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Abstract

Cationic and heavy metal toxicity is involved in a substantial number of diseases in mam-
mals and crop plants. Therefore, the understanding of tightly regulated transporter activities,
as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A
generalized thermodynamic description is developed for the complex interplay of the
plasma membrane ion transporters, membrane potential and the consumption of energy for
maintaining and restoring specific intracellular cation concentrations. This concept is
applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The
thermodynamic approach allows to model passive ion fluxes driven by the electrochemical
potential differences, but also primary or secondary active transport processes driven by
the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The
model—confronted with experimental data—reproduces the experimentally observed
potassium and proton fluxes induced by the external stimuli KCI and glucose. The estimated
phenomenological constants combine kinetic parameters and transport coefficients. These
are in good agreement with the biological understanding of the transporters thus providing a
better understanding of the control exerted by the coupled fluxes. The model predicts the
flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing
positive charges. Furthermore, the effect of a second KCI stimulus is simulated, predicting a
reduced cellular response for cells that were first exposed to a high KCI stimulus compared
to cells pretreated with a mild KCI stimulus. By describing the generalized forces that are
responsible for a given flow, the model provides information and suggestions for new exper-
iments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or
selected plant cells.
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Author Summary

Metals, and particularly their positively charged ions (cations), are an integral part of our
environment, and all living organisms are exposed to metals in their natural habitat. Even
though significant efforts have already been made by experimental and theoretical analysis
of the individual components of transport systems and individual transport-mechanisms,
such efforts did not result in an integration of the highly connected and complex system.
The development of kinetic networks might well contribute to the understanding and visu-
alization of cation homeostasis. However, such kinetic systemic analysis would require
more detailed biochemical information than is currently available. We circumvented this
problem by using an entirely phenomenological approach of the theory of non-equilib-
rium thermodynamics. The methodology does not require the detailed understanding of
structure, function or kinetic parameters of individual constituents of the system but pro-
duces some unique parameters related to thermodynamic couplings between different ion
fluxes and ATP consumption. These estimated phenomenological constants combine the
kinetic parameters and transport coefficients and control the coupling of fluxes. The
model predictions are in good agreement with the biological understanding of the roles of
the transporter proteins. Our modeling approach might contribute to the development of
new diagnostic and therapeutic purposes with cation-homeostasis as key-target.

Introduction

System responses to cation induced stress play a pivotal role in a wide range of essential cellular
processes. A major challenge for the cell is to maintain optimum cytoplasmic concentrations of
cations even under rapidly changing external conditions and perturbations such as salt,
osmotic, or alkaline pH stress. The alkali metals such as sodium, potassium (or lithium) are
considered as vitally important co-factors for a variety of enzymatic reactions and for structural
and functional roles in cell metabolism [1,2]. However, they are also potent toxic pollutants at
high concentrations and relevant for severe biological and medical phenomena (i.e. blocking of
functional groups on important bio-molecules as well as denaturation of enzymes and DNA
damage)[3] [4].

For the unicellular eukaryote Saccharomyces cerevisiae most of the proteins responsible for
uptake and extrusion of sodium, potassium, protons and chloride across the cellular membrane
have been identified (see Fig 1) and some transport mechanisms are well described (see Table 1
and [5,6] [7]). However, despite considerable experimental work and some modeling efforts
[8,9] the integration of transport systems to ensure homeostasis and the interplay between par-
ticular ion transport proteins and factors controlling the rate of transport are not fully under-
stood. Filling this gap could positively affect a wide area of application: Geo- and natural
sciences, as well as agronomists consider the issue under the aspects of environmental pollution
caused by extensive use of some (heavy) metals and metal compounds as e.g. in fungicides and
disinfectants. Related agricultural research concerned the ability of plants to tolerate or adapt
to a range of environmental stress conditions like e.g. aridity or very high or almost nil concen-
trations of salt. In biomedical sciences ion homeostasis receives increasing attention due to its
role in a number of pathological conditions, such as a variety of neurodegenerative diseases,
metabolic disorders and malignant transformations [10] [11]. Therefore, the understanding of
tightly regulated transporter activities and the interplay of regulatory mechanisms is of sub-
stantial interest and could contribute to the developments in plant growing sciences or to
improvements regarding food safety. Furthermore, a better understanding could influence the
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Nhalp
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Fig 1. Sketch of the system and the model-relevant key elements.

doi:10.1371/journal.pchi.1004703.g001

development of new treatments for fungal infections or the design of new pharmacological
agents to treat neurodegenerative diseases.

We suggest a predictive mathematical model to gain better understanding of the principles
of homeostasis employed by nature.

The regulation of intracellular cation content is an important and complex cellular task. In
comparison to the relatively controlled environment of most animal cells (within the tissue
context), single-celled organisms like e.g. some algae and fungi must tolerate a wide range of
sometimes rapidly changing environmental conditions such as osmotic pressures, pH, or salt
concentrations in their natural habitats. Moreover, yeast cells accumulate potassium from rela-
tively dilute solutions to sustain a cytosolic K* concentration within the range of approximately
175-300 mM to counterbalance the intracellular high negative charge from proteins as well as
inorganic and organic negatively charged polyanions [6,12].

Table 1. Overview of transmembrane ion transporters and channels.

