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More reliable biomarkers and more accurate
prediction for mental disorders using a label-noise
filtering-based dimensional prediction method

Ying Xing,1 Theo G.M. van Erp,2,3 Godfrey D. Pearlson,4,5 Peter Kochunov,6 Vince D. Calhoun,7 and Yuhui Du1,8,*
SUMMARY

The integration of neuroimaging with artificial intelligence is crucial for advancing the diagnosis of mental
disorders. However, challenges arise from incompletematching between diagnostic labels and neuroimag-
ing. Here, we propose a label-noise filtering-based dimensional prediction (LAMP) method to identify reli-
able biomarkers and achieve accurate prediction formental disorders. Ourmethod proposes to utilize a la-
bel-noisefilteringmodel toautomaticallyfilteroutunclear cases fromaneuroimagingperspective, and then
the typical subjects whose diagnostic labels align with neuroimaging measures are used to construct a
dimensional prediction model to score independent subjects. Using fMRI data of schizophrenia patients
and healthy controls (n = 1,245), our method yields consistent scores to independent subjects, leading to
more distinguishable relabeled groups with an enhanced classification accuracy of 31.89%. Additionally,
it enables theexplorationof stableabnormalities in schizophrenia. In summary,ourLAMPmethodfacilitates
the identification of reliable biomarkers and accurate diagnosis of mental disorders using neuroimages.

INTRODUCTION

Mental disorders are associated with brain functional and structural impairments and affect about 970 million people worldwide.1 The tradi-

tional case (i.e., patients with mental disorders) versus control (i.e., healthy subjects) diagnosis provides binary classifications, where a subject

is assigned to either case or control category according to assessments of clinical phenomenology.2 Despite the abundance of diagnostic

rating scales used to assess subjects’ symptoms from multiple aspects for diagnosing mental disorders, this subjective and categorical

mannermay result in subjects with label noise whose diagnostic labels are inconsistent with the underlying brain abnormalities.3,4 The sources

of label noise may include: (1) insufficient information: diagnosis solely based on clinical manifestations may fail to capture underlying brain

functional and structural abnormalities, (2) subjectivity of diagnosis: different experts may produce different labeling results due to variations

in expertise, and (3) problems in understanding and communication: psychiatric diagnosis relying on self-reporting by the subjects may be

unreliable.5,6 The source of label noise is closely related to the type of mental disorders. For example, the second and third sources of label

noise are more common in anxiety disorders than in schizophrenia (SZ). In addition, the heterogeneity of mental disorders also makes it easy

to generate label noise that does not match the neuroimaging. Prediction models based on heterogeneous groups of patients may reveal

heterogeneous patterns of brain structural or functional changes.7 In short, diagnoses for mental disorders based on clinical data do not

completely match neuroimaging, and the possible inconsistency between diagnosis labels and neuroimaging measures may affect the val-

idity of exploring reliable biomarkers and constructing accurate prediction models for diagnosing mental disorders.

With the development of massive neuroimaging data and advanced machine learning, numerous studies aim to explore biomarkers and

construct prediction models for recognizing patients with various mental disorders.2,8 Supervised learning focuses on detecting biomarkers

and constructing neuroimaging-based classifiers for mental disorders with the guidance of diagnostic labels.9,10 Although promising bio-

markers and prediction models have been developed, the reliability and generalizability of the outcomes remain controversial.2,11–14 One

possible explanation is the potential inconsistency between the diagnostic labels and neuroimagingmeasures, whichmaymislead the super-

vised classification and hinder the generation of stable and reliable outcomes.3,15 Considering the existence of the potential inconsistency,

data-driven clustering methods that ignore all labels and cluster subjects into homogeneous groups have recently received great
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attention.16–19 Although unsupervised clustering methods provide a promising strategy to redefine nosology, the stability, interpretability,

and reproducibility of the outcomes have been questioned.20,21 One possible reason for the skepticism is that a lack of domain knowledge

provided by expert guidance (i.e., diagnostic labels) may result in inconsistent and inexplicable results.10,22 Fortunately, in the field ofmachine

learning, there are numerous well-established approaches focused on eliminating inaccurately labeled samples and utilizing valuable infor-

mation to build more reliable models.23–28 Efforts are also underway to apply noise-cleansing techniques in the mental health field, aiming to

reduce the inconsistency and enhance the reliability of findings in the field. There has been a novel attempt using structural magnetic reso-

nance imaging (MRI)measures tomitigate the negative impact caused by the inconsistency rather than discarding all labels indiscriminately.29

Subjects were used to build multiple support vector machine (SVM) classifiers to relabel subjects that were unanimously mislabeled by all

classifiers. The process was repeated using the subjects with refreshed labels until the number of mislabeled subjects fell below a given

threshold. However, the reliability of classifiers built on the subjects with refreshed labels from the previous iteration may greatly affect

the reliability of subsequent label refreshing. In short, it remains a challenge to decrease the inconsistency between diagnostic labels and

neuroimaging measures in order to explore reliable biomarkers and facilitate accurate predictions for mental disorders.

Furthermore, the current categorical diagnostic methods are also controversial, and a dimensional perspective seems more appropriate

for the diagnoses ofmental disorders.30,31 Manymental disorders occur along a continuum frommild to severe, and healthy controls (HCs) are

also at varying risk of developing mental disorders.32,33 Research found that mental disorders exhibit a continuous pattern in brain function

and structure using neuroimaging, which is associated with the risk of the disorders.34,35 The initiative to integrate clinical diagnostic infor-

mation with neuroimaging of mental disorders has been proposed to reflect the severity of subjects in behavior, cognition, and other aspects,

aiming to better assist in dimensional diagnosis, treatment, and prognosis.36 However, it remains challenging to utilize different levels of data

that are related but not directly corresponding in studying mental disorders. In brief, it is important to identify subjects with matching diag-

nostic labels and neuroimaging measures to develop dimensional approaches that capture continuous changes in the brain associated with

mental disorders.

To help explore more reliable biomarkers and benefit more accurate prediction for mental disorders, we propose a label-noise filtering-

based dimensional prediction (LAMP) method using neuroimaging data. In our method, based on random forest, the inherent data structure

and diagnostic labels are utilized automatically to select typical subjects that have more consistency between diagnostic labels and neuro-

imaging measures. Typical subjects with enhanced inter-group separability and intra-group compactness are then served as the benchmark

to build a dimensional predictionmodel, which enables a quantitative analysis for the unseen (independent) subject to indicate the degree of

pathology. Importantly, these clearly separable subjects can help identify stable biomarkers across different datasets from different sites. In

this work, the reliability and generalizability of our method are validated using large-scale functional MRI (fMRI) data of SZ patients and HCs

from four datasets. Thanks to the integration of clinical information and neuroimaging measures, the proposed method provides stable

dimensional scores and identifies significant and consistent inter-site group differences, elucidating the underlying mechanisms for mental

disorders. It is worth noting that this framework can be applied to other data modalities and multimodal data.
RESULTS

Typical subjects with enhanced intra-group compactness and inter-group separability from a neuroimaging perspective are

identified

The overall workflow of the present work is shown in Figure 1. To evaluate our LAMP method, we employed the resting-state fMRI data of

large-sample HCs and SZ patients (708 HCs and 537 SZ patients) from four datasets, including BSNIP (Bipolar and Schizophrenia Network

on Intermediate Phenotypes), FBIRN (Function Biomedical Informatics Research Network), MPRC (Maryland Psychiatric Research Center),

and COBRE (Centers for Biomedical Research Excellence) (see Table S1 for demographic information in detail). As shown in Figure 1A,

we first extracted functional network connectivity (FNC) features for each subject using fMRI data via the NeuroMark, a fully automated inde-

pendent component analysis pipeline.37 It is worth noting that the nuisance effects including age, gender, headmotion, and site effects were

removed from the extracted FNC features so that more reliable outcomes can be obtained. In order to verify the result reproducibility, we

employed a strict leave-one-dataset-out cross-validation procedure (see Figure 1B), whereby each of the four datasets successively served

as the independent dataset for the evaluation and the remaining three as the source datasets for constructing the dimensional prediction

model. As shown in Figure 1C, typical HCs and SZ subjects were then identifiedby building a complete random forest (CRF)-based label-noise

filtering model38 from each source dataset. Subjects that are close in feature space should have similar labels.39 Thus, the CRF-based model

determines the label-dependability of each subject by evaluating the heterogeneity levels among their surrounding subjects. This enables the

identification of typical subjects who are predominantly surrounded by others of the same category. It is worth mentioning that we validated

the ability of the CRF-based model in accurately identifying typical samples on three public datasets (see Table S3). Given a label-depend-

ability threshold g, we can obtain typical subjects with various consistency levels between diagnostic labels and neuroimaging measures.

Increasing the threshold results in greater consistency between the labels and fMRI measures of the selected typical subjects. The number

of typical subjects retained is linked to the quality of a dataset, which is influenced by factors such as the participants, the data collection

equipment, and the expertise level of the annotators. Compared with the original groups containing all subjects with diagnostic labels in

each source dataset, the identified typical HC and SZ groups would show greater intra-group compactness and inter-group separability using

FNC features, indicating a strong consistency between their diagnostic labels and fMRI measures.

