
Research Article
Construction of a Prognostic Gene Signature Associated with
Immune Infiltration in Glioma: A Comprehensive Analysis
Based on the CGGA

Xiaoxiang Gong,1,2 Lingjuan Liu,1,2 Jie Xiong,1,2 Xingfang Li,1,2 Jie Xu,1,2 Yangyang Xiao,1,2

Jian Li,1,2 Xuemei Luo,1 Dingan Mao,1,2 and Liqun Liu 1,2

1Department of Pediatrics, �e Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
2Childern’s Brain Development and Brain Injury Research Office, �e Second Xiangya Hospital, Central South University,
Changsha 410011, Hunan, China

Correspondence should be addressed to Liqun Liu; liuliqun@csu.edu.cn

Received 1 December 2020; Revised 9 January 2021; Accepted 15 February 2021; Published 15 March 2021

Academic Editor: Liren Qian

Copyright © 2021 Xiaoxiang Gong et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background. Tumor microenvironment (TME) is closely related to the progression of glioma and the therapeutic effect of drugs on this
cancer.+e aim of this study was to develop a signature associated with the tumor immune microenvironment using machine learning.
Methods. We downloaded the transcriptomic and clinical data of glioma patients from the Chinese Glioma Genome Atlas (CGGA)
databases (mRNAseq_693). +e single-sample Gene Set Enrichment Analysis (ssGSEA) database was used to quantify the relative
abundance of immune cells. We divided patients into two different infiltration groups via unsupervised clustering analysis of immune
cells and then selected differentially expressed genes (DEGs) between the two groups. Survival-related genes were determined using Cox
regression analysis.We next randomly divided patients into a training set and a testing set at a ratio of 7 : 3. By integrating the DEGs into
least absolute shrinkage and selection operator (LASSO) regression analysis in the training set, we were able to construct a 15-gene
signature, which was validated in the testing and total sets. We further validated the signature in the mRNAseq_325 dataset of CGGA.
Results.We identified 74DEGs associatedwith tumor immune infiltration, 70 of whichwere significantly associatedwith overall survival
(OS). An immune-related gene signature was established, consisting of 15 key genes: adenosine triphosphate (ATP)-binding cassette
subfamily C member 3 (ABCC3), collagen type IV alpha 1 chain (COL4A1), podoplanin (PDPN), annexin A1 (ANXA1), COL4A2,
insulin-like growth factor binding protein 2 (IGFBP2), serpin family A member 3 (SERPINA3), CXXC-type zinc finger protein 11
(CXXC11), junctophilin 3 (JPH3), secretogranin III (SCG3), secreted protein acidic and rich in cysteine (SPARC)-related modular
calcium-binding protein 1 (SMOC1), Cluster of Differentiation 14 (CD14), COL1A1, S100 calcium-binding protein A4 (S100A4), and
transforming growth factor beta 1 (TGF-β1). +e OS of patients in the high-risk group was worse than that of patients in the low-risk
group. GSEA showed that interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT3) signaling,
interferon gamma (IFN-c) response, angiogenesis, and coagulation were more highly enriched in the high-risk group and that oxidative
phosphorylation was more highly enriched in the low-risk group. Conclusion. We constructed a stable gene signature associated with
immune infiltration to predict the survival rates of glioma patients.

1. Introduction

Glioma is themost common type of primary brain tumor. As
it is highly infiltrative and aggressive, survival time is short,
even after combined treatment with surgery, radiotherapy,
and chemotherapy.+eWorld Health Organization (WHO)

classification system divides glioma into low-grade (I-II) and
high-grade (III-IV) based on the absence or presence of
anaplastic features and histological characteristics with
molecular features, including isocitrate dehydrogenase 1
(IDH1) mutation and 1p/19q codeletion [1, 2]. Despite all
that, prognostic prediction and improvement of treatment
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efficiency in glioma remain challenging. +erefore, identi-
fying novel prognostic biomarkers and therapeutic targets is
imperative in this cancer.