Name

Trk1,2
Tok1
Nsc1
Enai
Nha1
Pma1
Pho89

doi:10.1371/journal.pcbi.1004703.t001

Type
Uniporter
Channel
Channel
ATPase
Antiporter
ATPase
Symporter

Substrate specificity
K* (Rb*)

K+

unspecific

Na*, Li* (K*, Rb*)
Na*, K* (Li*, Rb*), H*
H+

Pi (Na*, K*)

Main function
K*—uptake
K*—extrusion
Function unknown
Detoxification
Na*-, K*-Extrusion
H*-Extrusion
Phosphate uptake
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Besides supporting a stable and balanced intracellular cation content, monovalent cation
transport is also required for other physiological functions such as maintenance of the cell vol-
ume and internal pH, the membrane potential, protein synthesis, and enzyme activation [13-
15]. To ensure viability even under adverse external environmental conditions yeast has
evolved several response systems to saline, osmotic and alkaline pH stress [12,16,17]. To main-
tain an optimum cytoplasmic pH of about 6.5 and a stable balanced intracellular sodium/potas-
sium ratio yeast cells invest high amounts of biological energy through ATP hydrolysis and
employ three distinct strategies [5]: i) strict discrimination between alkali metal cations at the
level of influx (e.g. higher affinity of transporters for potassium than for sodium), ii) proper dis-
posal of toxic cations and iii) selective sequestration of cations in organelles. Eight transport
proteins relevant to the regulation and maintenance of intracellular alkali-metal cation content
are well characterized (see Table 1). Comprehensive reviews detail further specifics and mecha-
nisms, regulatory elements and the "long-term" regulation processes by transcription [5,6,12].

The paper is organized as follows: We first introduce a general thermodynamic concept for
the description and analysis of cellular cation fluxes and concentrations. Second, we assign spe-
cific parameters, which were obtained from experiments with starved yeast cells. We then use
the experimental data for parameter estimation and present model simulations predictive for
scenarios not used for parameterization.

The underlying experimental scenario is as follows: Yeast cells are starved overnight in
water to lose all mobile nutrients and cations. Fluxes are measured from time 0. At time 300 s
the cells are exposed to defined concentrations of KCI (0.01-10 mM). At time 600 s, glucose is
added. Potassium and proton fluxes are measured with specific electrodes via the MIFE
method (see Materials and Methods).

Results
Thermodynamic derivation of flux calculations

Our description of ion fluxes and their mutual dependencies is based on the concepts of Non-
Equilibrium Thermodynamics (NET). Since decades various theories and mathematical
descriptions of active and passive transport executed by transmembrane proteins have been
developed. These approaches are as different as complex and have already been extensively
published [18-22] to mention just a few of them. The classical studies of ion fluxes (e.g. on
nerves) have mainly focused on the measurement of the relation between currents and voltage
and on the modeling of fluxes caused by combination of single transport systems [23-28]. Typ-
ically, every channel or transporter is described with an expression for its current as a function
of the membrane potential and the actual concentration of the respective ion. These rate
expressions are based on the assumption of linear force-flux relationships, yielding, however,
non-linear relations between ion concentrations and ion fluxes.

When modeling the behavior of living cells, the selective description of individual channels/
transporters carries the risk of overlooking other ion transport processes by transporters that
are not yet characterized or known transporters that have additional functions (e.g. non-spe-
cific transport) or membrane leakage. Thus, understanding the system’s behavior requires the
integrative investigation of all transport processes, in addition to exploring individual trans-
porters. Many features change simultaneously and should be integrated into a global model in
order to obtain a comprehensive picture of the underlying physical processes. This includes
transient pH, enzyme activities, cytosolic buffer capacities, chemical reactions, and changes in
membrane potential or concentrations of other important ions. However, due to the complex-
ity of the problem and the sparseness of data, typical kinetic network models that describe
every reaction and transport step in detail are not yet feasible.
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The concept of Non-Equilibrium Thermodynamics, deployed to derive individual transport
expressions, provides also a theoretical background to correlate driving forces and the resulting
fluxes in cellular systems in a formal manner independent of specific kinetic or statistical mod-
els. The relevant forces are the differences in the electrochemical potential of the cations and
reaction affinities of biochemical reactions. Fluxes are the resulting fluxes of cations in or out
of the cell and the rates of biochemical reactions, respectively. All these irreversible processes
lead to a production of entropy. The entropy production for a cellular system can be character-
ized by the entropy production density [29,30]

— 1 f — n; s ,Ai
0= ]Qgrad(?> - ; ]{grad(?) + ;], T (1)

N
where o denotes the local entropy production density, T is the temperature, ] , is the heat flow

density, T{ is the diffusion density of component i, 7; is the electrochemical potential of com-
ponent i, J! is the rate of reaction i, A; is the affinity of reaction i, and nrand #, are the numbers
of compounds and reactions, respectively.

The various flows and forces are not independent of each other. A temperature gradient
could, for example, induce the diffusion flux of a chemical compound besides the heat flux.
Due to the constant temperature in the considered experiments, we can disregard temperature
gradients and heat flux in the following reasoning. We take generalized forces as X;. The fluxes
are in general non-linear functions of these forces. However, at equilibrium all forces and fluxes
vanish. Only in vicinity to equilibrium we can express the fluxes as linear combinations of all
forces, based on a Taylor expansion until first order terms as follows:

. ngtn, 8] ngtn,
B'= 2 5% = 21X @)
j j=1

j=

The partial derivatives of the fluxes with respect to the forces are called phenomenological
coefficients and will be denoted with L;;. The L;; are referred to as the "straight coefficients"
since they relate the flow J; to its conjugate driving force X, in the analogy with either Ohm's or
Fick’s laws. The "cross coefficients" L, with j # i, reflect to which extent the flux of species i is
affected by the non-conjugate forces, Xj, in the system. The phenomenological coefficients
have to fulfill a number of conditions. Since in the absence of other forces, a single force
induces a positive conjugate flux, it holds:

L, >0 (for alli) (3)

The fact that the dissipation function is positive implies further that

Lij = Lji7 (4)

which is also known as “Onsager’s reciprocity relation” [31,32], and that

Det[L,] > 0. (5)

In the following we specify the relevant forces and fluxes for ion transport and biochemical
reactions in the considered experiments. In general, these phenomenological coefficients com-
bine kinetic parameters and transport coefficients and are functions of the parameters of the
system but are independent of the flows and forces. Once determined from experimental data
they provide an informative basis on the control exerted by the coupled fluxes. Specifically
interesting for the maintenance of the intracellular cation concentration is the thermodynamic
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c c i
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c G Cha C F .
é + LArK lné + LArNa lncal + LArCl In f) + ?A(P(LArH + LArK + LArNa - LArCl) + LArAr T

coupling of the individual fluxes. This enables that a flux may occur without or even against its
conjugate thermodynamic driving force, which may be a gradient of the electrochemical poten-
tial or reaction affinity.