As shown in Figure 1E, intra-group compactness and inter-group separability of typical groups derived from each source dataset were

evaluated from various aspects, including investigating inter-group differences, classification performance, separation between groups,
2 iScience 27, 109319, March 15, 2024



Figure 1. The overall workflow of the proposed label-noise filtering-based dimensional prediction (LAMP) method using fMRI data of HC-SZ

The construction of the LAMPmethod using FNC features of HC-SZ data is displayed in (A–D), and the evaluation of the method is displayed in (E and F). (A) We

extracted the FNC features for each subject from four different fMRI datasets based on previous work, i.e., NeuroMark, which is a fully automated independent

component analysis pipeline. (B) We sequentially took one of the four datasets as the independent dataset and the remaining three as the source datasets,

namely, the leave-one-dataset-out division strategy. (C) We identified typical subjects in each source dataset. Specifically, we evaluated each subject’s label-

dependability that indicates the consistency level between the diagnostic label and fMRI measures via the CRF-based label-noise filtering model, and

discarded subjects whose label-dependability was lower than a predefined threshold g. After that, we thresholded the label-dependability of the remaining

subjects, resulting in the typical subjects (i.e., typical HCs and typical SZ patients). Notably, the CRF-based model regards the subjects that are surrounded

by the homogeneous subjects as typical subjects. (D) We constructed a dimensional prediction model guided by the typical subjects from various source

datasets to provide a dimensional score for each independent subject. In detail, we first predicted a separate score revealing the degree of brain

dysfunction for each independent subject according to its relationship to different typical groups in each source dataset. Next, we averaged the three

separate scores derived from the source datasets to get a comprehensive score for the independent subject. Then, we relabeled the independent subjects

according to the comprehensive score with an adaptive parameter t and obtained the relabeled HC group, relabeled SZ group, and the Boundary group in

which these subjects were mild and could not be categorized into HC or SZ group with enough confidence. (E) We verified the performance of the typical

groups under different label-dependability thresholds g in light of the inter-group separability and intra-group compactness and analyzed the significance

and consistency of functional abnormality within the typical SZ group across multiple source datasets. (F) We evaluated the stability of the scores, intra-group

compactness, and inter-group separability of the relabeled HC and SZ groups and analyzed the significant differences between the two relabeled groups

within the independent dataset. IC denotes the independent component. THC, TSZ, ReHC, and ReSZ represent typical HC, typical SZ, relabeled HC, and

relabeled SZ groups in a dataset, respectively. CRF is short for the complete random forest-based label-noise filtering model.
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and cohesion within groups via widely used evaluation metrics, as well as visualization technology. Results provide evidence of the validity of

identified typical subjects. Due to limited space, we thoroughly display the results obtained from taking the BSNIP dataset as the independent

dataset and the remaining three (i.e., the FBIRN, MPRC, and COBRE datasets) as the source datasets for illustration. The results of taking

FBIRN, MPRC, or COBRE dataset as the independent dataset are shown in supplemental information. Figures 2A‒2C display the distribution

of p values and the number of significant FNC features (p < 0.01 with Bonferroni-corrected two-sample t-test) in detecting group differences

using statistical analysis for both the original and typical groups (under different label-dependability thresholds) in each source dataset. The

results reveal more significant inter-group differences in FNC features between typical HC and SZ groups than between the original HC and

SZ groups. It should be pointed out that the improved inter-group differences within the typical groups were not related to nuisance variables,

such as age, gender, and headmotion, measured by statistical analysis (Figures S2–S5). Besides, the classification ability in distinguishing HCs

and SZ patients based on five classifiers was evaluated using a 5-fold cross-validation procedure for both original groups and typical groups

(under different label-dependability thresholds) in each source dataset. Figures 2D–2F show that the classification accuracy of the typical

groups increased by 30.5% on average across various classifiers compared with that of the original groups. Taking the FBIRN dataset (Fig-

ure 2D) as an example, the classifiers separated the typical groups with accuracies of over 80%, while separating the original groups was

more difficult. In particular, four in the five classifiers achieved 100% accuracy on typical groups when the label-dependability threshold

was 1, indicating improved inter-group separability of the typical groups. In addition, we visualized the two-dimensional (2D) projection of

the intra- and inter-group structures intuitively for original groups and typical groups in the source datasets via t-SNE (stochastic neighbor
iScience 27, 109319, March 15, 2024 3



Figure 2. Evaluation of inter-group separability and intra-group compactness within original groups and within typical groups in the three source

datasets, including FBIRN, MPRC, and COBRE datasets

(A‒C) Distribution of p values and the number of significant FNC features (p < 0.01 with Bonferroni correction) for original groups and for the typical groups

(under different label-dependability thresholds) in FBIRN, MPRC, and COBRE datasets, respectively. The horizontal axis represents the original groups

containing all subjects with diagnostic labels (AS) and typical subjects (TS) at different label-dependability thresholds. The black vertical axis (left) represents

the p values of FNC features between groups. The blue vertical axis (right) represents the number of significant FNC features (p < 0.01 with Bonferroni

correction) between groups. It should be pointed out that when the threshold is 0, typical subjects are equivalent to the original subjects without label-noise

filtering. It is shown that the number of significant FNC features between typical groups is several times higher than that between original groups.

(D‒F) Average classification accuracy on original groups and on the typical groups (under different label-dependability thresholds) in FBIRN, MPRC, and COBRE

datasets, respectively. The used five classifiers include support vector machine (SVM), decision tree (DT), 1-nearest neighborhood classifier (1NN), 3-nearest

neighborhood classifier (3NN), and 5-nearest neighborhood classifier (5NN). Similarly, the horizontal axis represents the typical subjects at different label-

dependability thresholds, and the typical subjects are equivalent to the original subjects when the threshold is 0. For the same classifier, the classification

accuracy of typical groups is superior to that of original groups.

(G‒I) 2D projection for original groups in FBIRN, MPRC, and COBRE datasets, respectively.

(J‒L) 2D projection for typical groups identified under the 0.8 label-dependability threshold in FBIRN, MPRC, and COBRE datasets, respectively. The typical

groups (THC vs. TSZ) are more separable than the original groups (HC vs. SZ). AS and TS represent original groups containing all subjects with diagnostic

labels and typical subjects in the source dataset, respectively. THC and TSZ represent typical HC and SZ groups, respectively. # SigFNCs represents the

number of significant FNC features (p < 0.01 with Bonferroni correction).
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embedding) technology40 in Figures 2G‒2L. These figures show that typical subjects were grouped more clearly than all subjects in each

source dataset, manifesting improved intra-group compactness within the typical groups. Furthermore, we found that the identified typical

groups had better intra-group compactness and inter-group separability than the original groups by comparing five widely used evaluation

metrics (Table S4). While using other datasets (FBIRN, MPRC, or COBRE) as the independent dataset, the results (Figure S6; Table S4) also

support that the identified typical subjects from source datasets presented greater intra-group compactness and inter-group separability

than the original groups. The increased separability between typical groups in various datasets further demonstrated the capability of the

CRF-based model in accurately identifying subjects whose labels align with fMRI measures. In brief, substantial experiments highlight the

enhanced intra-group compactness and inter-group separability of typical subjects in the source datasets. This demonstrates a marked con-

sistency between their labels and fMRI measures, affirming their reliability for model construction.

Typical groups exhibit more significant and consistent inter-group differences across multiple source datasets

To reveal impaired brain function in SZ patients using typical subjects, we investigated significantly different FNC features between the typical

HC group and the typical SZ group, and validated their consistency acrossmultiple source datasets. Here, due to limited space, we only show

the significant FNC group differences identified in FBIRN, MPRC, and COBRE datasets for the condition of taking BSNIP data as the
4 iScience 27, 109319, March 15, 2024



Figure 3. Inter-group differences for original groups and typical groups in the source datasets, including FBIRN, MPRC, and COBRE datasets

(A‒C) Two-sample t-test T-values of FNCs (upper triangle: p < 0.01 with Bonferroni correction, lower triangle: no correction) using original groups (HC vs. SZ) in

the source datasets.

(D‒F) Two-sample t-test T-values of FNCs (upper triangle: p < 0.01 with Bonferroni correction, lower triangle: no correction) using typical groups (THC vs. TSZ)

identified from the source datasets. In (A–F), 53 intrinsic connectivity networks are divided into seven brain functional domains, including sub-cortical (SC),

auditory (AU), sensorimotor (SM), visual (VI), cognitive-control (CC), default-mode (DM), and cerebellar (CB) domains. The inter-group differences in the

typical groups are more noticeable than those in the original groups. THC and TSZ represent typical HC and SZ groups, respectively.

(G) Consistency of T-values between any two source datasets using the original groups.

(H) Consistency of T-values between any two source datasets using the typical groups. The x axis, y axis, and z axis in (G–H) represent the T-values of FNC features

in different datasets. Symbol r represents the correlation coefficient between T-values of FNC features in paired source datasets. In (G and H), the typical groups

show more consistent inter-group differences than the original groups.

ll
OPEN ACCESS

iScience
Article
independent dataset. T-values of FNCs were calculated via two-sample t-tests across typical groups in each source dataset to evaluate the

significance of the inter-group differences. Pearson correlation coefficients of the T-values in any two source datasets were calculated to eval-

uate the consistency of the inter-group differences. For comparison, the significance and consistency of the inter-group differences in FNC

across multiple sources datasets were also computed for the original groups. Compared with the original groups (Figures 3A‒3C), the
T-values of significant FNC features (p < 0.01 with or without Bonferroni correction) between typical groups (Figures 3D‒3F) support a
more prominent inter-group difference. As shown in Figures 3G‒3H, across source datasets, typical groups present more consistent inter-

group differences than original groups (mean correlation coefficient r = 0.83 versus r = 0.7). Thatmeans we foundmore prominent and consis-

tent inter-group differences in FNC by filtering subjects whose labels did not completely match the neuroimaging measures.

Furthermore, significant FNC features can effectively reveal important interactions between functional networks. Therefore, we display the

mean strength of the top 10 shared or unique significant FNC features (p < 0.01 with Bonferroni correction) in typical groups relative to original

groups in the three source datasets, as shown in Figure 4. The specific mean strength, p values, and T-values of the above 20 significant FNC

features using typical groups and original groups were outlined in Tables S5 and S6. Regarding the top 10 shared significant FNC features, the

typical SZ (relative to typical HC) shows a greater decrease in five cerebellum-thalamus/caudate functional connectivities; a larger increase in

four thalamus-related functional connectivities to superior temporal gyrus, left/right postcentral gyrus, and right middle occipital gyrus; and a

larger increase in caudate-superior temporal gyrus functional connectivity than the original groups. More importantly, new findings in brain

function were explored from typical groups relative to the original groups. For the top 10 unique significant FNC features within typical

groups, typical SZ shows weakened connectivity in eight postcentral gyrus-related functional connectivities to the middle/superior temporal

gyrus and inferior/right middle occipital gyrus and enhanced connectivity in two cerebellum-related functional connectivities to paracentral

lobule and superior parietal lobule (compared with typical HC). The findings confirm that the typical groups can capture more significant,

consistent, and novel between-group differences than the original groups across multiple datasets.