Recent research has shown that immune infiltration plays a
crucial role in cancer tumorigenesis and progression [3]. Tu-
mor immune infiltration involvesmultiple immune cells whose
functions are significantly altered in glioma. +e research of
Tian et al. notes that M0 and M2 tumor-associated macro-
phages (TAMs) play a protumor role, while M1 TAMs play an
antitumor role [4]. +e glioblastoma microenvironment has
been demonstrated to increase counts of myeloid-derived
suppressor cells, which block Tcell and natural-killer (NK) cell
functions, resulting in an immunocompromised microenvi-
ronment [5]. By secreting cytokines such as transforming
growth factor beta (TGF-β), the glioma microenvironment
favors recruitment and survival of regulatory T cells (Tregs),
which are associated with worse prognosis in many cancers
[6–8]. +erefore, targeting these cells in treatment is expected
to shift the glioma tumor microenvironment (TME) from a
“cold” to a “hot” phenotype [9].

With the rapid development of transcriptome se-
quencing, analytical methods or databases such as
CIBERSORT, single-sample Gene Set Enrichment Analysis
(ssGSEA), ESTIMATE algorithm, and Tumor Immune
Estimation Resource (TIMER) have been developed to
evaluate tumor immune infiltration [10–13]. Signatures
based on immune infiltration also show promising pre-
dictive value in tumor prognosis and immunotherapeutic
response. Most studies on immune-related prognostic
biomarkers in glioma have focused on tumor-infiltrating
cells. However, the definition of immune cell type depends
on protein molecular-weight markers; immune-related
biomarkers rather than immune cells constitute another
way to view the TME. Tian et al. constructed a classifier of
immune-relevant long noncoding ribonucleic acids
(lncRNAs) using immune gene sets from the Molecular
Signatures Database (MSigDB) to predict glioma prognosis
[14]. Based on the ESTIMATE algorithm, Zhang et al.
constructed a four-gene signature involved in immune
infiltrssation in glioblastoma [15]. Xiao et al. provided an
immune-related gene model for risk stratification in lower-
grade glioma using CIBERSORT and TIMER [16]. To date,
no signature associated with immune infiltration in glioma
based on ssGSEA has been explored.

In this study, we conducted a comprehensive analysis of
the immune infiltration landscape based on a dataset from
the Chinese Glioma Genome Atlas (CGGA) databases and
established a predictive model. Our results demonstrated
that the risk score of the signature was an independent
prognostic factor for glioma patients.

2. Methods

2.1. Data Acquisition. We drew the transcriptomic and
clinical data of glioma patients from the public CGGA
(http://www.cgga.org.cn/) databases mRNAseq_693 and
mRNAseq_325 [17, 18]. Patients with complete overall
survival (OS) information and gene expression profiles were

included in our study. We used fragments per kilobases per
million reads (FPKM) to estimate RNA expression.

2.2. Abundance of Immune Cells. In this study, we applied
ssGSEA to quantify the relative abundance of 28 immune cells
based on gene sets obtained from the TISIDB database, an
integrated repository portal for tumor immune system inter-
actions [12]. We evaluated 28 immune cell types, including
monocytes, central-memory Cluster of Differentiation 4 (CD4)
T cells, plasmacytoid dendritic cells, immature dendritic cells,
activated dendritic cells, CD56dim natural-killer (NK) cells,
CD56bright NK cells, cδ T cells, NK cells, myeloid-derived
suppressor cells, central-memory CD8 Tcells, effector memory
CD4 Tcells, Tfollicular helper (Tfh) cells, effector memory CD8
Tcells, macrophage, activated CD8 Tcells, NK Tcells, type 1T
helper (Th1) cells, regulatory Tcells (Tregs), Th2 cells, memory
B cells, immature B cells, Th17 cells, mast cells, activated CD4
T cells, eosinophils, activated B cells, and neutrophils. Unsu-
pervised classification of the glioma cohort was conducted
through k-means clustering on ssGSEA enrichment score
[19, 20]. We used the R software (https://www.r-project.org)
package ConsensusClusterPlus to implement an unsupervised
consensus approach and divided glioma patients into two
immune-infiltrating subtypes according to infiltrating densities
of immune cells [21].

2.3. Differentially Expressed lncRNAs and mRNAs. To
identify lncRNAs and messenger RNAs (mRNAs) associated
with immune infiltration, we compared gene expression
between different samples using the ballgown method [22].
An adjusted P value of <0.05 and log2 fold change (|
log2FC|)> 1 were set as the cutoff criteria for differentially
expressed lncRNAs, while P< 0.05 and |log2FC|> 2 were set
as the cutoff criteria for differentially expressed mRNAs.
Unsupervised classification of the glioma cohort was con-
ducted via k-means clustering on the expression of differ-
entially expressed mRNA.

