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Introduction

Non-Hodgkin lymphoma (NHL) is the sixth most common 
cancer type in the United States with 69 740 new cases per 
year (2013).1 Over 80% of these cases are diagnosed as B-cell 
lymphomas. B-cell lymphomas are divided into different types, 
based on morphology, immunophenotype, and genetic and 
clinical criteria.2 Lymphomagenesis is a multistep process and 
the consequence of the accumulation of genetic and epigenetic 
changes,3 including transcriptional silencing of tumor-suppressor 
genes by CpG-island promoter hypermethylation. In lymphoma 
numerous cellular processes, e.g., signal transduction (DLC1, 
EFNA5, NR0B2), DNA repair (MGMT, MLH1, RASSF1), cell-
cycle regulation (p15, p16, RBP1), differentiation (MYOD1), 
invasion (CDH13), and apoptosis (DAPK ) have been shown 
to be altered by aberrant DNA methylation.4,5 In addition to 

cancer-type specific aberrations, e.g., GSTP1-methylation in 
prostate cancer,6 many tumor suppressors are methylated across 
several cancer types. RASSF1A is one example, with methylation 
frequencies ranging from 10% to 90% in solid tumors, including 
lung, kidney, colorectal, and esophageal cancer, as well as in 
hematological malignancies such as leukemia and lymphoma.7,8

In the present study we have analyzed 97 cell lines from 
17 different cancer types for a DNA-methylation-based 
biomarker panel consisting of CNRIP1, FBN1, INA, MAL, 
SNCA, and SPG20.9 In addition to the gastrointestinal tumors,9 
the biomarker panel showed a high methylation frequency in 
hematological cancer cell lines. Using quantitative real-time 
methylation assays, the biomarker panel was subsequently 
analyzed in two series of tumor biopsies from patients with 
various B-cell lymphoma types as well as in samples from 
healthy control subsets.
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Genes with altered DNA methylation can be used as biomarkers for cancer detection and assessment of prognosis. 
Here we analyzed the methylation status of a colorectal cancer biomarker panel (CNRIP1, FBN1, INA, MAL, SNCA, and SPG20) 
in 97 cancer cell lines, derived from 17 different cancer types. Interestingly, the genes were frequently methylated also 
in hematological cancer types and were therefore subjected to analyses in primary tumor samples from the major types 
of non-Hodgkin lymphomas (NHL) and in healthy controls. In total, the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 
were methylated in 53%, 23%, 52%, 69%, 97%, and 92% of the tumor samples, respectively, and were unmethylated in 
all healthy controls. With the exception of a single tumor sample, a correct prediction of lymphoma or normal sample 
was made in a blinded analysis of the validation series using a combination of SNCA and SPG20. The combined ROC-curve 
analysis of these genes resulted in an area under the curve of 0.999 (P = 4.2 × 10-18), and a sensitivity and specificity of 
98% and 100%, respectively, across the test and validation series. Interestingly, the promoter methylation of CNRIP1 was 
associated with decreased overall survival in diffuse large B-cell lymphoma (DLBCL) (P = 0.03).

In conclusion, our results demonstrate that SNCA and SPG20 methylation might be suitable for early detection and 
monitoring of NHL. Furthermore, CNRIP1 could potentially be used as a prognostic factor in DLBCL.
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Results

Promoter methylation status in cancer cell lines
The methylation frequencies of CNRIP1, FBN1, INA, MAL, 

SNCA, and SPG20 were analyzed by quantitative methylation-
specific PCR (qMSP) in 97 cancer cell lines derived from 17 
different cancer tissues. In addition to the cell lines derived from 
gastro-intestinal cancer,9 the hematological cancer cell lines 
showed surprisingly high methylation frequencies across all tested 
genes, indicating that these biomarkers could also perform well in 
hematological malignancies. In contrast, promoter methylation 
frequencies were low for testis, ovary, MPNST, lung, bladder, and 
kidney cancer cell lines (Fig. 1).