Taking another dataset (FBIRN,MPRC, or COBRE) as the independent dataset, the results (Figures S7–S12; Tables S7–S12) alsomanifested

that the identified typical groups can capture more significant and consistent SZ-related functional connectivity abnormalities than the orig-

inal groups. In summary, we believe that utilizing neuroimaging data with the assistance of clinical diagnosis to discover reliable typical sub-

jects would contribute to exploring stable brain abnormalities and constructing reliable predictionmodels frommultiple datasets. Thus, these

separable typical subjects were used to construct a dimensional prediction model for unseen subjects.
iScience 27, 109319, March 15, 2024 5



Figure 4. Mean strength of FNC featureswith significant inter-group differences for original groups and typical groups in the source datasets, including

FBIRN, MPRC, and COBRE datasets

(A) Mean strength of the top 10 shared significant FNC features within original groups and typical groups across the source datasets.

(B) Mean strength of the top 10 unique significant FNC features within typical groups across the source datasets. The figure in parentheses represents the

corresponding functional network ID. THC and TSZ represent typical HC and SZ groups, respectively. The typical groups (THC vs. TSZ) show more

noticeable differences in the mean strength of the 20 FNC features than the original groups (HC vs. SZ).
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The dimensional prediction model performs well in predicting independent subjects

We constructed a dimensional prediction model based on those valid typical subjects who presented remarkable and consistent inter-

group differences across datasets to provide reliable dimensional scores indicating changes in brain function for independent subjects

(see Figures 1D and S1). Specifically, we provided each independent subject with a stable comprehensive score by averaging multiple

separate scores derived from its similarity to typical HC and typical SZ groups in each source dataset. It is worth noting that the compre-

hensive score and the three separate scores for each independent subject range from �1 to 1, indicating the absence of abnormality to

the presence of significant abnormality. The stability of scores for independent subjects was adequately evaluated to demonstrate the

feasibility of the dimensional prediction model, as shown in Figure 1F. Results indicate the reliability of dimensional scores derived from

the model in revealing changes in brain function among independent subjects. Specifically, regarding the scores of independent sub-

jects in BSNIP dataset, a strong correlation (mean correlation coefficient r = 0.96) is presented by calculating the Pearson correlation

coefficients among their separate scores and comprehensive scores (Figure 5A). Figures S13–S15 show that, when using FBIRN, MPRC,

and COBRE as the independent dataset, the mean correlation coefficient among the four sets of scores was 0.97, 0.93, and 0.96, respec-

tively. The strong correlation among the scores of each independent subject highlights the within-group homogeneity and between-

group heterogeneity of typical subjects identified from various datasets, affirming the stability and reliability of the dimensional predic-

tion model.
6 iScience 27, 109319, March 15, 2024



Figure 5. The validation of the dimensional prediction model using the independent BSNIP dataset

(A) Four sets of predicted continuous scores, including three sets of separate scores guided by the typical subjects in each source dataset and a set of

comprehensive scores (Com) obtained based on the separate scores, for the independent subjects in the BSNIP dataset. The horizontal axis represents each

independent subject, and the vertical axis represents the corresponding prediction score value of the subject. A portion of the diagram is enlarged in the

upper left corner for better visualization. A strong correlation is shown between the four sets of scores.

(B) Average classification accuracy, sensitivity, and specificity for the original groups with diagnostic labels and relabeled groups with reassigned labels in the

independent dataset based on the five classifiers, including SVM, DT, 1NN, 3NN, and 5NN classifiers. Asterisks (*) above the bars denote a statistically

significant difference (i.e., p < 0.01) via two-sample t-tests in the classification performance of relabeled groups relative to original groups, with more

asterisks being more significant. And n.s. above the bars represents no statistically significant differences (i.e., p R 0.01) in their classification performance.

The classification performance using relabeled groups is significantly better than that using the original groups.

(C) 2D projection of the independent subjects with the diagnostic labels.

(D) 2D projection of the independent subjects with the reassigned labels. ReHC and ReSZ represent the relabeled HC group and relabeled SZ group in the

independent dataset, respectively. In (C and D), the relabeled groups (ReHC vs. ReSZ) are more separable compared with the original groups (HC vs. SZ).
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We relabeled the independent subjects to validate that the proposed model can also result in distinguishable groups, which holds prac-

tical significance for the treatment and prognosis of mental disorders. Based on the comprehensive score, each independent subject was

categorized into the relabeled HC group, the relabeled SZ group, and the Boundary group in which subjects were middle and could not

be confidently categorized into a specific group. Using BSNIP as the independent dataset for illustration, intra-group compactness and in-

ter-group separability of the relabeled HC and relabeled SZ groups were evaluated from the following aspects. Under an unbiased 10-fold

cross-validation classification framework, the relabeled groups show significantly improved average classification performances over the orig-

inal groups based on the five classifiers (see Figure 5B). More classification evaluations were shown in Tables S13–S17. Similarly, we employed

t-SNE tomap subjects with the diagnostic labels (Figure 5C) and subjects with reassigned labels (Figure 5D) into a 2D projection to reveal the

natural structure in the independent dataset. The results indicated that relabeled subjects in the same group were closely clustered together

and could be distinguished from the other group, while there was considerable overlap among the diagnosis-labeled subjects in different

groups. We also demonstrated that relabeled groups achieved enhanced intra-group compactness and inter-group separability relative

to original groups by comparing five widely used evaluation metrics (Table S18). In short, the relabeled groups show improved intra-group

compactness and inter-group separability compared with the original groups.

Using another dataset (FBIRN, MPRC, or COBRE) as the independent dataset, the results (Figures S13–S15; Table S18) also support that

the proposed dimensional prediction model was promising in characterizing brain function changes. In conclusion, guided by the diagnostic

information of the typical subjects, our method provides dimensional scores that reveal the degree of pathology from the neuroimaging

perspective.

Relabeled independent subjects show more distinct inter-group differences by jointly using neuroimaging measures

To validate that the proposed dimensional predictionmodel can also result in groups with greater inter-group differences from a neuroimag-

ing perspective, we explored FNC features that significantly differed between relabeled HC and relabeled SZ in the independent dataset

using two-sample t-tests. Due to limited space, we only display the significant FNC features identified in the independent BSNIP dataset

for illustration. T-values of significant FNC features (p < 0.01 with or without Bonferroni correction) between relabeled groups (Figure 6B)
iScience 27, 109319, March 15, 2024 7



Figure 6. Inter-group differences within the independent BSNIP dataset

(A and B) Two-sample t-test T-values for the significant FNC features (upper triangle: p < 0.01 with Bonferroni correction, lower triangle: no correction) within

original groups and within relabeled groups, respectively. In (A and B), 53 intrinsic connectivity networks are divided into seven brain functional domains,

including sub-cortical (SC), auditory (AU), sensorimotor (SM), visual (VI), cognitive-control (CC), default-mode (DM), and cerebellar (CB) domains. Regarding

(A and B), the inter-group differences in the relabeled groups are more noticeable than that in the original groups.

(C) Mean strength of the top 10 shared significant FNC features of subjects in original groups and in relabeled groups.

(D) Mean strength of the top 10 unique significant FNC features of subjects in relabeled groups relative to original groups. The numbers above the bars in (C and

D) are two-sample t-test p values between groups, and n.s. above the bars represents no significant differences (pR 0.01 with Bonferroni correction) between the

two groups. The figure in parentheses represents the corresponding functional network ID. ReHC and ReSZ represent the relabeled HC group and relabeled SZ

group in the independent dataset, respectively. In (C and D), the differences inmean strength of the 20 FNC features aremore noticeable in the relabeled groups

(ReHC vs. ReSZ) compared with that in the original groups (HC vs. SZ).
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suggest a more prominent group difference than those between the original groups (Figure 6A). More visually, Figures 6C and 6D display the

mean strength of the top 10 shared or unique significant FNC features within relabeled groups relative to the original groups in the indepen-

dent dataset. Meanwhile, Tables S19 and S20 outlined the specific mean strength, p values, and T-values of the above 20 significant FNC

features using original groups and relabeled groups. These results demonstrated more evident differences between the relabeled groups

relative to the original groups. Specifically, compared with the top 10 shared significant FNC features within the original groups, relabeled

SZ (relative to relabeled HC) shows a larger decrease in cerebellum-thalamus/caudate functional connectivity and a larger increase in thal-

amus-superior temporal gyrus/postcentral gyrus functional connectivity. Similar findings were derived from the typical groups and original

groups in the source datasets (Figure 4A). Additionally, for the top 10 unique significant FNC features within the relabeled groups, relabeled

SZ shows connectivity differences in the parietal lobe (i.e., superior parietal lobule, paracentral lobule, and postcentral gyrus) and occipital

lobe (i.e., right middle occipital gyrus and inferior occipital gyrus) compared with the relabeled HC. These findings were consistent with

the unique significant FNC features within the typical groups in source datasets (Figure 4B). Additionally, significantly weaker connectivity

connecting the calcarine gyrus to the right/left postcentral gyrus, paracentral lobule, and superior parietal lobule was observed in relabeled

SZ (relative to relabeled HC), which was insignificant in the original groups. These findings suggest that the relabeled groups can capture

more significant and novel FNC features revealing impaired brain function in SZ than the original groups.