2.4.GOandKEGGPathwayAnalysis. To analyze the possible
functions of these differentially expressed mRNAs, we used
the R package clusterProfiler to conduct Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses [23, 24]. GO enrichment was
carried out from the following three aspects: biological
processes (BP), cellular components (CC), and molecular
functions (MF). KEGG enrichment was mainly focused on
molecular mechanisms and metabolic pathways. +e top 15
items of GO categories and KEGG pathways are shown in
the bubble maps.

2.5. Univariate Cox and LASSO Regression Analyses. To
obtain immune- and survival-related genes, we analyzed
differentially expressed mRNAs via univariate Cox re-
gression using the R package survival. Candidate mRNAs
were selected if P< 0.01. Using R software, we randomly
divided CGGA glioma patients into a training set and a
testing set at a ratio of 7 : 3. +e abovementioned immune-
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and survival-related genes were integrated into least ab-
solute shrinkage and selection operator (LASSO) regres-
sion analysis in the training set as calculated by the R
package glmnet [25]. +e signature to calculate the risk
score of each patient equaled the sum of the respective
LASSO coefficients multiplied by mRNA expression level.
We then validated the signature in the testing and total sets.
Next, all patients were split into low-risk and high-risk
groups according to median risk score.

2.6. GSEA. Based on hallmark gene sets, we used GSEA to
identify differentially regulated pathways between the low-risk
and high-risk groups [26, 27]. Enriched pathways with a
normalP value of<0.05 and false discovery rate (FDR)Q-value
of <0.25 were considered statistically significant.

2.7. Statistical Analyses. For comparisons between two
groups, we used Student’s t-test and Wilcoxon test. For
comparisons among three groups, we used one-way
ANOVA and Kruskal–Wallis test. Spearman’s correlation
coefficient (SCC) was used to calculate coefficients between
two parameters and Fisher’s exact test to estimate correla-
tions between mRNAs and the terms of GO and KEGG
analyses. We used the univariate Cox model to determine
independent prognostic factors. Receiver operating char-
acteristic (ROC) analysis and area under the curve (AUC)
were used to evaluate the specificity and sensitivity of the
signature. +e survival difference between the two groups
was demonstrated by Kaplan–Meier (KM) curves.

3. Results

3.1. �e Landscape of Tumor-Infiltrating Immune Cells in
Glioma. We analyzed enrichment levels of 28 immune
cells in glioma using immune-associated gene sets in
ssGSEA. +e comprehensive immune landscape of the
glioma cohort is depicted in the form of a heatmap
(Figure 1(a)). Results revealed that densities of

monocytes, CD56dim NK cells, plasmacytoid dendritic
cells, immature dendritic cells, and central-memory CD4
T cells were high. In contrast, densities of eosinophils,
neutrophils, and activated B cells were low. Figure 1(b)
indicates the correlation coefficient among the 28 immune
cell types. We can find some highly correlated immune
cell couples in this figure, such as Th2 cells/CD56 NK cells,
monocyte/memory B cells and Tregs/activated dendritic
cells. We clustered glioma samples according to the
ssGSEA scores of these immune-associated gene sets and
divided them into two distinct clusters: high_infiltration
and low_infiltration (Figures 1(c)–1(d)). Results con-
firmed that patients with high-infiltration TMEs had
worse clinical outcomes than those with low-infiltration
TMEs (Figure 1(e)). +ese data also proved the impor-
tance of subgrouping as a basis for immunogenomic
profiling.

3.2. Identification of Differentially Expressed lncRNAs.
Because OS differed remarkably between the low-infil-
tration and high-infiltration groups, we speculated that
transcriptomic differences between the two groups might
also exist. Previous studies demonstrated that both
lncRNAs and microRNAs (miRNAs) play essential roles
in tumor immune responses [28–31]. In this study, we
explored the transcriptome of the CGGA cohort and
compared differentially expressed lncRNAs between the
two infiltration-level groups. In the high-infiltration
group, 16 immune-related lncRNAs were upregulated,
while in the low-infiltration group, 46 were upregulated
(Table 1; Figure 2). RP11-161M6.2, AC62021.1, synapto-
physin 2 (SYN2), long intergenic noncoding RNA 152
(LINC00599), and RP5-1119A7.17 were the top five most
highly expressed lncRNAs in the low-infiltration group,
while H19, microRNA 4435-1 host gene (MIR4435-1HG),
AC096579.7, LINC00152, and nuclear paraspeckle as-
sembly transcript 1 (NEAT1) were the top five in the high-
infiltration group.

