as percent recombination. Results were compiled from at least four experiments; ****p < 

0.0001, ***p = 0.0002.

(D) Immunoblot analyses of whole-cell extracts of DNA-PKcs-deficient 293T cells 

transiently transfected with no DNA-PKcs, wild-type DNA-PKcs, or mutant DNA-PKcs 
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as indicated. 48 h after transfection, cells were treated with 40 nM calicheamicin and 1 mM 

okadaic acid for 30 min or left untreated. DNA-PKcs phospho-specific antibodies utilized 

include anti-phospho-S2056 (working concentration, 1:1000; Abcam 18192) and a rabbit 

anti-phospho-T2609 reagent, a generous gift from Dale Ramsden (working concentration, 

1:500) (Neal et al., 2016).
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Figure 5. Comparison between DNA-PKcs in the monomeric and dimeric NHEJ supercomplexes
(A) Two orientations comparing the structure of DNA-PKcs in the monomer with DNA-

PKcs in the dimer. DNA-PKcs in the dimer is colored according to the sequence schematic 

below the structures, with the N-terminal arm in purple, circular cradle in red-orange, 

FAT (FRAP [FKBP12-rapamycin-associated protein]) domain in teal, and kinase domain in 

yellow. DNA-PKcs in the monomer is shown in gray for only the head domain because 

of the rest of the structure being similar to the dimeric DNA-PKcs structure. The two new 

helices present in the supercomplex dimeric structure are colored in green and labeled on the 

sequence schematic. The loops forming the dimer interface in Figure 2 are also labeled and 

colored on the sequence schematic. Inset: rotation of the head domain by 90° to show the 

twisting of the head domain in the dimer structure compared with the monomer.

(B) A close-up view of the ordered helix (residues 2737–2765) in green and the DNA in 

blue.

(C) Episomal end-joining assays were performed as described in Figure 3.

(D) Enlarged view comparing the interaction shown in the dimer (left) between the N-

terminal arm shown in purple and the FAT domain in teal with the lack of an interaction 

shown in the monomer (right). Map density is shown as gray mesh.
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Figure 6. Overall model of NHEJ
DNA-PKcs is shown in gray, Ku70 in orange, Ku80 in green, XLF in pink, XRCC4 in blue, 

DNA in yellow, and LigIV in red. PDB and references are given below the structures.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-DNA PKcs (phospho S2056) antibody Abcam ab18192

Bacterial and virus strains

E. coli BL21(DE3) cells Thermofisher EC0114

E. coli Rosetta DE3 Merck 70954

SF9 Insect cells Oxford 
Expression 
Technologies

600100

Chemicals, peptides, and recombinant proteins

CHAPSO SIGMA C3649

Deposited data

Electron Microscopy Data Bank and the RCSB Protein Data Bank. This paper PDB:7NFE; 
EMD:12301

Electron Microscopy Data Bank and the RCSB Protein Data Bank. This paper PDB:7NFC; 
EMD:12299

Experimental models: Cell lines

DNA-PKcs deficient V3 cells –The V3 cell line is a Chinese hamster ovary cell strain that lacks 
DNA-PKcs.

Generous gift of 
Dr. Martin 
Gellert

NIH

Oligonucleotides

Biotin-
CGCGCCCAGCTTTCCCAGCTAATAAACTAAAAACTATTATTATGGCCGCACGCGT

Sigma Yin et al., 2017

ACGCGTGCGGCCATAATAATAGTTTTTAGTTTATTGGGCGCG Sigma Yin et al., 2017

Software and algorithms

CryoSPARC Punjani et al., 
2017a, 2017b

Punjani et al., 
2017a, 2017b; https://
cryosparc.com

WARP Tegunov and 
Cramer, 2019

http://
www.warpem.com/
warp/#

Coot Emsley et al., 
2010

N/A

UCSF Chimera Pettersen et al., 
2004

N/A

Phenix 1.18 Afonine et al., 
2018

N/A
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