Using other datasets (FBIRN, MPRC, or COBRE) as the independent dataset, differences between relabeled groups weremore prominent

relative to original groups (Figures S16–S18; Tables S21–S26). Therefore, there might be inconsistency between diagnostic labels and
8 iScience 27, 109319, March 15, 2024



Figure 7. Confusion matrices between the labels of typical groups and the relabeled groups in the same dataset

(A‒D) The corresponding confusion matrices for BSNIP, FBIRN, MPRC, and COBRE, respectively. THC and TSZ represent typical HC and typical SZ groups,

respectively. ReHC and ReSZ represent relabeled HC and relabeled SZ groups, respectively.
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neuroimaging measures within the independent datasets, resulting in inconspicuous differences between the original groups. In short, both

typical groups and relabeled groups can reveal more stable, consistent, and significant brain functional impairments, supporting that the

combination of diagnostic information and neuroimaging measures in our method enables more accurate predictions.

More reliable biomarkers are found for SZ

Since the present work suggested that both typical subjects in the source datasets and relabeled subjects in the independent dataset had

matching labels and neuroimaging measures, we aimed to verify the consistency and stability of our proposed method by constructing a

confusion matrix between the labels of these subjects. As shown in Figure 1, we employed the leave-one-dataset-out cross-validation pro-

cedure to iteratively assess the performance of our LAMP method. Taking the BSNIP dataset as an example, in the first iteration, it served as

the independent dataset to yield relabeled subjects, while, in the subsequent iteration, it was used as the source dataset to identify typical

subjects within it.We computed a confusionmatrix between the labels of typical subjects and relabeled subjects in BSNIP dataset to verify the

consistency between these subjects. As shown in Figure 7, the labels of the majority of typical subjects in each dataset remained unchanged

after relabeling. These findings confirm the consistency between typical subjects and relabeled subjects, and support the stability and reli-

ability of our proposed method.

To identify the putative biomarkers revealing abnormal brain function in SZ patients compared to HCs, we investigated the significant and

consistent inter-group differences in FNC using typical subjects and relabeled subjects across the four datasets. Two-sample t-tests were uti-

lized to calculate inter-group differences in FNC features for original groups, typical groups, and relabeled groups in each dataset. We

analyzed and displayed the mean strength, p values, and T-values of the top 8 FNC features that showed significant and shared inter-group

differences across the original groups, typical groups, and relabeled groups in all four datasets (see Figure 8A; Table S27). Here, we display

the top 8 significant FNC features since only eight were shared among original groups, typical groups, and relabeled groups across the four

datasets. Our findings indicate that SZ group consistently exhibited weaker connectivity between the cerebellum and thalamus/caudate, as

well as increased connectivity between the superior temporal gyrus and thalamus/caudate (compared with HC group). Additionally, we also

analyzed and exhibited themean strength, p values, and T-values of the top 10 FNC features that exhibited significant inter-group differences

in the typical groups and relabeledgroups across the four datasets butwere not significant in the original groups of any dataset (see Figure 8B;

Table S28). Compared with the original group, both typical SZ and relabeled SZ groups showed weaker connectivity related to the parietal

lobe and occipital lobe, including right/left postcentral gyrus-inferior/right middle occipital gyrus connectivity, superior parietal lobule-right

middle occipital gyrus connectivity, and paracentral lobule-inferior/right middle occipital gyrus connectivity, and significantly stronger para-

central lobule-cerebellum connectivity than typical HC and relabeled HC groups. In sum, by utilizing typical subjects and relabeled subjects

whose labels are more aligned with the neuroimaging measures, our method enables us to find significant, consistent, and reliable inter-

group differences across various datasets. These differences hold promise as putative biomarkers indicating aberrant brain functional con-

nectivity associated with SZ.

Reproducible results on SZ-HC data are observed through the replication experiment

To further validate the reproducibility of the proposed LAMP method, we conducted a replication experiment using the same four datasets

and the identical experimental workflow, as depicted in Figure 1.We evaluated the reproducibility of the proposedmethodby comparing the

consistency between the results from the two separate runs. Specifically, we compared the consistency of typical subjects identified in each

source dataset between the two runs, the consistency of relabeled subjects in each independent dataset between the two runs, and the con-

sistency of explored biomarkers between the two runs. The experimental results exhibited slight variation due to the randomness introduced

by constructing multiple complete random decision trees in the CRF-based model.

In the replication experiment, we first observed a significant overlap between the typical subjects identified fromeach source dataset in the

two separate runs, as shown in Figure S19. It is noteworthy that none of the subjects identified as typical HC (or SZ) in the first run were iden-

tified as typical SZ (or HC) in the second run for each source dataset. This suggests that the identified typical subjects were stable and repro-

ducible. Additionally, the reproducibility of the dimensional prediction model was validated by assessing the consistency of results between

two runs for relabeled subjects in each independent dataset, as shown in Figure 9. Taking the results corresponding to the independent

BSNIP dataset as an example, among the 146 relabeled HCs (ReHC-1) in the first run, 141 subjects were also relabeled as HCs (ReHC-2) in
iScience 27, 109319, March 15, 2024 9



Figure 8. The functional networks with significant inter-group differences in connectivity across the four datasets in the brain

(A) Top 8 shared significant FNC features within subjects in the original groups, typical groups, and relabeled groups across the four datasets.

(B) Top 10 unique significant FNC features within subjects in typical groups and relabeled groups across the four datasets compared with the original groups. 53

intrinsic connectivity networks are divided into seven brain functional domains, including sub-cortical (SC), auditory (AU), sensorimotor (SM), visual (VI), cognitive-

control (CC), default-mode (DM), and cerebellar (CB) domains. The figure in parentheses represents the corresponding functional network ID.
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the second run. Additionally, out of the 195 relabeled SZ subjects (ReSZ-1) in the first run, 192 subjects were also relabeled as SZ subjects

(ReSZ-2) in the second run. Although a few subjects classified into the Boundary group showed slight variations between the two runs, no

subjects that were relabeled as HC (or SZ) in the first run were relabeled as SZ (or HC) in the second run. This indicates the reproducibility

of the dimensional predictionmodel, leading to stable outcomes. Furthermore, we also evaluated the consistency of the explored biomarkers

in the two separate runs to validate the robustness and reproducibility of putative biomarkers. In both runs, the LAMP method explored 18

putative biomarkers: (1) 8 FNC features that exhibited significant inter-group differences between the original groups, between the typical

groups, and between the relabeled groups in all four datasets and (2) 10 FNC features that displayed significant inter-group differences be-

tween the typical groups and between the relabeled groups across the four datasets, while not showing significant inter-group differences

between the original groups in any dataset. As shown in Figure S20 and Table S29, 17 out of the 18 biomarkers were consistently detected in

both runs. Among the 17 consistently detected biomarkers, SZ group (compared to HCgroup) primarily demonstrated abnormal connectivity

related to the cerebellum, thalamus, caudate, parietal lobe, and occipital lobe. For the one biomarker that was not consistently identified, SZ

group exhibited weakened connectivity between the paracentral lobule and inferior occipital gyrus in the first run and enhanced connectivity

between the caudate and left postcentral gyrus in the second run, compared to the HC group. In conclusion, the reproducible experimental

results effectively demonstrated the reproducibility and stability of the proposed method.

The generalizability of the proposed LAMP method applied to autism spectrum disorder (ASD) and HC data is verified

To validate the generalizability of our LAMPmethod for other disorders, we applied our LAMPmethod to fMRI data of subjects with ASD and

age-matched HCs using the same experimental workflow (see Figure 1). More specifically, four datasets named SubData1, SubData2,

SubData3, and SubData4 were used from the Autism Brain Imaging Data Exchange (ABIDEI) data. We extracted FNC features for each sub-

ject via NeuroMark and carefully removed nuisance effects, including age, gender, motion, and site effects (see Table S30 for demographic

information in detail).

Just like the evaluation on SZ-HC data, we investigated inter-group differences, classification performance, between-group separation,

within-group cohesion, and data visualization for typical ASD and typical HC groups identified from each source dataset, as shown in

Tables S31 and S32 and Figures S21–S27. Our findings indicated enhanced intra-group compactness and inter-group separability, as well

as significant and consistent inter-group differences between the typical ASD and typical HC groups compared to the original ASD and

HCgroups in each source dataset. Substantial experiments demonstrated the separable data structure of typical subjects in each source data-

set, reflecting clear consistency between their labels and fMRI measures. Furthermore, a dimensional prediction model for ASD-HC data was

constructed to provide reliable dimensional scores indicating changes in brain function for independent subjects. Taking the subjects in the

independent SubData2 dataset for illustration, a strong correlation (mean correlation coefficient r = 0.87) is presented among their separate

scores and comprehensive scores in Figure 10A. Similarly, we obtained relabeled ASD group and relabeled HC group in the independent

dataset based on the comprehensive scores and evaluated their separability through multiple experiments. As shown in Figure 10B, using

an unbiased 10-fold cross-validation, the classification performance on the relabeled groups outperformed that on the original groups. In
10 iScience 27, 109319, March 15, 2024



Figure 9. The overlap of the relabeled subjects in each independent dataset between the two separate runs

(A‒D) The Venn diagrams display the number of relabeled subjects (i.e., relabeled HC and relabeled SZ subjects) that overlap between the two runs in BSNIP,

FBIRN, MPRC, and COBRE, respectively.

(E‒H) The confusion matrices display the number of relabeled subjects (i.e., subjects in relabeled HC, relabeled SZ, and Boundary groups) that overlap between

the two runs in BSNIP, FBIRN, MPRC, and COBRE, respectively. The numbers in parentheses represent the number of subjects in each respective category.