P = 1.67e − 14
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Figure 1: (a) Enrichment level of infiltrating immune cells in glioma based on ssGSEA data. (b) Correlation matrix of 28 immune cells. (c)
Consensus clustering matrix for k� 2, which was the optimal cluster number in the cohort. (d) Unsupervised clustering of 28 immune cells.
Clinical data, including tumor grade and survival status, are also shown. (e) Survival analysis of the two groups of patients divided by
immune infiltration levels.
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3.3. Identification of Differentially Expressed mRNAs. By
comparing differentially expressed mRNAs between the
low- and high-infiltration groups, we obtained 50 immune-
related mRNAs that were upregulated in the high-infiltra-
tion group and 24 that were upregulated in the low-infil-
tration group (Table 2; Figure 3(a)). Neuron-specific gene 2
(NSG2), glutamate ionotropic receptor N-methyl-D-aspar-
tate type subunit 1 (GRIN1), complexin-2 (CPLX2), chro-
mogranin A (CHGA), and synaptosomal-associated protein,
25 kDa (SNAP25), were the top five in the low-infiltration
group, while chitinase-3-like proteins 1 and 2 (CHI3L1,
CHI3L2), Spen paralog and ortholog C-terminal domain
containing 1 (SPOCD1), lactoferrin (LTF), and serpin family
A member 3 (SERPINA3) were the top five in the high-
infiltration group. Next, through unsupervised clustering of
differentially expressed mRNAs, we classified patients into
two gene subgroups: G1 and G2 (Figure 3(b)). +e survival
probability of the G1 subgroup was remarkably higher than
that of the G2 subgroup (Figure 3). After comparing the
relative quantity of the 28 immune cells between the two
subgroups, we found that the infiltration level of most
immune cells was apparently higher in the G2 than the G1
subgroup (Figure 3).

3.4. Construction of an Immune Infiltration-Related Gene
Signature. We conducted univariate Cox regression analysis
of the 74 putative immune-related genes. A total of 70 genes
significantly associated with survival were identified; they are
listed in Table 3 (P< 0.01). We randomly divided glioma
patients into a training set and a testing set at a ratio of 7 : 3.
Next, we integrated the 70 genes into the LASSO Cox re-
gression algorithm. A well balanced prognostic model was
obtained after 1000 iterations, and we selected 15 immune-
related genes to construct the signature (Figures 4(a)–4(d)).
+e full names of the genes and their LASSO coefficients are
listed in Table 4, and the survival curves of the genes are
displayed in Figure S1. Next, we calculated risk score for each
glioma patient and categorized all patients into low-risk and
high-risk groups based on median risk score. KM curve
analysis demonstrated that patients in the high-risk group had
significantly worse OS than those in the low-risk group
(Figure 4(e)). After application of the ROC curve, the AUC for
4-year prediction was 0.763 in the training set, indicating
excellent prediction efficiency (Figure 4(h)). +en, to validate
this signature, we also calculated the risk scores of patients in

the testing and total sets. Survival timewas remarkably different
between the low-risk and high-risk groups, both in the testing
set and the total set (Figures 4(f)–4(g)). +e AUC for 4-year
prediction was 0.743 in the testing set and 0.754 in the total set
(Figures 4(i)–4(j)).

3.5. Application of the Immune Signature in Glioma Subgroup
Analysis. We further explored the prognostic value of the
signature in glioma subgroups with various pathological
and molecular features. Stratification analysis was carried
out according to WHO grade, IDH1 status, 1p/19q code-
letion status, and O6-methylguanine–deoxyribonucleic
acid methyltransferase (MGMT) promoter methylation
status, which were significantly related to OS. In all cohorts,
high-risk patients had shorter OS than low-risk ones
(Figures 5(a)–5(i)). +ese results indicated that classifica-
tion based on the immune signature could accurately
identify patients with discouraging prognoses, irrespective
of pathological and molecular characteristics. In addition,
we analyzed differences in risk scores in glioma subgroups.
+ese results showed that patients with age ≥50 years, high
grade, wild-type IDH1, 1p/19q noncodeletion, and MGMT
promoter unmethylated status had higher risk scores than
those with age <50 years, low grade, mutated IDH1, 1p/19q
codeletion, and MGMT promoter methylated status
(Figure 6).