Quantitative promoter DNA methylation analysis in a test 
series of B-cell lymphoma biopsies and healthy samples

The overall promoter methylation of CNRIP1, FBN1, INA, 
MAL, SNCA, and SPG20 across all analyzed NHL types was 
43%, 24%, 43%, 81%, 97%, and 95%, respectively (Table 1; 
Fig.  2). All genes were found to be unmethylated in control 
CD19+-B cells isolated from healthy individuals (with PMR 
values ranging from 0 to 1.80%). The promoter region of SNCA 
and SPG20 showed the highest methylation frequencies across 
all analyzed lymphoma types and 100% of the NHL samples 
showed methylation of at least one of these two genes, with a 
specificity of 100%.

Verification of qMSP results in a validation series—blinded 
analysis

Using the threshold for scoring methylation-positive samples 
established from the test series (percent of methylated reference 
[PMR] ≥ 2 for all genes), we performed a blinded analysis of 
a validation series, that included NHL samples and additional 
controls such as bone marrow, follicular hyperplasia (FH), 
tonsils, CD19+-B cells and peripheral blood mononuclear cells 
(PBMCs) (Table  1; Fig.  2). With the exception of a single 
lymphoma sample, the methylation status of SNCA and SPG20 
was sufficient to distinguish all patients from healthy donors.

The promoter-methylation frequency of CNRIP1, FBN1, INA, 
MAL, SNCA, and SPG20 across all NHL types in the validation 
series was 68%, 20%, 64%, 52%, 96%, and 88%, respectively. 
All genes were unmethylated in the healthy samples (with PMR 
values ranging from 0 to 1.43%) as well as in the follicular 
hyperplasia samples (Fig. 2). No statistical difference was seen 
between the test and validation series. The association between 
promoter methylation status and gene expression has previously 
been reported for all genes in a series of cancer cell lines.9-11

Receiver operating characteristics (ROC) curves
Receiver operating characteristics (ROC) curves were 

generated based on the PMR values from the qMSP analyses 
in the combined test and validation series. The area under the 
curve for SNCA, SPG20, MAL, INA, CNRIP1, and FBN1 was 
0.99, 0.97, 0.87, 0.82, 0.77, and 0.75, respectively (Fig.  3A). 
Combining SNCA and SPG20 (based on the sum of the PMR 
values) resulted in an area under the curve of 0.999 (Fig. 3B).

Because the expression of the MAL protein has 
been reported to be restricted to primary mediastinal 
B-cell lymphoma (PMBL),12 we expected MAL to be 

Figure 1. Methylation status of CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 
across 97 cancer cell lines. The six biomarkers have been analyzed by 
quantitative methylation-specific PCR (qMSP) in 97 different cancer cell 
lines originating from 17 tissues. Each cell line is represented by a square 
and the color scale indicates the percent of methylation reference (PMR) 
value. Abbreviations: MPNST, malignant peripheral nerve sheath tumor.
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unmethylated among these samples. Indeed, all PMBLs analyzed 
in the present study had unmethylated MAL promoters, in 
contrast to the other diffuse large B-cell lymphoma (DLBCL) 
activated B-cell like (ABC); 88% and DLBCL germinal center 
B-cell like (GCB); 71%). We further used ROC-curve analysis 
to estimate how suitable the methylation status of MAL was for 
separating PMBLs from DLBCL ABC and GCB, which resulted 
in an area under the curve of 0.87 (Fig. 3C).

Methylation status as a predictor of poor outcome in B-cell 
lymphoma patients

The methylation status of each gene was analyzed for predicting 
clinical outcome in DLBCL patients. We observed that promoter 
methylation of CNRIP1 was significantly associated with a worse 
overall survival (P = 0.03) in DLBCL (Log-rank test; Fig.  4). 
The combined promoter methylation of CNRIP1 and MAL 
achieved a P value of 0.01. For MAL alone as well as INA alone, 
a trend toward poor overall survival was seen for methylated 
gene promoters, although this was not significant (P = 0.075 and  
P = 0.055, respectively).

Discussion

In the present study, we demonstrated that the promoters of 
CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 were frequently 
methylated in lymphoma biopsies from patients with various 
types of B-cell lymphomas (BL, DLBCL ABC, DLBCL GCB, 
PMBL, and FL). At the same time these genes showed no 
methylation across normal cell types from healthy donors, as well 
as follicular hyperplasia samples; indicating that the methylation 
was cancer specific. Interestingly, the methylation status of 
SNCA and SPG20 was sufficient to separate lymphoma biopsies 

from healthy donors in a blinded analysis with an accuracy of 
98%.