ReHC-1, ReSZ-1, and Boundary-1 represent the relabeled HC subjects, relabeled SZ subjects, and subjects in the Boundary group identified in each

independent dataset during the first run. Similarly, ReHC-2, ReSZ-2, and Boundary-2 represent the relabeled HC subjects, relabeled SZ subjects, and

subjects in the Boundary group identified in each independent dataset during the second run.
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addition, by utilizing t-SNE visualization technology, it can be observed that relabeled subjects within the same group clustered closely

together and could be easily differentiated from subjects in another group (Figure 10D). Conversely, a significant overlap was observed

among the diagnosis-labeled subjects from different groups (Figure 10C). In short, compared to the original ASD and HC groups, the

improved intra-group compactness, inter-group separability, and inter-group differences between the relabeled ASD and relabeled HC

groups were verified for each independent dataset. The findings were shown in Table S33 and Figures S28–S34, which demonstrated the sta-

bility and reliability of the dimensional prediction model on ASD-HC data.

More importantly, after confirming the consistency of labels between typical subjects and relabeled subjects from the same dataset (Fig-

ure S35), we utilized these subjects withmatching labels and neuroimagingmeasures to explore biomarkers for ASD. As outlined in Table S34,

compared to the HC group across the four datasets, ASD group showed weakened connectivity between the caudate and cerebellum, thal-

amus and cerebellum, postcentral gyrus and left postcentral gyrus, and postcentral gyrus and superior parietal lobule. In addition, ASD group

showed increased connectivity between the thalamus and postcentral gyrus, caudate and postcentral gyrus, and caudate and superior tem-

poral gyrus. In sum, by utilizing typical subjects and relabeled subjects whose labels weremore aligned with the neuroimagingmeasures, our

method enables us to find significant, consistent, and reliable inter-group differences across various datasets. These differences hold promise

as putative biomarkers indicating aberrant brain functional connectivity associated with ASD.

In conclusion, the experimental results (Tables S31–S34; Figures S21–S35) support the successful extension of our method to other disor-

ders. By utilizing the proposed method, we explored significant, consistent, and stable biomarkers for ASD and provided dimensional scores

indicating abnormal brain function associated with ASD. This demonstrates the robustness and generalizability of our method on different

populations.
DISCUSSION

Potential inconsistency between diagnostic labels and neuroimagingmeasures negatively impacts neuroscience-based research of exploring

reliable biomarkers and constructing accurate prediction models for mental disorders.3,29 In this paper, we proposed a neuroimaging-based

LAMPmethod to characterize brain change and explore putative biomarkers for mental disorders only using subjects whose labels are consis-

tent withmeasures frommultiple datasets. It helps build a discriminable predictionmodel using the identified typical subjects with clear sepa-

rability as benchmarks. Improved intra- and inter-group structures of the typical groups confirmed by substantial experimental results indicate

greater alignment between labels and fMRI measures, potentially enabling the construction of a reliable prediction model for SZ. Impres-

sively, compared with the original groups, the average classification accuracy on the typical groups within and across source datasets

increased by 52.08% and 47.03% (Tables S35–S39), respectively, demonstrating the outstanding separability and generalizability of the
iScience 27, 109319, March 15, 2024 11



Figure 10. The validation of the dimensional prediction model using the independent SubData2 dataset including ASD and HC subjects

(A) Four sets of predicted continuous scores, including three sets of separate scores guided by the typical subjects in each source dataset and a set of

comprehensive scores (Com) obtained based on the separate scores, for the independent subjects in the SubData2 dataset. The horizontal axis represents

each independent subject, and the vertical axis represents the corresponding prediction score value of the subject. A portion of the diagram is enlarged in

the upper left corner for better visualization. A strong correlation is shown between the four sets of scores.

(B) Average classification accuracy, sensitivity, and specificity for the original groups with diagnostic labels and relabeled groups with reassigned labels in the

independent dataset based on the five classifiers, including SVM, DT, 1NN, 3NN, and 5NN classifiers. Asterisks (*) above the bars denote a statistically

significant difference (i.e., p < 0.01) via two-sample t-tests in the classification performance of relabeled groups relative to original groups, with more

asterisks being more significant. And n.s. above the bars represents no statistically significant differences (i.e., p R 0.01) in their classification performance.

The classification performance using relabeled groups is significantly better than that using the original groups.

(C) 2D projection of the independent subjects with the diagnostic labels.

(D) 2D projection of the independent subjects with the reassigned labels. ReHC and ReASD represent the relabeled HC group and relabeled ASD group in the

independent dataset, respectively. In (C and D), the relabeled groups (ReHC vs. ReASD) are more separable compared with the original groups (HC vs. ASD).
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preserved subjects. More importantly, the proposed dimensional prediction model offers a comprehensive scoring system for each indepen-

dent subject, quantifying the extent of brain abnormalities from negligible to severe. Based on the predicted scores, we categorized inde-

pendent subjects into patient group, normal group, and Boundary group with minor brain alterations, which is meaningful for understanding

the underlying pathogenesis of disorders and can also aid in the accurate diagnosis for mental disorders. Numerous experiments demon-

strated the effectiveness and robustness of the model. For each independent dataset, the average correlation among the predicted scores

derived from typical groups in different source datasets was over 0.9, demonstrating the homogeneity of typical groups and the stability of the

model. In addition, considerable overlap between the labels of subjects in typical groups and relabeled groups from the same dataset man-

ifested the consistency of outcomes and reliability of ourmethod. It is worth noting that someHCs showed abnormalities in brain function and

were relabeled as SZ or placed in the Boundary group, which supports existing findings of the possible disease risk in HCs.2,29We also demon-

strated significantly improved inter-group separability, intra-group compactness, and average classification accuracy (increased by about

50%) of relabeled HC and SZ groups relative to diagnosis-labeled groups in various independent datasets. It suggested that the reassigned

labels quite agreed with the neurobiological substrates within independent datasets from a neuroimaging perspective, avoiding the degen-

eration of separability caused by the inconsistency. The replication experiment on SZ-HC data and the generalizability validation experiment

on ASD-HC data further demonstrated the feasibility of the LAMPmethod. In brief, the proposed LAMPmethod provided a unitary, accurate,

and dimensional approach to assess the pathology of mental disorders, whichmight better conform to clinical reality and has the potential to

assist traditional categorical diagnostic methods.

In addition, utilizing inter-group differences derived from subjects with matching labels and measures from multiple datasets helps un-

cover more reliable, consistent, and stable potential biomarkers indicating abnormal brain functional connectivity associated with the disor-

der. We explored significant, reliable, and consistent brain functional impairments in SZ patients as putative biomarkers across multiple data-

sets. Specifically, weaker connectivity between sub-cortical (thalamus and caudate) and cerebellar domains and increased connectivity

between sub-cortical (thalamus and caudate) and auditory (superior temporal gyrus) domains were consistently found in original SZ, typical

SZ, and relabeled SZ groups relative to HCs across the four datasets, which can be regarded as stable biomarkers to discriminate SZ patients

from HCs. Indeed, thalamus, caudate, and cerebellar are linked to brain information processing, guiding behavior, and cognition,
12 iScience 27, 109319, March 15, 2024
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respectively, showing significant abnormalities in SZ patients.41–43 Previous studies have reported similar functional abnormalities in SZ pa-

tients but lacked adequate generalizability verification across datasets, unfortunately.44,45 More importantly, the typical SZ and relabeled SZ

groups across the four datasets displayed marked functional alterations that were insignificant in the original SZ group relative to HCs. This

indicates that more significant inter-group differences observed in both the identified typical groups and relabeled groups based on our

method helped to explore new reliable abnormalities in SZ patients. Particularly, hypo-connectivity between the parietal lobe (i.e., postcentral

gyrus, superior parietal lobule, and paracentral lobule) in the sensorimotor domain and right middle/inferior occipital gyrus in the visual

domain was detected in typical SZ and relabeled SZ groups. Parietal lobe and occipital cortex have key roles in maintaining visuospatial in-

formation; disturbed parieto-occipital functional connectivity is related to positive symptoms, such as cognitive deficits, disorganization, and

delusions, in SZ patients.46–48 In addition, hyper-connectivity between the paracentral lobule and cerebellum was found in typical SZ and re-

labeled SZ groups relative to HCs. This finding suggests that the functional association between the cerebellar and sensorimotor domains is

affected in SZ, whichmay be related to disorganized or abnormal motor behavior. In short, we exploredmore new, significant, and consistent

brain functional impairments in both typical SZ and relabeled SZ groups relative to original groups based on our LAMP method, promoting

the investigation of neuropathological substrates on mental disorders.

Furthermore, it is important to note that clinical diagnostic labels may not directly align with the neuroimagingmeasures. As a result, there

can be varying inter-group differences within the original groups across different datasets, making it challenging to consider the differences

as reliable biomarkers for clinical use. To address this issue, we leveraged typical subjects and relabeled subjects who had matching labels

and fMRI measures to enhance the inter-group differences, thus enabling us to identify biomarkers that consistently exhibited significant in-

ter-group differences across multiple datasets. Particularly, ASD and SZ are two brain disorders that share considerable clinical and neuro-

imaging features,making it difficult to distinguish them fromeach other.49 Using typical subjects in the source datasets and relabeled subjects

in the independent dataset, we were able to highlight the inter-group differences between SZ andHC groups, as well as ASD and HC groups.

Consequently, the differences between SZ and ASD groups were further amplified. As a result, we discovered unique biomarkers for ASD,

such as weakened connectivity between the postcentral gyrus and superior parietal lobule compared to the HC group. In brief, more signif-

icant and consistent inter-group differences observed across datasets can serve as potential biomarkers to distinguish between different

groups, aiding in indicating abnormal brain function associated with the disorders and assisting doctors in accurate diagnosis based on these

biomarkers.