For the cellular response of starved yeast cells to the addition of KCl and glucose we consid-
ered the forces resulting from the electrochemical gradients of protons, K*, Na*, Cl’, denoted
as grad 1y, grad nk, grad 7., and grad 7¢, respectively, as well as the affinity A4, of the reac-
tions converting ATP into ADP or reverse. The conjugated fluxes are the fluxes of protons, Ji,
potassium, J, sodium, J,, and chloride, ]}, as well as the conversion of ATP to ADP or back,
Jar- This resulted in the following phenomenological equation system:

HNagrad( ) — Lyggrad (nCI> LHAr%

Ju = —Lyygrad <’1TH) - LHKgrad( )

Jx = —Lygrad (%I) - LKKgrad( )

Jno = —Lyungrad (17?}1) Ly xgrad (17?) — Ly, 8rad (n;a) — Ly,qgrad (%) + Lyaar AT (6)
) -

Ma n A
ClNagrad( ;) — Lygrad (TCI) + LClAr T

Lyna8r ad( ) Kclgrad( T ) + Lya AT

Ja = —Lgpugrad (n?H) - LclKgrad<

J, = —L,grad (”%) — L, cgrad (?K) — L, n.grad (%) — L, qgrad (%) + Ly %

Next, we replaced the electrochemical potentials with the expression
n, =i +RTInc, +z,Fp (i € {H,K,Na,Cl}) (7)

with ¢; being the ion concentrations and z; being their charge number, F is Faraday‘s constant
and ¢ is the membrane potential.

Since we assume homogeneity of concentrations inside and outside of the cell, the gradient
of n; refers to the derivative of 7; with respect to the spatial direction normal to the cell surface.

« »

We approximated it with the difference of 7; between cellular environment (out, “0”) and cyto-
plasm (in, “”), i.e. Ay, = #° — ..
Combined, these considerations resulted in the following equation system:
i i i AAr
HAr T
AAr
KAr T

K Na Cl

i

Na

i

Ay

c c c c F
C_‘? + LNaK In C_f + LNaNa In CTNa + LNaCl In CTCI) + ? A¢(LNaH + LNaK + LNaNa - LNaCl) + LNaAr Tr (8)

H

K Na Cl
i i i

AAr
ClAr T

Ay

K Na Cl

i

Na Cl

The fluxes are considered as outward directed, i.e. J, = J/""and membrane potential differ-
ence is Ag = ¢’ — ¢°.
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Internal and external concentration changes. The resulting internal and external concen-
tration changes of the ions were calculated as:

d ,  Jy-Surf d,  Jy-Surf

ar v, amT T,

d , _Jx-Surf d ; _ J-Surf

v, a* v,

d, _heSuf o, hyoSuf ©
a™"v, a™ T,

d , _Jo-Surf d ; _ Ju-Suf

e v anT Ty,

where Surfis the cellular surface, (V;,) is the internal volume added up over all cells of the sys-
tem, and (V,,,,) is the volume of the extracellular compartment.

We followed this general description of concentration changes with two exceptions account-
ing for the specific experimental conditions. First, we assumed that the internal pH is buffered
and the internal proton concentration changes with the proton flux as follows:

g (10)

In principle, Bf is a function depending on the pH, but it can be approximated by a constant
for a wide range of intracellular pH values. This modification is equivalent to the proton buffer-
ing function as introduced before [8,33].

Second, the change of the ATP concentration c4rp was calculated using the following equa-

tion:

d

dr Carp = Katping — Katpdeer * Cate (11)

where katpiner and karpgecr are kinetic constants. karpgecr Was calculated based on the value of
kaTpiner and the assumed maximal value of ATP after stimulation, ATPg;,,u1us aS KATPdecr =
katpiner | ATPqimus. Since cells have been starved before the beginning of the experiment, we
set karpincr to 0 before glucose addition and estimated its value from the experimental data
after the glucose pulse.
The reaction affinity is
Ay = —R—T (Carp — Carp) (1 + Keq) (12)

Carp
with ¢ 1, the equilibrium concentration of ATP, K., the equilibrium constant of the reaction
and R being the gas constant (for a detailed derivation see [34]).

We also considered that ATPases change their substrate affinity after glucose addition
[35,36] and thus allowed for a change of the values of the respective phenomenological

coefficients.
As an example, a change in the coefficient for ATP driven H* export was calculated as
d
aLHAr = kincrHAr - kdecrHAr ’ LHAr (13)

with Kinerizar and kgecrmar being the parameters for the increase and the decrease of the value
for Lizar. Kdecrtiar Was calculated based on the value of ki, 114 and an estimated maximal value
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of Lyar Luarag, BY kdecriar = Kinertiar / Luarag- The coefficients Ly, Lxk, and L a, were calcu-
lated accordingly.

Finally, the dynamics of the membrane potential have been calculated from the relevant ion
fluxes as follows

d 2F
aAq’: _C_m(IH +]K+]Na_]cl) (14)

with C,, being the membrane capacitance [37]. The set of Eqs (7-14) constitutes the general
thermodynamic model for the fluxes of protons, sodium, potassium, and chloride in the pres-
ence of hydrolysable ATP.