Although the list of methylated genes in NHL is constantly 
increasing, only a few have been shown to be methylated 
across the various types.13-20 This might, in part, be explained 
by the fact that most methylation studies are focusing on a 
single NHL type21-23 or, alternatively, the differences between 
two NHL types.24,25 Genes frequently methylated across the 
majority of NHL biopsies, and not restricted to specific NHL 
types, represent novel biomarkers for NHL in general and may 
become valuable diagnostic and/or disease monitoring tools. 
Promoter methylation of the DLC1 gene was recently proposed 
as a non-invasive epigenetic biomarker for lymphoma.26 This 
gene is methylated across several tumor types, e.g., gastric and 
breast cancer,27,28 in addition to different Hodgkin’s and non-
Hodgkin lymphomas with methylation frequencies ranging 
from 60% to 90%. Ying and co-workers validated the tumor 
specificity of DLC1 promoter methylation in various lymphomas 
and controls.26 Using an MSP-assay, they were able to detect 
44% of primary HL biopsies. Another study reporting on 
the methylation of p57KIP2 suggested that this is a sensitive 
biomarker to detect minimal residual disease in DLBCL. They 
were able to discriminate 80% of the DLBCL patients from 
healthy controls.29 In the present study we showed that the genes 
SNCA and SPG20 were methylated in close to all (98%) NHL 
samples comprising five different types. Furthermore, the genes 
showed 100% specificity with no methylation in various sources 
of healthy donors. Receivers operating characteristic (ROC) 
curves are frequently used to estimate how suitable potential 
biomarkers are in separating malignant from non-malignant 
samples. In the present study, combining the methylation status 

Table 1. Methylation frequencies assessed by qMSP in the test and validation series

Test series BL DLBCL ABC DLBCL GCB FL NHL

CNRIP1 1/7 (14%) 7/10 (70%) 4/10 (40%) 4/10 (40%) 16/37(43%)

FBN1 1/7 (14%) 2/10 (20%) 3/10 (30%) 3/10 (30%) 9/37 (24%)

INA 2/7 (29%) 9/10 (90%) 4/10 (40%) 1/10 (10%) 16/37(43%)

MAL 4/7 (57%) 9/10 (90%) 8/10 (80%) 9/10 (90%) 30/37 (81%)

SNCA 7/7 (100%) 9/10 (90%) 10/10 (100%) 10/10 (100%) 36/37 (97%)

SPG20 6/7 (86%) 10/10 (100%) 9/10 (90%) 10/10 (100%) 35/37 (95%)

Biomarker panel 100% 100% 100% 100% 100%

Validation series DLBCL ABC DLBCL GCB FL PMBL NHL

CNRIP1 8/8 (100%) 4/7 (57%) 2/4 (50%) 3/6 (50%) 17/25 (68%)

FBN1 3/8 (38%) 2/7 (29%) 0/4 (0%) 0/6 (0%) 5/25 (20%)

INA 7/8 (88%) 4/7 (57%) 2/4 (50%) 3/6 (50%) 16/25 (64%)

MAL 7/8 (88%) 4/7 (57%) 2/4 (50%) 0/6 (0%) 13/25 (52%)

SNCA 7/8 (88%) 7/7 (100%) 4/4 (100%) 6/6 (100%) 24/25 (96%)

SPG20 7/8 (88%) 6/7 (86%) 3/4 (75%) 6/6 (100%) 22/25 (88%)

Biomarker panel 100% 100% 100% 100% 100%

The various healthy controls were unmethylated for all analyzed markers. The biomarker panel was considered to be positive when a minimum of one out 
of the six analyzed genes was methylated. BL, Burkitt’s lymphoma; DLBCL, diffuse large B-cell lymphoma; ABC, activated B-cell-like type; GCB, germinal 
center B-cell-like type; FL, follicular lymphoma; PMBL, primary mediastinal B-cell lymphoma; NHL, non-Hodgkin lymphoma.
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of SNCA and SPG20 resulted in close to the maximum possible 
area under the ROC curve (0.999). We have altogether analyzed 
62 NHL patients including the major types of NHL (FL and 
DLBCL) as well as BL and PMBL. Although this covers about 
60% of all NHL cases we cannot exclude that the methylation 
frequency of the genes in question might differ in the NHL types 
not included here.