3.6. Relationship between Risk Score and Infiltrating Immune
Cells. We further analyzed correlations between the risk
score of the 15-gene signature and abundances of immune
cells. +e risk score was positively correlated with abun-
dances of most immune cells, such as central-memory CD4
Tcells and cδ Tcells, and negatively correlated with those of
monocytes, effector memory CD4 T cells, activated B cells,
and CD56bright NK cells. +is further proved that the sig-
nature had the potential to reflect the TME characteristics of
glioma (Figure 7).

3.7. Identification of Biological Function and Signaling
PathwaysRelated to thePrognostic Signature. We performed
GO and KEGG analyses to investigate the potential BFs
and signaling pathways of the hub genes. +e results are
shown in Figure 8. For BP in GO analysis, the top three
enriched terms were inflammatory response, secretion,

Table 1: Names of differentially expressed lncRNAs.

Regulation Differentially expressed lncRNAs
Up
high_infiltration vs.
low_infiltration

H19, MIR4435-1HG, AC096579.7, LINC00152, NEAT1, RP11-290F20.3, RP11-1143G9.4, AC015936.3,
RP11-161H23.5, RP11-806H10.4, PCED1B-AS1, HOTAIRM1, MIR142, CRNDE, AC011558.5,

RP11-344B5.2

Down
high_infiltration vs.
low_infiltration

RP11-161M6.2, AC062021.1, SYN2, LINC00599, RP5-1119A7.17, RP11-231C18.1, RP11-284F21.7,
LINC00844, NEFL, RP11-58B17.2, LINC00925, RP11-143K11.1, PWAR6, AC005944.2, RP11-227B21.2,

LINC00966, RP3-525N10.2, LINC00689, RP1-293L6.1, MIR7-3HG, MIR219-2, RP11-513I15.6,
CTD-2339F6.1, RP11-82C23.2, RP11-401P9.4, DGCR5, RP11-355I22.7, RP11-713C5.1, AC004540.4,
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RP1-257A7.5, RP5-1177M21.1, AC013402.2, MAPT-AS1
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Figure 2: (a) Volcano plot of differently expressed lncRNAs. Spots on the right represent upregulated lncRNAs in the high-infiltration
group; spots on the left represent upregulated lncRNAs in the low-infiltration group. (b) Heatmap of differently expressed lncRNAs. Clinical
data, including tumor grade and survival status, are also shown.
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Table 2: Names of differentially expressed mRNAs.

Regulation Differentially expressed mRNAs

Up
high_infiltration vs.
low_infiltration

CHI3L1, CHI3L2, SPOCD1, LTF, SERPINA3, CD163, NNMT, TIMP1, S100A9, COL1A1, IFI30, S100A8,
SOCS3, COL3A1, MMP9, TYMP, IGFBP2, C1R, EMP3, PLA2G2A, CP,SPP1, ABCC3, ANXA2,

TNFRSF12A, MS4A6A, CD14, FCGBP, S100A4, COL6A2, SLC11A1, ANXA1, TREM1, SERPINE1, SAA1,
GPNMB, COL4A1, PDPN, FCGR3A, COL1A2, CCL2, COL4A2, HLA-DRB1, FCGR2B, HLA-DRA,

SLC16A3, CD44, GBP2, SERPINA1, TGF-β1
Down
high_infiltration vs.
low_infiltration

NSG2, GRIN1, CPLX2, CHGA, SNAP25, INA, ACTL6B, DLL3, SNCB, SHD, CPLX1, JPH3, CXXC11,
CHGB, SMOC1, ATP1A3, KCNIP2, TTC9B, CCK, SCG3, FAM163B, SLC17A7, GDAP1L1, SEZ6L
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and regulated exocytosis; these processes were highly
correlated with tumor invasiveness. In terms of CC, genes
were highly correlated with processes associated with
tumor development, including collagen-containing ex-
tracellular matrix (ECM), vesicle, and cytoplasmic vesicle.
For MF, processes such as ECM structural constituent con-
ferring tensile strength, platelet-derived growth factor
(PDGF) binding, and protease binding were significantly
enriched by these genes. In KEGG analysis, the targeted genes
were highly enriched in essential pathways closely correlated
with cancer progression, such as ECM receptor interaction,

protein digestion and absorption, and phagosome. Moreover,
we also used GSEA data to identify differences in signaling
pathways between the low-risk and high-risk groups (Fig-
ure 9). We found that the high-risk group was enriched in
interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and
activator of transcription (STAT3) signaling, interferon
gamma (IFN-c) response, angiogenesis, and coagulation,
which were mainly concentrated in immune-associated
pathways. In contrast, the low-risk group was enriched in
oxidative phosphorylation, which was correlated with aerobic
metabolism.