In summary, we propose a label-noise filtering-based dimensional prediction method, LAMP, which mitigates the impact of potential

inconsistency between diagnostic labels and neuroimaging measures in exploring reliable biomarkers and constructing accurate prediction

models. Substantial evidence highlights that LAMP method can explore stable and reliable functional abnormalities unveiling pathogenesis

and build the dimensional prediction model revealing the degree of abnormalities for mental disorders using neuroimaging data. It is impor-

tant to point out that, as more source datasets from various sites are incorporated, a greater number of reliable typical subjects are obtained

from these source datasets. Consequently, the conclusions drawn from our LAMPmethod would become progressively more reliable, which

partially mitigates the issue of limited typical subjects identified from a single source dataset. The LAMP method holds promise in under-

standing the underlying pathogenesis and assisting accurate diagnosis of mental disorders.
Limitations of the study

This study has several limitations. First, the proposed LAMP method has only been validated using fMRI data. In future work, more datasets

including other functional and structural measures could be involved to comprehensively reflect the effects of mental disorders on brain func-

tion and structure. Besides, completely mitigating the nuisance effects is challenging as it is difficult to determine if these effects have been

completely eliminated without any ground truth about group differences. This highlights the need for the development of more advanced

algorithms. In addition, this work utilized neuroimaging measures to score independent subjects without incorporating symptom-based

scores. Future researchmay benefit from integrating diagnostic scores and neuroimagingmeasures to generatemore comprehensive dimen-

sional scores. Finally, although sufficient experimental validation has demonstrated that integrating neuroimaging measures with clinical

diagnostic information can help uncover more reliable findings, further validation of the proposed method is still needed in clinical practice.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

BSNIP Tamminga et al.50 https://doi.org/10.1093/schbul/sbt179

FBIRN Keator et al.51 https://doi.org/10.1016/j.neuroimage.2015.09.003

MPRC Du et al.49 https://doi.org/10.1038/s42003-021-02592-2

COBRE Aine et al.52 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

ABIDEI Craddock et al.53 https://fcon_1000.projects.nitrc.org/indi/abide/

Software and algorithms

MATLAB R2018a Mathworks https://www.mathworks.com/

LAMP method This paper http://www.yuhuidu.com/index.php?a=cms&b=index&c=

news&cid=183&id=8524

Complete random forest (CRF)-based label-noise filtering

model

Xia et al.38 http://www.cquptshuyinxia.com/CRF-NFL.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yuhui Du (duyuhui@sxu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data from BSNIP, COBRE, and ABIDEI datasets are publicly available. Data from FBIRN andMPRC datasets are available from the cor-

responding author Yuhui Du (duyuhui@sxu.edu.cn) upon reasonable request due to privacy restrictions. DOIs/URLs are listed in the key

resources table.
� All original codes that support the findings of this study have been deposited at Yuhui Du’s personal website and are available from the

corresponding author Yuhui Du (duyuhui@sxu.edu.cn) upon request. URLs are listed in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the corresponding author Yuhui Du

(duyuhui@sxu.edu.cn) upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We analyzed fMRI data from 537 subjects with SZ and 708 age-matched HCs across four datasets, including BSNIP, FBIRN, MPRC, and

COBRE, to execute our LAMP method. To validate the feasibility of our LAMP method on diverse populations, we used fMRI data from

398 subjects with ASD and 471 age-matched HCs from the ABIDEI dataset that were equally divided into four datasets, including

SubData1, SubData2, SubData3, and SubData4. In this study, all data were approved by the local Institutional Review Board (IRB) committee,

and the majority of participants were Caucasian. The corresponding demographic information, including age and gender, is detailed in

Tables S1 and S30. These five datasets were employed from the following programs or institutes.

(1) Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). BSNIP is from a publicly available database whose original

source can be found at https://nda.nih.gov/, and the relevant reference of the data can be found at.50

(2) Function Biomedical Informatics ResearchNetwork Data Repository (FBIRN). The reference number of the IRB approval for FBIRNdata

is HS# 2009-7128.

(3) Maryland Psychiatric Research Center (MPRC). The reference number of the IRB approval for MPRC data is HP-00045716.

(4) Centers of Biomedical Research Excellence (COBRE). COBRE is from a publicly available dataset whose original source can be found at

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

(5) Autism Brain Imaging Data Exchange (ABIDEI). ABIDEI is from a publicly available dataset whose original source can be found at

https://fcon_1000.projects.nitrc.org/indi/abide/.
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METHOD DETAILS

Participants and preprocessing

Resting-state fMRI data of HC and SZ subjects were selected from four multisite datasets, including BSNIP, FBIRN, COBRE, and MPRC. Data

preprocessing and participant selection criteria followed our previous work.49 After the quality control, the fMRI data of 537 subjects with SZ

and 708 HCs from four different datasets were retained. Specifically, we used 182 SZ patients and 237 age-matched HCs from BSNIP, 137 SZ

patients and 144 age-matched HCs from FBIRN, 150 SZ patients and 238 age-matched HCs from MPRC, and 68 SZ patients and 89 age-

matched HCs from COBRE. Resting-state fMRI data of HC and ASD subjects were selected from ABIDEI dataset that were equally divided

into four datasets, including SubData1, SubData2, SubData3, and SubData4. Specifically, we used 101 ASD patients and 116 age-matched

HCs fromSubData1, 103ASDpatients and 114 age-matchedHCs fromSubData2, 99 ASDpatients and 119 age-matchedHCs fromSubData3,

and 95 ASD patients and 122 age-matched HCs from SubData4. Detailed demographic information can be found in Tables S1 and S30.

We preprocessed the fMRI data using the statistical parametric mapping toolbox (SPM12). First, we removed the first six time points and

performed rigid body motion correction to correct for subject head motion, followed by slice-timing correction to account for timing differ-

ences in slice acquisition. Next, we warped the fMRI data into the standardMontreal Neurological Institute (MNI) space using an echo-planar

imaging template and resampled them to 33 33 3mm3 isotropic voxels. To reduce noise, we smoothed the resampled fMRI images using a

Gaussian kernel with a full width at half maximum (FWHM) of 6 mm. More specific information can be found in our previous work.49
Estimation of functional network connectivity (FNC) features from fMRI data

Brain FNC has been demonstrated the potential to reveal possible biomarkers for mental disorders.54,55 In this work, we estimated the FNCs

of fMRI data as initial features for each subject via a fully automated NeuroMark method37 and toolbox (http://www.yuhuidu.com/ and http://

trendscenter.org/software/gift) (see Figure 1A). The 53 intrinsic functional network templates were first constructed by identifying replicated

andmeaningful group-level independent components by independent component analysis (ICA) between two large healthy control datasets.

Then, subject-level functional networks (FNs) and associated time courses (TCs) were automatically estimated for each individual subject us-

ing the group-information guided ICA (GIG-ICA)56 by taking the templates as the guidance. After that, a static FNC matrix (53*53) was ob-

tained for each subject by calculating the Pearson correlation coefficient between pairwise TCs of functional networks after postprocessing

TCs.37 Subsequently, we flattened the upper triangle of the FNCmatrix into a vector, resulting in 1378 FNCmeasures for each subject. More-

over, we conducted a thorough regression analysis to carefully regress out the influences of age, gender, and site effects from the estimated

FNC measures for each subject. Table S1 summarizes the demographic information for the participants.
Overall workflow of the present work

The overall workflow of the present work is displayed in Figure 1, which can be divided into two parts, including the construction of the LAMP

method using fMRI data of HC-SZ (Figures 1A‒1D and S1) and the evaluation of the constructed LAMPmethod (Figures 1E and 1F)). First, FNC

features are estimated for each subject of the 1245 participants (mentioned in the previous sections), as shown in Figure 1A. In order to verify

the result reproducibility, the four datasets are alternately divided into three source datasets and an independent dataset to perform the strict

leave-one-dataset-out cross-validation procedure, as shown in Figure 1B. The three source datasets are used as training data to identify

typical subjects from all subjects in each source dataset. The typical subjects are then used to construct a dimensional prediction model

to predict the remaining independent dataset. Namely, all subjects in the remaining independent dataset are used as the test data to eval-

uate the performance of the prediction model. We identify typical subjects in the source datasets to construct the prediction model that pro-

vides dimensional scores and reassigned labels for subjects in the independent dataset. Specifically, as shown in Figure 1C, we employ the

CRF label-noise filteringmodel to identify typical subjects whose labels alignwith the neuroimagingmeasures in each source dataset, which is

the initial step to ensure the data validity of subsequent studies. More importantly, as shown in Figure 1D, we build a dimensional prediction

model guided by the typical groups from the multiple source datasets to provide a dimensional score indicating the pathology and a new

label for each independent subject. We evaluate the validity of the typical groups by analyzing the inter-group separability and intra-group

compactness of the typical groups, as well as the significance and consistency of functional abnormalities within the typical SZ group across

source datasets (see Figure 1E). As shown in Figure 1F, we evaluate the stability of the scores, inter-group separability and intra-group

compactness of the relabeled groups, and the significant functional abnormalities within the relabeled SZ group in the independent dataset.
The proposed label-noise filtering-based dimensional prediction (LAMP) method

The proposed LAMPmethod includes two parts: (1) the identification of typical subjects inmultiple source datasets (see Figure 1C) and (2) the

construction of a dimensional predictionmodel for subjects in an independent dataset (see Figures 1D and S1). Themethod involves n source

datasets and one independent dataset.

In the first part, we aim to identify the typical subjects of each source dataset based on a label-noise filtering model to ensure that

biomarker discovery and disorder prediction are not confounded by the inconsistency between diagnostic labels and neuroimaging mea-

sures. Here, we employ the CRF-based label-noise filtering model38 that assesses the label heterogeneity around each subject under various

feature subspaces (i.e., feature subsets) to filter out subjects that it is surrounded by the heterogeneous subjects. On the one hand, the CRF-

based model identifies subjects with high label heterogeneity in their surroundings as label noise based on the data itself rather than relying

on classification results, thereby preventing different classifiers fromdetecting different label noise. On the other hand, the votingmechanism
18 iScience 27, 109319, March 15, 2024
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across various feature subspaces within the CRF-basedmodel enables to process high-dimensional and noisy features effectively. However, a

drawback of the CRF-based model is that subjects in the minority category tend to be mistakenly identified as label noise. Thus, before con-

structing the CRF-based model, we employ an under-sampling strategy to balance the category distribution and identify the typical subjects

according to the non-noise ratio that describes the non-noise frequency to the sampling frequency of subjects. Specifically, the under-sam-

pling CRF-based model consists of four steps to filter out label noise and identify the typical subjects for each source dataset.