In contrast with all other NHL types, the MAL gene promoter 
of PMBLs was unmethylated. Although only six PMBLs were 
included in the study, this methylation pattern is in accordance 
with previously reported data, showing that the MAL protein is 
expressed in PMBLs,12,30 but not in other NHL types. Of interest, 
the MAL protein is expressed by most normal B lymphocytes. 
Loss of expression in most NHL is most likely due to gene 
promoter methylation as shown in this study. Why the MAL 
promoter is not methylated leaving MAL expression intact in 
PMBL is not known. Even though it has been shown that the 
MAL gene is a known tumor suppressor in colorectal cancer,10 
and hypermethylated also in breast cancer,31 the functional role 
of MAL expression in PMBL remains unclear.

Epigenetically silenced genes frequently represent tumor-
suppressor genes, e.g. CDKN2, RB, and DAPK.32,33 Several 
of the epigenetically altered genes identified in lymphoma 

have additionally been shown to have a functional role in 
lymphomagenesis, including KLF4, BMP6, and TP73.17,34-36 
Although it is tempting to speculate that the analyzed genes 
in this study might have a role in tumor development, these 
genes have so far not been directly linked to lymphomagenesis. 
Nevertheless, reports show that FBN1 and SPG20 are involved in 
the TGF-β and BMP signaling pathways in different cell types,37 
and we recently showed that the Spartin protein, encoded by 
SPG20, is an important player in cytokinesis.11 Furthermore, 
FBN1, SPG20, and SNCA have been shown to be methylated 
in prostate,38 renal,39 and breast cancer,40 respectively. SNCA has 
also been shown to be hypomethylated in the brain and blood 
of patients with Parkinson disease.41-43 The protein encoded by 
INA has previously been shown to regulate cell-cell interactions, 
which is a fundamental component of tumor growth and 
invasion.3,44 Hence, a role in lymphomagenesis for these genes 
cannot be excluded.

In addition to serving as diagnostic markers, gene-
specific DNA methylation has been shown to be useful for 
prognostication of several cancer types.45 For instance, the 
methylation of CDKN2A and CDKN2B is characteristic for 
different hematological malignancies; leukemias are frequently 
associated with CDKN2A methylation whereas lymphomas 

Figure 2. Percent promoter methylation of the analyzed genes in the sample series. The biomarker panel has been analyzed in control and tumor 
samples by quantitative methylation specific PCR (qMSP) in a test and validation series. Each dot represents one sample (lymphoma or control). 
Abbreviations: BL, Burkitt’s lymphoma; BM, Bone marrow; DLBCL ABC, activated B-cell like diffuse large B-cell lymphoma; DLBCL GCB, germinal center 
B-cell like diffuse large B-cell lymphoma; FH, follicular hyperplasia; FL, follicular lymphoma; PBMC, peripheral blood mononuclear cells; PMBL, primary 
mediastinal B-cell lymphoma; PMR, percent methylated reference.
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often harbor CDKN2B methylation.5 The prognostic value 
of both genes has been shown in the various hematological 
malingnancies.21,46-48 In a recent study, De et al. used a methylation 
heterogeneity score to demonstrate that the extent of aberrant 
DNA methylation is associated with worse overall survival and 
progression-free survival in DLBCL.49 Furthermore, in DLBCL 
patients, promoter methylation of MGMT was associated with 
an improved overall as well as progression-free survival.50-52 In 
the present study, methylation of CNRIP1 showed a significant 
prognostic value in DLBCL of GCB and ABC gene expression 
phenotype where promoter methylation led to a worse overall 

survival in the analyzed patient cohort. To confirm these data, 
further studies including larger patient cohorts are warranted. 
Due to new treatment regimens, especially the introduction of 
rituximab in therapy protocols, several of the established markers 
have lost their prognostic potential.53,54 Therefore, identification 
of new prognostic markers that can guide the treatment 
strategy for NHL patients in the rituximab era is a major goal. 
Additionally, such biomarkers can be used to monitor cancer 
therapy with demethylating drugs, that have already shown 
promising results for acute myeloid leukemia (AML) and, in 
particular, myelodysplastic syndromes (MDS).55-57