(d)
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Figure 3: (a) Volcano plot of differentially expressed mRNAs. Spots on the right represent upregulated genes in the low-infiltration group;
spots on the left represent upregulated genes in the high-infiltration group. (b) Unsupervised clustering of 74 DEGs. Clinical data, including
tumor grade and survival status, are also shown. (c) Survival analysis of the two gene subtypes. (d) Comparison of immune cell abundances
between the two gene subtypes ( ∗P< 0.05, ∗ ∗ ∗P< 0.001).

Table 3: List of genes significantly associated with survival in glioma.

ABCC3, ACTL6B, ANXA1, ANXA2, ATP1A3, C1R, CCK, CCL2, CD14, CD163, CD44, CHGA, CHGB, CHI3L1, CHI3L2, COL1A1,
COL1A2, COL3A1, COL4A1, COL4A2, COL6A2, CP, CPLX1, CPLX2, CXXC11, DLL3, EMP3, FAM163 B, FCGBP, FCGR2B, FCGR3A,
GBP2, GDAP1L1, GPNMB, GRIN1, HLA-DRA, HLA-DRB1, IFI30, IGFBP2, INA, JPH3, KCNIP2, LTF, MMP9, MS4A6A, NNMT, NSG2,
PDPN, PLA2G2A, S100A4, S100A8, S100A9, SCG3, SERPINA1, SERPINA3, SERPINE1, SEZ6L, SHD, SLC11A1, SLC16A3, SMOC1,
SNAP25, SNCB, SOCS3, SPOCD1, SPP1, TGF-β1, TNFRSF12A, TREM1, TTC9B
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Figure 4: (a) LASSO coefficient profiles of the 70 survival-associated genes. (b) Selection of optimal λ value in the LASSOmodel for glioma.
(c) Distribution of risk score in the cohort. (d) Scatter plot of patients with different survival statuses. (e–g) KM survival analyses of the
survival difference between the low- and high-risk groups in the training, testing, and total sets. (h–j) ROC curves show the prediction
efficiency of the signature in the training, testing, and total sets.

Table 4: List of fifteen immune-related genes in the prognostic signature.

Gene Full name LASSO coefficient
ABCC3 Adenosine triphosphate (ATP)-binding cassette subfamily C member 3 0.112657345667762311
ANXA1 Annexin A1 0.000508196143922419
CD14 Cluster of Differentiation 14 molecule −0.000638057774923529
COL1A1 Collagen type I alpha 1 chain −0.000274296496641211
COL4A1 Collagen type IV alpha 1 chain 0.00253404472560216
COL4A2 Collagen type IV alpha 2 chain 6.78971049040963e-05
CXXC11 (FBXL19) F-box and leucine rich repeat protein 19 −0.006215126732245
IGFBP2 Insulin-like growth factor binding protein 2 0.000278261058057258
JPH3 Junctophilin 3 −0.00464972005220333
PDPN Podoplanin 0.000199537400824582
S100A4 S100 calcium-binding protein A4 −0.000619019747732756
SCG3 Secretogranin III −0.00220021211462255
SERPINA3 Serpin family A member 3 7.56251372522375e-05
SMOC1 SPARC related modular calcium-binding 1 −0.000729769056947777
TGF-β1 Transforming growth factor beta 1 −0.000137829618360017
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Figure 5: Confirmation of the signature via patient stratification based on specific pathological and molecular features. (a) Grade II; (b)
grade III; (c) grade IV; (d) mutated IDH1; (e) wild-type IDH1; (f ) 1p/19q codeletion; (g) 1p/19q noncodeletion; (h) MGMT promoter
methylated status; (i) MGMT promoter unmethylated status.
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3.8. Validation of the Signature in an External Independent
Cohort. To validate the robustness of the signature, we
calculated patients’ risk scores in the external-validation set
(CGGA mRNAseq_325). +en, we divided these patients
into low- and high-risk groups according to median risk
score. KM curve analysis revealed that our signature could
significantly distinguish prognosis between the two groups
and that the prognoses of patients with high-risk scores were
worse than those of patients with low-risk scores
(Figure 10(a)). Via ROC analysis, we found that the 4-year
AUC was 0.825 in the external cohort, which indicated a
good predictive ability (Figure 10(b)). Furthermore, the
survival probability of the high- and low-risk groups was
significantly different in glioma subgroups stratified by
WHO grade (grade III and grade IV), IDH1 status, 1p/19q
codeletion status, and MGMT promoter methylation status
(Figures 10(d)–10(k)). However, there was no significant
difference inWHO grade II, and the failed statistical analysis
was potentially due to limited sample size (Figure 10(c)).