Connection between phenomenological coefficients and individual membrane transport
proteins. The approach applied here aims to construct a model truly representing ion fluxes
without modeling each transporter in full detail. Therefore, the phenomenological coefficients
present lumped contributions of different active and passive transport processes as well as leak-
age. The set of known active transporters or channels related to the considered coefficients are
listed in Table 2. We also briefly summarize the known function of the various transporters to
guide the potential interpretation of the parameter estimation and simulation results presented
below.

- Proton transport appears to be strictly coupled to transport of K, Na*, or Cl or to ATP
consumption. The respective proteins are Nhalp, Trk1,2p, a potential H*/Cl" symporter
and the Pmalp. Beyond leakage no specific proton channel is identified yet.

- Transport of Na* and CI is only coupled to H transport, presumably via Nhalp, a
potential H*/Cl” symporter.

- The active sodium transporter Enal is only expressed to relevant amounts upon salt or
pH stress, but not under our experimental conditions [6], thus no Na™/ATP coupling was
considered.

- K transport can occur independently via Toklp or coupled to proton transport via
Nhalp and possibly Trk1,2p. There is no K*-ATPase for yeast systems reported in the
literature.

By estimating the phenomenological coefficients using experimental data, knowledge can be
gained about the individual transporters contributing to them.

Table 2. Assignment of phenomenological coefficients to their realizing transporters.

Phenomenological Coefficients Potential contribution of the transporters
Lyn Pmaip, Trk1/2p, Nha1p, Leakage

Lk Nhaip, Trk1/2p (if H*/K* symport)

LiNa Nhaip, Trk1/2p (if H*/Na* symport)

Lyar Pmaip

Lyc H*/CI" symporter

Lkx Tok1p, Trk1/2p, Pho89p, Nsc1p, Leakage
Lkar Inward directed K*-ATPase

LnaNa Trk1/2p, Pho89p, Nsc1p, Leakage

Lcici CI" -leakage, Trk1/2p, H*/CI'-symporter

doi:10.1371/journal.pcbi.1004703.t002
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Simulation results

The generalized thermodynamic description was developed for the complex interaction of spe-
cific cation plasma membrane transporters, the membrane potential, and the consumption of
energy for maintaining and restoring the respective intracellular cation concentrations based
on the theory of NET. The model was then challenged with experimental data representing
independent measurements of potassium and proton fluxes (Fig 2A) in S. cerevisiae wild type
strains after treatment with four different concentrations of KCl followed by addition of glu-
cose (S1 Data). The phenomenological coefficients were estimated to define the degree of cou-
pling between the considered ion fluxes as well as the rate of ATP/ADP conversion. The
dynamics of the phenomenological coefficients as well as a basic sensitivity analysis can be
found in the S1 Text.

Jy;0.01 mM

= J,0.01 mM (exp)

Jy 0.1 mM

= J,;0.1 mM (exp)

Jy1 mM

= Jy1mM (exp)

Jy 10 mM

= J,10 mM (exp)
J 0.01 mM

-1.0 / / Jy 0.01 mM (exp)

J 0.1 mM

= J0.1 mM (exp)

Je 1 mM

" Jg 1 mM (exp)

Ji 10 mM

-2.0 . . . - ; ! ! = J, 10 mM (exp)

0 200 400 600 800 1000 1200 1400

KCI glucose

Flux (10 mol m2 s-1)

—

-1.5

Time (s)

[

0.04 —
0.01 mM

\ 0.1 mM

000 . =1mM
' ——10mM

0.08

Ap (V)

_0-04 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
Time (s)
Fig 2. Simulations using model M1 with parameter set P1. Data resulting from microelectrode ion flux measurements (MIFE) of potassium fluxes (green)
and proton fluxes (blue) in the S. cerevisiae wild-type strain PLY232 [43] due to four different stimuli with KCI (0.01 mM, 0.1 mM, 1 mM, 10 mM) at time 300 s

followed by addition of glucose at time 600 s (S1 Data). Simulations were performed using the model with parameter set P1. a) Presentation of the best fit
(solid lines) and the experimental data (squares), b) prediction of the membrane potential.

doi:10.1371/journal.pcbi.1004703.9002
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Table 3. Initial concentrations, global quantities and volumes, and estimated parameters for P1. Estimated model parameters for stress with 4 differ-
ent concentrations of KCI. All other Ls could be set to 0 without affecting the goodness of fit.

Global quantities and volumes
Vi

Vout

v

F

Surf (of all cells)
Proton buffer capacity (pbc)
Conversion factor (cf)
K

Carp

Ag

Initial conditions
Hout

Kout

Clout

ATP

ATPstimutus

KClstimutus

pHin

Ki

Cl;

Naj,

Nagyt
Phenomenological and stoichiometric coefficients
LHHinit

LnHac

LHNa

Lnarac

Ly

LKKinit

Lkkaa

Lkarag

LNaNa

Leici

kianH

kincrHAr

kinchK

kinchAr

K ATPincr

doi:10.1371/journal.pchi.1004703.t003

Value

1.8-107"" m?3
2.85-10°m?

296 K

96,485 C/mol

2.29 - 107° m?
200mM pH

1000 mM/M
0.01136

0.07255 mM
0.0742 V

Values

3.162 1072

0.1 mM

0.1 mM

2.303 mM

2.5 mM
0.01,0.1,1, 10 mM
5.528

90.39 mM

8.217 mM

5.778 mM

0.0863 mM
Parameter values
2.64 - 107 mol?/(J-
2.68 - 107 mol?/(J-

-1.03 - 107 mol?/(J- m? -

m? .
m? -

4.09 - 107"° mol?/(J- m® - s)

1.33 - 107° mol?/(J-

m? -

s)

4.05 - 10722 mol?/(J- m? - s)

2.91-10™* mol?/(J-

-1.26 - 10™* mol?/(J- m? -

8.74 - 107° mol?/(J-
3.49 - 10" mol%/(J-
3.51- 107" mol%/(J-
2.39 - 107° mol?/(J-
5.15 - 107° mol?/(J-

-9.93 - 107"° mol?/(J- m? - s?)