Figure  3. Receiver operating characteristics (ROC) curves for individual and combined markers in lymphoma patients vs. healthy donors. The area 
under the ROC curve (AUC; A) represents how accurate the individual and combined biomarkers can discriminate between lymphomas and normal 
samples. (A) Lymphoma patients vs. healthy donors for individual genes. (B) Lymphoma patients vs. healthy donors for the genes SNCA and SPG20.  
(C) DLBCL ABC (activated B-cell like diffuse large B-cell lymphoma) and GCB (germinal center B-cell like diffuse large B-cell lymphoma) vs. PMBL (primary 
mediastinal B-cell lymphoma) for the MAL gene.
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In summary, the promoter methylation of SPG20 and SNCA 
showed high sensitivity and an excellent ability to discriminate 
lymphoma from healthy control samples. Furthermore, the 
promoter methylation of CNRIP1 was significantly associated 
with poor overall survival.

Materials and Methods

Cancer cell lines and patient material
DNA from 97 cell lines derived from 17 different tumor 

tissues (gastrointestinal cancer [bile duct, colon, gall bladder, 
gastric, liver, pancreas], breast cancer, germ-line [testicular] 
cancer, gynecological cancer [ovary, uterus], hematological 
malignancies [leukemia, lymphoma], lung cancer, malignant 
peripheral nerve sheath tumor, urological cancer [bladder, 
kidney, prostate]) was included in the present study. All cell lines 
were recently authenticated using the AmpFLSTR Identifiler 
PCR Amplification Kit (Applied Biosystems) and verified by 
comparing the STR loci results to the cell line databases (ATCC, 
DSMZ). The non-commercially available cell lines have also 
been tested and the STR loci results can be given on request.

The patient materials consisted of a test and a validation 
series and the material was obtained from the Department of 
Pathology, Oslo University Hospital, Norway (45 cases) and 
from the Department of Pathology, University Hospital of 
Leuven, Belgium (17 cases). The test series comprised 37 patients 
diagnosed with B-cell lymphoma (DLBCL ABC, n = 10; DLBCL 
GCB, n = 10; FL, n = 10; and BL, n = 7) and CD19+-B cells 
isolated from buffy coats of 10 healthy donors.

The validation series included material from 25 patients 
(DLBCL ABC, n = 8; DLBCL GCB, n = 7, FL, n = 4, and PMBL, 
n = 6) as well as several control samples representing different 
B-cell developmental stages (bone marrow, n = 3; tonsils, n = 10; 
peripheral blood mononuclear cells (PBMC), n = 10, CD19+-B 
cells isolated from buffy coat, n = 10) and follicular hyperplasia 
samples (FH), (n = 9). Due to the rareness of BL we were unable 
to include patient material from this group in the validation 
series.

The median observation time was 36 months, eight out of 
62 patients (13%) died. Clinical information about the included 
patients can be found in Table  2. Patients with DLBCL were 
treated with CHOP-like therapy plus rituximab, patients with 
BL according to an intensified chemotherapy regimen with 
rituximab (GMALL 2002) and FL patients, if in need of therapy, 
with rituximab monotherapy, CVP plus rituximab or CHOP plus 
rituximab. All samples analyzed in the present study have been 
collected at diagnosis, prior to patient treatment. Furthermore, 
all patients have signed an informed consent and the project has 
been approved by the Regional Ethics Committee (S-05145).

Nucleic acid isolation
DNA from lymphoma biopsies was isolated using the AllPrep 

DNA/RNA Kit from Qiagen. DNA from cell lines was isolated 
either with Phenol-Chloroform, the AllPrep DNA/RNA/Protein 
Kit from Qiagen or the Maxwell® 16 Tissue DNA Purification 
Kit from Promega. Resulting DNA concentration and quality 
was measured using the ND-1000 Nanodrop.

Bisulfite treatment
The EpiTect bisulfite kit from Qiagen was used to treat 1.3 µg 

DNA from each sample, following the manufacturer’s protocol. 
After standard clean-up, the bisulfite-treated DNA was eluted 
in 40 µl elution buffer. The treatment results in the conversion 
of unmethylated cytosines to uracils, which are amplified as 
thymines during PCR. Methylated cytosines are not converted 
during this protocol, and are therefore left as cytosines.