4. Discussion

Numerous studies over the past decade have shown that the
TME is a critical regulator of tumor progression and thera-
peutic effectiveness in glioma [32]. Infiltrative inflammatory

cells; tissue-resident cells such as astrocytes, microglia, and
neurons; and brain vasculature constitute the glioma mi-
croenvironment [33]. We investigated the immunogenomic
landscape of glioma based on data from the CGGA database
and then developed an immune-relevant prognostic gene
signature for glioma patients.

As we know, the infiltration of immune cells into the
TME reflects immune status and can predict prognosis in
cancer [34]. In this study, we evaluated the relative
abundance of 28 infiltrating immune cells in the CGGA
glioma cohort. +ere were higher proportions of mono-
cytes, central-memory CD4 T cells, plasmacytoid dendritic
cells, CD56dim NK cells, and immature dendritic cells and
lower proportions of eosinophils, neutrophils, and acti-
vated B cells. +en, we split patients into two subtypes
(high_infiltration and low_infiltration) with obviously
different infiltration levels of immune cells. It is reported
that patients with high immune infiltration tend to have
better outcomes than patients with low immune infiltration
in bladder, breast, and gastric cancers [35–37]. However,
glioma patients in our high-infiltration group showed
worse OS than patients in the low-infiltration group. +is
might have been because immune cells in the glioma
microenvironment mainly suppressed immune-mediated
destruction of tumor cells [38]. We can also conclude that
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Figure 6: Correlations between risk score and clinicopathological characteristics. Comparison of risk scores across (a) WHO grades;
(b) different age groups; (c) IDH1 statuses, (d) 1p/19q codeletion statuses; (e) MGMT promoter methylation statuses.
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Figure 9: Significant enriched pathways of the low- and high-risk groups by GSEA.
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Figure 8: Function and pathway enrichment analyses of the differentially expressed genes. (a) Top 15 enriched terms of biological process.
(b) Top 15 enriched terms of molecular function. (c) Top 15 enriched terms of cellular component. (d) Top 15 enriched terms of KEGG
pathways.
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FIGURE 10: Continued.
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the grouping method based on the immune landscape was
effective in reflecting the degree of immune infiltration and
in predicting glioma prognosis. Our prognostic signature
was positively correlated with quantity of immunosup-
pressive cells (such as myeloid-derived suppressor cells,
Tregs, and NK T cells) as well as that of immune-stimu-
latory cells (such as central-memory CD4 Tcells, cδ Tcells,
and NK cells) [39, 40]. +is result indicated that the reg-
ulatory system of the glioma microenvironment was special
and complicated, which could also explain the failure of
immunotherapy for glioma [41].

To further demonstrate the relationship between the
immune landscape of the TME and the prognoses of glioma
patients, we constructed an immune-relevant signature by
analyzing the CGGA glioma database in detail. A significant
difference between the low- and high-risk groups was ob-
served when we applied this 15-gene signature in the
training set using ROC and KM curve analyses. +e pre-
dictive ability of the signature was also validated in the
testing set and the external cohort, showing its effectiveness
and breadth in predicting prognosis in glioma.