0.0991 mol/(m?® - s)

m2 .
2

m- -

m? .
m? .
m2
m2

Source

Calculation

Exp. Condition

Exp. Condition

Faraday constant
Calculation

Experimental observation

estimated

estimated

estimated

Source

Exp. condition (pH 5.5)

Exp. condition

Exp. condition

estimated between 0 and 2.5 mM
Ozalp et al. [65]

Exp. condition

estimated between 5 and 7
estimated between 60 and 100 mM
estimated between 0.1 and 10 mM
estimated between 5 and 30 mM
estimated between 0.01 and 0.1 mM
Source

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

Below we discuss two model variants and their biological interpretation.

Model M1: Model with K*-importing ATPase. In a first step the model was fitted to the
data by including all phenomenological coefficients listed in Table 2 and restricting them by
Egs. 3-5. Parameter set P1 (see Table 3) reproducing the data best favors an ATP-driven K*-
import, indicating the existence of a K"-ATPase. This model showed the best—in the sense of
being closest to the data—result (Fig 2A). However, it was assumed to be artificial since first,
the membrane potential obtained positive values after glucose addition (Fig 2B) and second the
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K" influx and H* efflux would be completely independent of the proton-pumping ATPase
Pmal. Instead, H" would be driven out of the cell depending on the preceding active transport
of K" into the cells. Furthermore, a K*-importing ATPase has not yet been identified in the
plasma membrane of S. cerevisiae. Although the existence of such an ATPase cannot
completely be ruled out, we disregard the mechanism resulting from those model parameters.
For more information regarding phenomenological coefficients and ATPases see [38-40]

Model M2: Model without K*-ATPase. Thereupon the model was fitted with the addi-
tional restriction that no K™-ATPase exists (Lxa, = 0). The fitting procedure resulted in differ-
ent parameter sets giving an equally good fit. In the following, the two best parameter sets,
named P2a and P2b, will be described and analyzed. The resulting best fit is shown in Fig 3 pro-
duced with parameter set P2a. The fluxes for potassium and protons obtained for the lower
added KCl concentrations can be reproduced reasonably well, only the peak at the highest KCI
concentration could not be captured appropriately (Fig 3(A) and 3(B)).

The model was used to simulate the flux of Na” and Cl™. At the applied initial conditions
(internal Na* concentration lower than 30 mM) no Na™ fluxes could be obtained by the model.
This is a reasonable result since with such marginal internal and external Na*-concentrations,
Na™-fluxes are not to be expected. Instead, the model predicted an influx of Cl™ ions, which
was maximally pronounced at KCI stimuli of 10 mM (see Fig 3(C)).

To validate the existence of chloride fluxes, a series of experiments using a chloride-sensitive
electrode was evaluated. As apparent in Fig 3(D) a considerable influx of Cl™ ions can indeed
be detected in all four experiments. In addition, the fluxes show the same qualitative behavior
as the model predictions but with even higher values, especially for 10 mM.

In simulations using model M2 the membrane potential decreased after glucose addition
(shown in Fig 4(E) and 4(F)). This can be initially expected after H" is being pumped out of the
cell. Furthermore, model M2 is in agreement with the general assumption that K* enters yeast
cells following an activation of the H"-ATPase by glucose.

Since the simulations from model M2 appeared to better represent the biological reality we
continued using this model for further analyses.

Interpretation of phenomenological coefficients in relation to known transporters and
directions. The transport processes and reactions characterized by the phenomenological
coefficients can be related to the transport proteins and enzymes known for yeast cells. They
are listed in Table 2.

The best parameter estimation results from model M2 were analyzed in more detail.

Tables 4 and 5 contain the values for the two sets of estimated parameters and initial condi-
tions that gave the best result. The general model structure, biophysical constants and concen-
tration values taken from literature were the same for both parameter sets; however, they
differed in both the estimated parameters and initial conditions. The following section dis-
cusses the differences in the phenomenological coefficients.

The most prominent phenomenological coefficients before glucose are Lyy, Lizci, Lkks
Lecicy, and Lyg. The first four parameters are unambiguous in the two sets. Lk, however,
exhibits a small negative value in one parameter set, further referred to as P2a, and its deletion

does not affect the goodness of fit. In the other parameter set referred to as P2b, it holds a larger
positive value, and appears to be of higher relevance.

The most prominent phenomenological coefficients after glucose addition are Ly and
Lisar» where the latter can be associated with a change in activity of the Pmal. In P2a the K*
flux after glucose is mainly passive via Lxy, whereas the high Lk value in P2b indicates cou-
pling with H*.

It is of note that the data set used here was obtained for the specific condition of starved
cells stimulated with mild KCl concentrations. Thus, we don’t want to exclude the possibility
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Fig 3. Experimental data and simulation using model 2 with parameter set P2a. The model was used to reproduce the H" and K* flux data from MIFE
experiments. It predicted the existence of CI fluxes, which were verified in subsequent experiments. (a) Simulation of H* and K* fluxes during four different
in-silico experiments with addition of KCI (0.01 mM, 0.1 mM, 1 mM, 10 mM) at 300 s followed by glucose addition at 660 s. (b) Experimental data (MIFE) used
for fitting the model. (c) Predicted CI” fluxes during the four simulations. (d) Experimental validation of the existence of CI" fluxes. Here, KCI (0.01 mM, 0.1 mM,
1 mM, 10 mM) was added at 180 s followed by glucose addition at 300 s. The K* flux is labeled in green, H* flux in blue and CI" flux in red. Darker colors
represent higher KCI concentrations used for the KCI stimulus.

doi:10.1371/journal.pcbi.1004703.9003

that the other phenomenological couplings can be of strong importance under different

conditions.