Quantitative methylation-specific PCR (qMSP)
For the qMSP reaction we used 30 ng of bisulfite-treated DNA 

for each individual 384-well plate reaction. In addition, TaqMan 
Universal PCR Master Mix No AmpErase UNG (Applied 
Biosystems), 0.9 µM of forward and reverse primer and 0.2 µM 
probe was used in the qMSP reaction with a total well-volume of 
10 µl (patient samples) or 20 µl (cancer cell lines). Sequences for 
primers and probes are provided in Table S1. The PCR reaction 
was performed with the following conditions: incubation step 
at 95 °C for 10 min, followed by 45 cycles of 95 °C for 15 s 
and 60 °C for 1 min. The samples were run in triplicates on a 
7900HT Fast Real-Time PCR System from Applied Biosystems, 
and the median value was used for further calculations. Samples 
with amplification after cycle 35 were censored according to 
the manufacturer’s protocol. Serial dilutions (32.5–0.052 ng) 
of bisulfite-converted completely methylated DNA (IVD; 
CpGenome Universal Methylated DNA, Millipore) were used 
to construct a standard curve to determine the quantity of fully 
methylated DNA in each reaction. Each reaction was normalized 
for DNA input using ALU-C4 as a reference.58 For each gene in 
each sample, the amount of DNA methylation (PMR, percent 
of methylated reference) was calculated relative to the fully 

Figure 4. CNRIP1 methylation status has prognostic value in DLBCL ABC 
(activated B-cell like diffuse large B-cell lymphoma) and GCB (germinal 
center B-cell like diffuse large B-cell lymphoma). The overall survival was 
analyzed using the Kaplan-Meier-method and the log-rank test. Survival 
was calculated in months from date of diagnosis to last follow up.
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methylated reference (IVD) according to the following: PMR = 
[(gene/ALU)sample/(gene/ALU )IVD]* 100. The samples were 
finally dichotomized into a methylated or unmethylated group 
based on a fixed threshold (PMR ≥ 2), selected based on the 
highest PMR value across the healthy controls from the test 
series. This threshold ensured a high specificity; all samples with 
PMR of two or higher were considered to be methylated. Finally, 
in addition to several water blanks, the following controls were 
included in each plate: bisulfite modified unmethylated DNA 
(normal blood) which served as a methylation negative control, 
as well as unmodified DNA, which served as a quality control 
for primer and probes (to ensure that unmodified DNA is not 
amplified and misinterpreted as methylated DNA).

Prediction of survival by analysis of the promoter-
methylation status

The effect of promoter-methylation status on survival 
was estimated for the 35 DLCBL patients of subtypes ABC 
and GCB from the combined test and validation data set (for 
other subtypes, the number of patients/events were too low for 
analyses). The analysis was performed for the CNRIP1, FBN1, 
INA, and MAL genes; for SNCA and SPG20 the numbers of non-
methylated cases were too low.

Overall survival was calculated from the date of diagnosis until 
the last follow up or death from any cause. Survival curves were 
calculated using the Kaplan-Meier-method and were compared 
using the log-rank test.
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Table 2. Patient characteristics

Test series Validation series

Number of patients 37 25

Number of BL 7 0

IPI low (0–2) 4

IPI high (3–5) 3

Stage 1–2 4

Stage 3–4 3

Number of DLBCL ABC 10 8

IPI low (0–2) 4 2

IPI high (3–5) 3 2

Stage 1–2 3 2

Stage 3–4 7 6

Number of DLBCL GCB 10 7

IPI low (0–2) 7 3

IPI high (3–5) 2 1

Stage 1–2 3 3

Stage 3–4 6 4

Number of FL 10 4

FLIPI low (0–2) 7 1

FLIPI high (3–5) 3 1

Stage 1–2 3 1

Stage 3–4 7 3

Number of PMBL 0 6

IPI low (0–2) 2

IPI high (3–5) 0

Stage 1–2 4

Stage 3–4 2

Male/female quotient 3,1 0,9

Median age, year (range) 61 (34–73) 55 (29–81)

The international prognostic index (IPI) and follicular lymphoma IPI (FLIPI) 
or stage status could not be obtained from every patient. Abbreviations: 
Burkitt’s lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) activated 
B-cell type (ABC), germinal center B-cell type (GCB), follicular lymphoma 
(FL), and primary mediastinal B-cell lymphoma (PMBL). 
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