Step 1: Under-sampling. To avoid biased results, we randomly select an equal number of subjects from each category to form a balanced

dataset for identifying typical subjects.

Step 2: Construct a complete random forest. A complete random forest comprises N complete random decision trees (CRDTs) that are

constructed following the rules below. The root node of each tree contains all of the sampled subjects. Non-leaf nodes in each tree have two

child nodes, and the division rule of any node is based on randomly selecting both a feature and the split value of the feature. It is worth noting

that the splitting process stops when the subjects in the node belong to the same category. The label of each node is determined by the

majority of labels of the subjects in the node. The above process is repeatedN times to form a complete random forest containingN CRDTs.

Step 3: Detect possible label noise in the constructed complete random forest. The label of a node that contains label noise is susceptible

to change. Therefore, the stability of the node’s label after the first change indicates the surrounding heterogeneity for each subject within the

node and is used to detect label noise. Such stability is referred to as noise intensity (NI). TheNI value for a subject corresponds to the number

of times that the label of the leaf node containing the subject remains unchanged after the first change during traversing upward. If the NI

value of a subject is greater than a given intensity threshold m, the subject is provisionally considered a possible label noise by this CRDT. This

complete random forest regards a subject as a label noise if more than 50% of the CRDTs in the forest detect it as a possible label noise.

Step 4: Detect typical subjects in multiple complete random forests. The above three steps are repeated t times to ensure that each

subject is sampled at least once. If a subject is sampled T times and regarded as a possible label noise in T 0 complete random forest, the

label-dependability of the subject can be calculated as ðT � T 0Þ=T . Consequently, subjects whose label-dependability exceeds a predefined

label-dependability threshold g (g˛ ½0;1�) are identified as typical subjects for subsequent analysis.

The CRF-based model involves three parameters: the number of repetitions denoted as t (which also represents the number of CRFs), the

number of CRDTs denoted as N, and the intensity threshold denoted as m. It is straightforward to comprehend that as the number of trees

(N) and forests (t) increases, the detectednoisy samples becomemore stable and reliable. In addition, the intensity threshold (m) is closely related

to the sample size. Essentially, with a larger m, some label noise withweaker noise characteristicsmay beoverlooked. Conversely, a smaller mmay

result in some normal subjects being incorrectly labeled as label noise. Thus, considering the recommendations in the literature38 and sample

size, we set the t,N, and m to 101, 200, and 2, respectively. Experimental results have shown that these parameters do not significantly affect the

outcomes. The CRF-based model and under-sampling CRF-based model are described in detail in the literature38 and Figure S1, respectively.

Furthermore, to evaluate the performance of the CRF-based model in filtering samples with label noise and identifying typical samples

with matching labels and measures, we conduct an unbiased five-fold cross-validation classification experiment using three public datasets

(details provided in Table S2). For each dataset, four folds of data are used as the training data and the remaining one fold is used as the test

data. We introduce label noise by randomly flipping labels to different labels for samples in the training data. We conduct the CRF-based

model to identify typical samples in the training data and then use these typical samples to construct a classifier. Test data is used to assess

the performance of the classifier, which also indicates the model’s capability to filter samples with label noise and identify typical samples. In

this paper, we flip the labels of the training samples with noise rates of 5%, 10%, 15%, and 20%.

In the second part, we construct a dimensional predictionmodel using the typical subjects identified from the n source datasets to provide

dimensional scores for the subjects in an independent dataset. In detail, we define a new similarity metric to assess the similarity between

independent subjects and the two typical groups identified from each source dataset and construct the dimensional predictionmodel in light

of the similarity. For each independent subject, we calculate n+ 1 scores, including n separate scores derived from each source dataset and

one comprehensive score calculated by averaging the above n separate scores.

LetX = fX1;X2;.;Xng represent the n source datasets.Gs
HC andGs

SZ contain typical HCs and typical SZ patients selected from the source

dataset Xs, respectively, and Z denotes the independent dataset containing independent subjects. For each Gs
p ðp ˛ fHC;SZgÞ, the corre-

sponding center point (Cs
p) is determined by the following two subject points:

(1) The subject point with the highest local density in group Gs
p is defined as

xr

Gs
p
= max

x˛Gs
p

X
y ˛NeðxÞ

e�dðx;yÞ;p˛ fHC;SZg; (Equation 1)

wheredðx; yÞ is Euclidean distance57 between subject points x and y,NeðxÞ contains the K nearest subjects closest to x in groupGs
p. Here, we

set K to five.

(2) The subject point with the farthest distance in group Gs
p to the different groups is defined as

xd
Gs

p
= max

x˛Gs
p

X
y ˛Gs

q

dðx; yÞ;p;q˛ fHC; SZg;psq:
(Equation 2)
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The synthesized subject center point (Cs
p) is the weighted average of the above two subject points and is defined as

Cs
p = u1 � xr

Gs
p
+u2 � xd

Gs
p
;p˛ fHC;SZg: (Equation 3)

For simplicity, we set balanced parameters u1 and u2 to 1=2 here.

Then, based on the center pointsCs
HC andCs

SZ derived from typical groups of the source datasetXs, a separate score is computed for each

independent subject by assessing its similarity to the two center points. Specifically, for any independent subject zk ˛Z, the similarity between

zk and Cs
p is

sim
�
zk ;C

s
p

�
= e�dðzk ;Cs

pÞ;p˛ fHC; SZg: (Equation 4)

The separate score indicating the relationship between independent subjects zk and the two typical groups in Xs is designed in a straight-

forward formula by

DSðzk ;XsÞ = sim
�
zk ;C

s
SZ

� � sim
�
zk ;C

s
HC

�
: (Equation 5)

Consequently, we get n separate scores for the independent subject zk , and the comprehensive score can be calculated by

Comk =
1

n

Xn

s = 1
DSðzk ;X sÞ: (Equation 6)

Those scores are normalized on a scale from -1 to 1, representing the continuum from no abnormality to significant abnormality. Specif-

ically, the closer the score value is to -1, the greater the likelihood that the independent subject is normal. Conversely, the closer the score

value is to 1, the higher the likelihood that the independent subject is schizophrenic.

To further verify the effectiveness of the dimensional prediction model, the independent subjects are relabeled by thresholding the

comprehensive score via an adaptive parameter t to obtain the relabeled HC group, relabeled SZ group, and the Boundary group in which

subjects are middle and cannot be categorized into a specific group with enough confidence. Specifically, a truncation parameter e of 0.2 is

introduced to obtain the adaptive parameter t that mitigates the scores bias of different groups in different datasets. To determine the value

of t, the comprehensive scores of all independent subjects are sorted in ascending order, and the number of scores less than 0 and greater

than 0 are denoted as N� and N+, respectively. Then, the t is defined by

t = jCom½N� 3 ð1� eÞ�+Com½N�+N+ 3 e�
2

j; (Equation 7)

where ½�� is the round function that replaces the number in square brackets with an approximate integer, and j � j denotes the absolute value

of a number. Consequently, the independent subjects are divided into three groups: the relabeled HC group comprises subjects with scores

less than -t, the relabeled SZ group comprises subjects with scores greater than t, and the remaining subjects form the Boundary group.
Evaluation of the validity of the identified typical subjects in each source dataset

In this paper, we perform and evaluate the proposed LAMP method using four HC-SZ datasets, including three source datasets and an in-

dependent dataset. We conduct various experiments to demonstrate the improved inter-group separability and intra-group compactness of

the typical groups identified from each source dataset (see Figure 1E). Besides, we explore significantly different FNC features between the

typical HCgroup and typical SZ group and validate their consistency acrossmultiple source datasets. It is worth noting that these experiments

are performed between the original groups and between typical groups with various label-dependability thresholds in each source dataset.

First, to ensure the reliability of outcomes, we demonstrate that there are no significant differences in nuisance variables between typical

groups (under different label-dependability thresholds) for each dataset. To do this, we evaluate the inter-group differences of the nuisance

variables, including age and rotation/translations in the typical groups (under the different label-dependability threshold g) by two-sample

t-tests (p < 0.01 with Bonferroni correction). The Chi-square test (p < 0.01 with Bonferroni correction) is employed to evaluate the inter-group

differences of gender in the typical groups (under the different label-dependability threshold g). We also test these inter-group differences for

original groups in the same way for comparison.