What drives potassium transport through Trk1,2? The TRK transporters comprise four
MPM motifs and evolved by gene duplication and fusion of molecular structures that were
originally K™ channels. In terms of function it is currently not clear whether Trk1,2 acts as uni-
porter or cotransports K™ together with other ions, e.g. H*. The parameter estimation pre-
sented above resulted in two alternative parameter sets with either low (P2a) or high (P2b)
values of Lyk. A high value of Ly indicates that transport of K™ is directly coupled to H*, e.g.
via symport or antiport. On the contrary, if Ly is low, H' could only affect K" indirectly via
the membrane potential. Since both P2a and P2b resulted in an equally good fit, the present
data alone did not allow us to decide, which scenario is more likely. Therefore, we performed

additional analyses.
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Fig 4. Analysis of individual forces. Separation of Jk into a K* (green) and a H* (blue) dependent part for simulations with parameter sets a) P2a and b)
P2b. c) Separation of Jx into a chemical (green) and an electrical (blue) potential dependent part with parameter set P2a. d) Ratio of the electrical and the
chemical potential dependent part of Jx with P2a. Simulation of the membrane potential with parameter sets e) P2a and f) P2b.

doi:10.1371/journal.pcbi.1004703.9004
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Table 4. Initial concentrations, global quantities and volumes, and estimated parameters for P2a. Estimated model parameters for stress with 4 differ-
ent concentrations of KCI. All other Ls could be set to 0 without affecting the goodness of fit.

Global quantities and volumes
Vi
Vout
v
F
Surf (of all cells)
Proton buffer capacity (pbc)
Conversion factor (cf)
K
Carp
Agp
Initial conditions
Hout
Kout
Clout
ATP
ATPstimutus
KClstimutus
pHin
Ki
Cl;
Naj,
Nagyt
Phenomenological and stoichiometric coefficients
LHHinit
LuHac
LHNa
Lnarac
Ly
LKK
LNaNa
Leici
kinc:HH
kincrHAr

kAT Pincr

doi:10.1371/journal.pcbi.1004703.t004

Value
1.8-107"" m?

2.85

107 m?®

296 K
96,485 C/mol

2.29

-107° m?

200 mM pH
1000 mM/M
1.107°
0.316 mM
-0.168 V
Values
3.162 1072
0.1 mM

0.1 mM
2.477 mM
2.5 mM

0.01,

0.1,1,10 mM

5.514

75.54 mM
0.545 mM
29.98 mM

0.01

mM

Parameter values

4.8 -
5.62

-1.9.

5.79

3.84 -
1.88 -
8.98 -

3.08

1.05 -
1.08 -

1077 mol?/(J- m? - s)
-107" mol?/(J- m? - s)
1072 mol?/(J- m? - s)
.10 mol#/(J- m? - s)
10~ mol/(J- m? - s)
1078 mol?/(J- m? - s)
107" mol?/(J- m? - )
=107 mol?/(J- m? - s)
107 mol?/(J- m? - s?)
107 mol?/(J: m? - s?)

10 mol/(m3 - s)

Source

Calculation

Exp. condition

Exp. condition

Faraday constant
Calculation

Experimental observation

estimated

estimated

estimated

Source

Exp. condition (pH 5.5)

Exp. condition

Exp. condition

estimated between 0 and 2.5 mM
Ozalp et al. [65]

Exp. condition

estimated between 5 and 7
estimated between 60 and 100 mM
estimated between 0.1 and 10 mM
estimated between 5 and 30 mM
estimated between 0.01 and 0.1 mM
Source

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

We use the parameter sets P2a and P2b to dissect the contribution of the chemical potentials
of K" and H" and the electrical potential to K*-flux.

First, the net flux Jx was separated into the influence due to the electrochemical potentials of
the different ions. Since in the model only coupling between K* and H* was considered, Jx is
composed of an H'-dependent part

) = L

¢ F
RinH2 4+ A
"o T "’)

H
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Table 5. Initial concentrations, global quantities and volumes, and estimated parameters for P2b. Estimated model parameters for stress with 4 differ-
ent concentrations of KCI. All other Ls could be set to 0 without affecting the goodness of fit.

Global quantities and volumes
Vi
Vout
T
F
Surf (of all cells)
Proton buffer capacity (pbc)
Conversion factor (cf)
K
Carp
Ag
Initial conditions
Hout
Kout
Clout
ATP
ATPstimutus
KClstimutus
pHin
Ki
Cl;
Naj,
Nagyt
Phenomenological and stoichiometric coefficients
LHHinit
LnHac
LHK
Lnarac
Ly
LKK
Leici
kincrHH
kincrHAr

kATPincr

doi:10.1371/journal.pcbi.1004703.t005

Value

1.8-107" m®
2.85-10°m?

296 K

96,485 C/mol

2.29 . 107° m?

200 mM pH

1000 mM/M

0.294

0.298 mM

-0.124 V

Values

3.162 1072

0.1 mM

0.1 mM

2.384 mM

2.5 mM

0.01,0.1,1, 10 mM
5.34

99.9 mM

0.366 mM

14.34 mM

0.088 mM

Parameter values
6.54 - 1078 mol?/(J- m? -
2.39 - 10™* mol?/(J- m? -
9.79 - 107° mol?/(J- m? -
1.22 - 107 mol?/(J- m? -
4.51-1078 mol?/(J- m? .
2.2-1078 mol?/(J- m? - s)
3.34 - 108 mol?/(J- m? - s)
1.63 - 107" mol?/(J- m? - %)
8.32 - 102 mol%/(J- m? - s?)
0.018 mol/(m® - s)