Our results revealed that adenosine triphosphate
(ATP)-binding cassette subfamily C member 3 (ABCC3),
collagen type IV alpha 1 chain (COL4A1), podoplanin
(PDPN), annexin A1 (ANXA1), COL4A2, insulin-like
growth factor binding protein 2 (IGFBP2), and SERPINA3
were positively associated with risk score, while CXXC-
type zinc finger protein 11 (CXXC11), junctophilin 3
(JPH3), secretogranin III (SCG3), secreted protein acidic
and rich in cysteine (SPARC)-related modular calcium-
binding protein 1 (SMOC1), Cluster of Differentiation 14
(CD14), COL1A1, S100 calcium-binding protein A4
(S100A4), and transforming growth factor beta 1 (TGF-β1)
were negatively associated with risk score. Some of these
genes have been reported to play essential roles in

regulating tumor immune response. For instance, high
expression of PDPN not only predicts poor survival out-
comes but also shows correlations with immune markers of
TAMs and T cell exhaustion in gastric cancer [42]. IGFBP2
induced immunosuppression by decreasing CD8+ T and
CD19+ B cells and increasing CD163+ M2 TAMs; blocking
this gene suppressed tumor growth and improved survival
in a glioblastoma mouse model [43]. TGF-β includes three
subtypes; Christian et al. found that TGF-β1 and TGF-β2
mRNAs were strongly expressed in glioblastoma, while
TGF-β3 mRNA was increased particularly in astrocytomas
and anaplastic astrocytomas [44]. +ese subtypes of TGF-β
play important roles in cancer development processes,
including cell invasion, immune suppression, and micro-
environment modification [45]. Targeted inhibition of
ANXA1 can reduce the function of Tregs and shrink breast
tumors [46]. COL4A2 expression is positively correlated
with the presence of macrophage and dendritic cell infil-
tration in cervical-cell cancer, while COL1A1 is positively
correlated with tumor infiltration levels of macrophages
and CD4+ T cells in bladder cancer [47, 48].

LncRNAs have also been reported to play critical roles
in the immune response to cancer [49, 50]. We identified 62
differentially expressed lncRNAs correlated with immune
infiltration by comparing lncRNA expression levels in the
two different immune infiltration groups. Some of these
lncRNAs are reported to take part in regulating tumor
immune response. RP5-1119A7.17 is negatively associated
with histone 1 (HIST1)/histone H2B type 1-K (H2BK),
which are involved in immune response and cell growth in
low-grade glioma [51]. +e immunosuppression of CD39+
Tregs relies on a distinct transcriptional program with a low
level of neurofilament light (NEFL) [52]. NEFL is also
considered an immune gene associated with prognosis in
triple-negative breast cancer [53].
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Figure 10: (a) KM survival analysis of the survival difference between the low- and high-risk groups in the external cohort. (b) ROC curve
shows the prediction efficiency of the signature in the external cohort. (c–k) Confirmation of the signature via patient stratification based on
WHO grade, IDH1 status, 1p/19q codeletion status, and MGMT promoter methylation status in the external cohort.
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Our GSEA results demonstrated that patients in the high-
risk group were significantly enriched in immune-associated
pathways such as IL6/JAK/STAT3 signaling, IFN-c response,
angiogenesis, and coagulation. In contrast, patients of the
low-risk group were significantly enriched in oxidative
phosphorylation. IL6/JAK/STAT3 signaling promotes tumor
proliferation, invasiveness, and metastasis and suppresses
antitumor immune response in the TME [54]. IFN-c response
has a controversial role in antitumor immunity. On one hand,
IFN-c might suppress the immune response and further
contribute to tumor growth and metastasis; on the other
hand, it might stimulate host immune response and increase
the efficacy of immunotherapy by activating macrophages,
dendritic cells, and T lymphocytes in the TME [55]. Previous
studies have shown that extravascular coagulation and an-
giogenesis promote tumor immune evasion and that phar-
macological targeting of the coagulation signaling pathway
with factor Xa (FXa) could enhance tumor antigen presen-
tation and cytotoxic tumor killing [56–58]. Oxidative phos-
phorylation is associated with the energy supply of tumor
cells. When it is activated, the production of lactic acid is
inhibited, which further alkalifies the outside environment
and hinders the spread of tumors [59].

Although the immune-related signature was stable in
our study, our research had its limitations. First, we ex-
cluded patients whose OS was not available, meaning that
lost-to-follow-up bias cannot be eliminated. Second, some
potential prognostic factors were missing in our signature,
such as age, genetic alterations, WHO grade, and treat-
ments. +ird, further basic experiments are required to
validate the functions of the genes in the signature.

5. Conclusion

+is investigation comprehensively analyzed RNAseq data
from the CGGA database and established an immune-related
gene signature with the ability to predict survival outcomes in
glioma. We hope that the results of our study can help identify
critical genes and pathways associated with glioma and provide
potential immune targets for treatment in the future.
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