Second, we aim to confirm the enhanced inter-group separability and intra-group compactness of the identified typical groups compared

with the original groups for each source dataset from four perspectives. Specifically, we first calculate the differences in P-values of all FNC

features and the number of significant FNC features (p < 0.01 with Bonferroni correction) betweenoriginal groups and between typical groups

(under different label-dependability thresholds) via the two-sample t-test. Next, an unbiased and within-dataset 5-fold cross-validation clas-

sification framework is employed to investigate the separability between original groups and between typical groups (under different label-

dependability thresholds) via classification accuracy. We divide the typical subjects into five folds, of which four folds are used as the training

data to build classifiers, and the remaining one fold is used as the testing data to evaluate the classifiers.We also classify the original groups in

the same framework. Here, we use five popular classifiers, including support vector machine with a linear kernel (SVM), decision tree (DT),

1-nearest neighborhood classifier (1NN), 3-nearest neighborhood classifier (3NN), and 5-nearest neighborhood classifier (5NN). We set

the regularization parameter C in the SVM classifier to 100 and the parameter of the maximal number of decision splits per tree in DT
20 iScience 27, 109319, March 15, 2024
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to 1. In the following experiments, we set the label-dependability threshold to 0.8 for illustration. Additionally, we calculate five widely used

evaluationmetrics to measure inter-group separability and intra-group compactness in original groups and in typical groups. The fivemetrics

include Davies Bouldin index (DBI),58 silhouettes coefficient (SC),59 Calinski-Harabasz index (CHI),60 Dunn Validity index (DVI),61 and the ratio

of within-group similarity to between-group similarity (Sw/Sb) via Pearson correlation coefficients.62 Moreover, we compare the inter-group

overlap between typical groups and between original groups by visualizing the high-dimensional data in two dimensions using t-SNE pro-

jection technology.40

Third, we compute and analyze inter-group FNC differences within the typical groups in the source datasets to demonstrate the improved

consistency and significance of patterns of the differences across datasets relative to the original groups. Here, we set the label-dependability

threshold to 0.8 for illustration. In detail, we compute the T-values of FNC features (p < 0.01 with Bonferroni correction or without correction)

between typical groups and between original groups in each source dataset based on the two-sample t-tests to demonstrate the significance

of inter-group differences. Next, we compute the Pearson correlation coefficient for the T-values between typical groups and between orig-

inal groups in paired source datasets to examine the consistency of inter-groupdifferences across different datasets.Moreover, we exhibit the

mean strength, P-values, and T-values of the top 10 FNC features that show themost significant inter-group differences in both the typical and

original groups and the top 10 features that show significant inter-group differences only in the typical groups across source datasets.

Evaluation of the feasibility of the dimensional prediction model for the independent dataset

We conduct several experiments to demonstrate the feasibility of the proposed dimensional predictionmodel for independent subjects (see

Figure 1F). To begin with, we calculate the Pearson correlation coefficients between the paired dimensional scores, including separate scores

derived from three source datasets and comprehensive scores for the independent datasets tomeasure themodel stability. A higher average

correlation coefficient among these scores indicates that our model can obtain stable and consistent prediction results for the independent

datasets, even using subjects from different datasets as guidance.

Then, we also assess the intra-group compactness, inter-group separability, and consistency of inter-group differences of the relabeledHC

and SZ groups in the independent dataset via multiple evaluated experiments. First, using an unbiased 10-fold cross-validation classification

framework, we divide the relabeled groups into ten folds, of which nine folds are used as the training data to build classifiers, including SVM,

DT, 1NN, 3NN, and 5NN, and the remaining one fold is used as the testing data to evaluate the classifiers.We also classify the original groups

in the same framework and compare the separability between original HC and SZ groups and between relabeledHC and relabeled SZ groups

via classification accuracy, sensitivity, and specificity. Similarly, we calculate evaluation metrics DBI, SC, CHI, DVI, and Sw/Sb on the original

groups and on the relabeled groups. Then, we project high-dimensional original groups and relabeled groups in a two-dimensional space

based on t-SNE projection technology.

Furthermore, to demonstrate the enhanced inter-group differences within the relabeled groups, we computed the P-values and T-values

of FNC features (p < 0.01 with Bonferroni correction or without correction) between relabeled groups and between original groups via the

two-sample t-tests. Additionally, using the independent dataset, we show the mean strength, P-values, and T-values of the top 10 FNC fea-

tures with the most significant inter-group differences shared between the original groups and relabeled groups and the top 10 unique FNC

features with the most significant inter-group differences only in the relabeled groups.

Comparison of the typical subjects and the relabeled groups derived from the same dataset

In this work, each of the four datasets is successively used as the source dataset for typical subjects identification and prediction model con-

struction and as the independent dataset for dimensional scores prediction and label reassignment via the leave-one-dataset-out division

strategy. Since both typical subjects and relabeled subjects are demonstrated as valid subjects withmatching labels andmeasures, we further

confirm the validity of the LAMPmethodby discussing the consistency between typical subjects and relabeled subjects derived from the same

dataset. In detail, for each dataset, we first construct a confusionmatrix between the labels of typical groups and the relabeled groups derived

from the same dataset to validate the consistency. Besides, we also explore stable impaired brain function in SZ patients as putative bio-

markers. Specifically, to explore reliable, stable, and consistent impairments within SZ patients, we analyze the top 10 FNC features with sig-

nificant inter-group differences that are shared in the original groups, typical groups, and relabeled groups across the four datasets based on

two-sample t-tests. In the meantime, we explore the top 10 FNC features with significant inter-group differences observed in both the typical

groups and relabeled groups across the four datasets, but these features are not significant within the original groups in any of the datasets.

We outline the mean strength, between-group P-values, and between-group T-values of the 20 FNC features in these groups across the four

datasets and visualize related functional networks in the brain via anatomical 3D surface meshes provided by Yushkevich63 and three tools,

including SPM (http://www.fil.ion.ucl.ac.uk/spm/), ITK-SNAP,64 and ParaView.65

Reproducibility evaluation on SZ-HC data through the replication experiment

To further validate the stability and reproducibility of the findings obtained from our LAMP method, we conduct a replication experiment

using an identical experimental workflow, as depicted in Figure 1. We assess the reliability and reproducibility of the proposed method

by comparing the consistency between the results from two separate runs. Specifically, we also employ a strict leave-one-dataset-out

cross-validation procedure, whereby each of the four datasets successively served as the independent dataset for the evaluation and the re-

maining three as the source datasets for constructing the dimensional prediction model. Typical HC and SZ subjects are identified from each

source dataset by building aCRF-based label-noise filteringmodel. Then, using these typical subjects who present remarkable and consistent
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inter-group differences across source datasets, a dimensional prediction model is constructed to provide reliable dimensional scores indi-

cating changes in brain function for independent subjects. We relabel the independent subjects to validate that the proposed model can

also result in distinguishable groups. Based on the dimensional scores, the independent subjects are then categorized into three groups:

the relabeled HC group, the relabeled SZ group, and the Boundary group in which subjects are in themiddle and cannot be confidently cate-

gorized into a specific group. It is important to note that both the typical subjects in the source dataset and the relabeled subjects in the in-

dependent dataset have consistent labels with the fMRI measures. Using these subjects with consistent labels and fMRI measures, we also

identify putative biomarkers in this run to reveal abnormal brain function in SZ patients compared to HCs. To evaluate the reproducibility

of the outcomes obtained using our LAMP method, we assess the consistency of typical subjects across two runs for each source dataset,

the consistency of relabeled subjects across two runs for the independent dataset, and the consistency of explored biomarkers across

two runs.
Within and between datasets separability of the original groups and typical groups across SZ-HC datasets

Todemonstrate the improved separability of typical groupswithin and between datasets comparedwith that of the original groups, we estab-

lish two different cross-validation classification frameworks.We first apply an unbiased 5-fold cross-validation classification framework to eval-

uate the separability of typical groups within each source dataset. Specifically, we divide the typical subjects in each source dataset into five

folds, of which four folds are used as the training data to build classifiers, and the remaining fold is used as the testing data to evaluate the

performance of the classifiers. This framework is also applied to classify the original groups in each source dataset. Furthermore, to evaluate

the separability of typical groups between datasets among the three source datasets, we apply another unbiased leave-one-dataset-out

cross-validation classification framework. In detail, typical subjects from one source dataset serve as the training data to build classifiers,

and typical subjects from the remaining datasets are used as the testing data to evaluate the performance of the classifiers. This classification

framework is similarly applied to the original groups from the source datasets. Here, we select typical subjects under the label-dependability

threshold of 0.8 in each source dataset for illustration. Additionally, we employ five classifiers, including SVM, DT, 1NN, 3NN, and 5NN.
The generalizability validation of the proposed LAMP method on ASD-HC data

To validate the generalizability of our LAMP method on other disorders, we apply our LAMP method to fMRI data of subjects with ASD and

age-matched HCs using the same experimental workflow (see Figure 1). More specifically, we utilize 398 subjects with ASD and 471 age-

matched HCs, which were from the ABIDEI data. Here, we evenly divide the subjects into four datasets to thoroughly validate the general-

izability of our work via a rigorous leave-one-dataset-out cross-validation procedure. For convenience, we call these four datasets as

SubData1, SubData2, SubData3, and SubData4. Following the data processing procedure of our previous work,49 we extracted 1378 func-

tional network connectivity features for each subject, following a data processing procedure that carefully removed nuisance effects, including

age, gender, motion, and site effects (see Table S30 for demographic information in detail). Similarly, we implement a rigorous leave-one-

dataset-out cross-validation procedure, where each of the four datasets is sequentially used as the independent dataset for evaluation, while

the remaining three datasets are utilized as the source datasets for developing the dimensional predictionmodel. For each source dataset, we

identify the typical ASD and typical HC groups which are then used to construct a dimensional prediction model to provide reliable dimen-

sional scores indicating changes in brain function for independent subjects. Similar to the evaluation of the LAMPmethod on SZ-HC data, we

also assess inter-group separability, intra-group compactness, and inter-group differences of the typical ASD and typical HC groups for each

source dataset. In addition, we assess the stability of the scores obtained from the dimensional predictionmodel, as well as the separability of

the derived groups, i.e., relabeled ASD group and relabeled HC group. More importantly, using typical subjects and relabeled subjects who

have matching labels and fMRI measures, we explore putative biomarkers that exhibit significant and consistent inter-group differences

for ASD.
QUANTIFICATION AND STATISTICAL ANALYSIS

We assess inter-group differences in the nuisance variables, including age and rotation/translations, in the original groups, in the typical

groups, and in the relabeled groups, using two-sample t-tests (p < 0.01 with Bonferroni correction). For evaluating inter-group differences

in gender, we employ the Chi-square test (p < 0.01 with Bonferroni correction). Furthermore, to assess the significance of improved separa-

bility in the relabeled groups compared to the diagnostic groups, we use two-sample t-tests (p < 0.01) to evaluate the differences in classi-

fication performance between the two.
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