»n on

n on

(2
—_— — — — —

and a K"-dependent part

¢, F
]K(K) = Ly (Rlncg + TAq))

with Jx = Jx(H) + Jk(K).
Fig 4(A) shows Jx(H) and Jx(K) for P2a. It can be seen that in this case Jx is exclusively
dependent on its own electrochemical potential. It is coupled to gradients of H* only via the
membrane potential and not directly via effects such as symport or antiport. Using P2b (Fig 4
(B)) and therefore predicting a K*/H" symporter the absolute forces due to K™ and H gradi-
ents are roughly equal to each other before the KCI stimulus and also more or less after,
although with different intensities depending on the strength of the KCI stimuli. After glucose
addition, the shape of the K™ dependent part is similar to that shown in Fig 4(A), but much

Source

Calculation

Exp. condition

Exp. condition

Faraday constant
Calculation

Experimental observation

estimated

estimated

estimated

Source

Exp. condition (pH 5.5)

Exp. condition

Exp. condition

estimated between 0 and 2.5 mM
Ozalp et al. [65],

Exp. condition

estimated between 5 and 7
estimated between 60 and 100 mM
estimated between 0.1 and 10 mM
estimated between 5 and 30 mM
estimated between 0.01 and 0.1 mM
Source

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated

estimated
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lower and would even result in K™-efflux. A higher and positive Lyk suggesting coupling to the
H" gradient by H'/K" symport is necessary to explain the K*-fluxes observed in the experi-
ment. The flux due to H" gradient stays constant over time, whereas the flux due to K* gradient
decreases over time again. The closer the absolute values of K™~ and H"-dependent fluxes, the
lower is the net flux Jx (for comparison see Fig 3).

Next, the dependency of Jx on the forces due to the chemical potential (CP) and the electri-
cal potential (EP) of the ions were analyzed by separating the net flux into a part depending on
the chemical potentials

J.(CP) = R (LKH I 4 L In C—K>
oh [

K

and a part depending on the electrical potentials
F
J(EP) = (Lyy + L) ?A‘P

with J, = J(CP) + J, (EP).

Although the models using P2a and P2b show distinct ion dependency, they exhibit a simi-
lar dependency on the chemical and the electrical potentials. Fig 4(C) shows Jx(CP) and Jx(EP)
and Fig 4(D) the quotient Jx(EP)/Jx(CP). Before and after the KCI stimulus, the positive
Jx(CP) and the negative Jx(EP) balance each other resulting in a Jx net flux close to zero (see
Fig 3). After the addition of glucose K*-efflux driven by the chemical potential is slowly
increasing but influx due to the electrical potential is dominating. Directly after the addition of
10 mM KCl and glucose, approximately 3.5 times more K is imported driven by the electrical
potential than exported due to chemical potential. This results in a net influx of K*. During the
long run, the absolute values of Jx(CP) and Jx(EP) approach each other and, thereby, move
towards a new steady state. Fig 4(E) and 4(F) show predictions of the membrane potential
using P2a and P2b, respectively. In case of P2a (only K*-dependent K*-transport) the mem-
brane potential would possess a lower value and changes after addition of KCl and glucose
would be more extreme.

Prediction of the effect of multiple KCI stimuli with the model. We further tested
whether and how the yeast cells respond to successive salt stresses. To simulate this case in sil-
ico P2a was used to predict the effect of a second KCl stimulus of 10 mM at time point 1000 s.
The resulting time courses for the H" and K™ fluxes are presented in Fig 5. Under all tested con-
ditions (the four different KCl concentrations for the primary stimulus) the model responded
to the second KCl stimulus. Although the second KCl stimulus was 10 mM in all experiments,
different primary KClI stimuli caused different responses to the second stimulus. Higher initial
KCl stimuli led to higher fluxes after glucose addition and to lower fluxes after the second KCl
stimulus. At the two highest KCI stimuli a transient H* influx was observed shortly after the
second KCl addition.

Discussion

We introduced a general thermodynamic model for the regulation of ion fluxes through the
yeast cellular membrane. This model is based on the acting forces—the electrochemical poten-
tials of the ions—and their interrelations. Using a linear approach we expressed the resulting
fluxes without taking into account precise knowledge about the involved channels and
transporters.

We restricted the model in its application here to the fluxes of the major cations H, K¥,
Na" and of the anion CI, the conversion of ATP to ADP as an active driving force, the
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Fig 5. Prediction of second KCI stimulus. Model M2 with parameter set P2a was used to predict the reaction of the system to a second KCI stimulus
following the glucose stimulus. As first stimulus the KCI concentrations 0.01, 0.1, 1 and 10 mM were used, in consistency with the data used for model fitting.
The second stimulus was modeled as additional 10 mM KCl in all cases. The K* flux is labeled in green, H* flux in blue. Darker colors represent higher KCI
concentrations used for the first KCl stimulus (applied to the system prior to time point 0). Glucose was added in this experiment at time point 660 s, the
second KCl stimulus was at 1000 s.

doi:10.1371/journal.pcbi.1004703.9005

calculation of the internal pH as well as the change in the membrane potential. This was based
on the specific experimental scenario analyzed here. Such conditions enable to measure fluxes
of protons, potassium, and chloride. However, the theoretical approach presented here should
also be applicable to more complex situations with further ions involved. The systematic ther-
modynamic formulation of the major components contributing to the maintenance of a stable
intracellular cation content may become well suited for the purpose of modeling this complex
system, particularly at the current early stage of understanding.

An approach used by others [8,23,41] is to model each transporter or channel separately in
great detail. We refrained from doing so due to the unavailability of suitable data that describe
the contribution of each individual component to measured overall fluxes. Furthermore,
detailed modeling of individual transport reactions increases the complexity of the model and
a massive amount of parameters must be estimated or taken from sources in which the experi-
mental conditions might not be comparable with those conditions used here.

The entirely phenomenological approach applied here does not depend on a detailed under-
standing and description of structure, function, molecular details, or kinetic parameters of indi-
vidual constituent as parts of the system. Instead, a level of complexity was chosen which is in
accordance with the availability of data for net ion flux measurements obtained under physio-
logically relevant conditions.

By identification of the generalized forces that are responsible for the flux of a given ion, the
model is able to assist reinterpreting classical findings on ion flux propagation and provides
directions for further efforts aimed at defining transport processes at the molecular level.

The results of the simulations are in good agreement with the experimental observations
and the theoretical predictions achieved for the values of the phenomenological coefficients are
reasonable from the biological point of view.
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For example, the predicted and validated Cl influx in addition to the H" efflux and K*
influx is a reasonable feature from the biological perspective. Since the proton eftflux does not
reach the same magnitude as the potassium influx, electroneutrality must be ensured by
another charged ion. Due to the nature of the experiment (addition of potassium chloride),
chloride is available and its influx can compensate the flow of charges by potassium.

The chloride flux is likely to affect the membrane potential and, as predicted by the model,
counteract the excess of charge, which would normally build up caused by the asymmetry of
the H" and K". At the applied experimental conditions, no Na* fluxes were obtained during
the simulation. However, it is also possible that other ions can affect the membrane potential,
which are not yet included in the model (e.g. bicarbonate [8] and phosphate [42]) and for
which no experimental data were available under the present conditions. As a future perspec-
tive, it could be very interesting to consider e.g. recent work on the two main high-affinity
phosphate transporters, Pho84 and Pho89 [43,44] for further improvement of the model.

In any case the model is still amenable to development in view of a more comprehensive
picture of cation homeostasis. Perspectives and weaknesses of the approach will be discussed as
follows.

First of all, the restriction set on the system is that it acts close to equilibrium, which is a pre-
requisite for the linear approach to hold, and thus that fluctuations are insignificant. This
implies certain limitations on the processes. If the gradients of the intensive parameters within
the system are large it might not satisty these requirements. The range of applicability of this
theory cannot be specified on a priori grounds, and the justification of its use rests, eventually,
on the validity of the results obtained.

Furthermore, in the model the distribution of substances in the internal as well as the exter-
nal volume are assumed to be homogeneous. Although this assumption was used previously
[8,45,46], it might be useful to analyze the effect of spatial gradients in future models.

Some intracellular transporters have only recently been identified and characterized. These
comprise mainly alkali-metal cation/H"- antiporter, located in the vacuolar membrane (Vnx1),
[47] endosomal membrane (Nhx1) [48] and the Golgi apparatus membrane (Khal) [49].
These organellar systems also serve to regulate the intracellular K" — and pH-homeostasis and
may play an important role in detoxification of sodium by sequestration in the vacuole. For
these intracellular transport systems almost no time resolved biochemical transport data are
currently available and were thus not included in the presented model.

A description of the temporal behavior should in general also incorporate the rates of
changes of the cell volume due to effects on the intracellular osmolarity and changes of the per-
meabilities for the ions over time [50-53]. These terms would, in turn, simultaneously affect
the values of intracellular cation concentrations [50,54]. Here, the volume was assumed to
remain constant during the simulation. This is a reasonable assumption since the concentra-
tions used in the experiments are far below any critical value (experiments studying the
osmotic stress response via the activation of the Hog-pathway usually start with concentrations
of several hundreds of mM NaCl [55-57]) and already at 0.05 M the Hog activation is down to
a tenth of the maximum amplitude [58]. Therefore, it is highly unlikely that salt concentrations
lower than 0.01 M induce any significant osmotic or volume effects. On the other hand sub-
stantial progress has already been made in the field of modeling response to osmotic stress via
volume and turgor regulation in the yeast S. cerevisiae [59-61] and both models could highly
benefit by getting joined. For further and extended versions of the presented model, a com-
bined observation of the regulation of the osmotic response as well as the homeostasis of the
major cations Na", K™ and intracellular pH should be envisaged for a broader understanding.
As a second future perspective the model should also be validated with the support of proper
deletion mutants lacking specific transport systems. The impact of such mutant data would
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provide insights on the reliability of the model when it was confronted with actual
measurements.

Materials and Methods
MIFE

Data acquisition was performed by using monolayers of S. cerevisiae cells (grown in YNB-F
supplemented with 50 mM KCl till late-log phase, harvested by centrifugation and washed
twice with double-distilled water) immobilized on poly-L-lysine treated glass coverslips. Each
cover slip was placed in a total of 3 ml sample buffer volume in a Petri dish. After addition of
the specific concentration of KCl the cells were energized with glucose to enable generation of
ATP and thus the performance of secondary active transport mechanisms. Net fluxes of K*
and H" were measured non-invasively using the microelectrode ion flux measuring (MIFE;
University of Tasmania, Hobart, Australia) technique as described by Shabala et al. [62] [63]

Initial values and parameters

The surface of all cells, Surf and the inner volume, V;, were calculated from the detected optical
density (1.2 - 107 cells per ml OD 1) applied to achieve a cell monolayer and by assuming a sin-
gle cellular surface of 63,6 um” (based on a round cell with a diameter of 4.5 um) and a volume
of 50 fL according to [64]. The value for V. was obtained directly from the experimental
setup.

ATP was estimated to be between 0 and 2.5 mM ahead of the glucose addition. The available
ATP after the glucose stimulus was supposed to reach 2.5 mM, according to previous observa-
tions by [65], and described respectively in Eq 11. It was assumed that in the starved cells no
ATP is available for other than basic vital processes and that addition of glucose is necessary to
induce primary and secondary active transport mechanisms [35,36]. Accordingly, the parame-
ters L;a, (i € {H,K}) were initially set to 0. It was assumed that only those parameters directly
or indirectly involved in primary active transport L, (i € {H,K}) and L; (i € {H,K}) can
change after glucose and that the Onsager relation holds.

Time course simulation and parameter estimation

The model implementation, time course simulation and parameter estimation were performed
in COPASI [66]. COPASI comes with a set of implemented optimization methods, which can
be used to estimated parameters and initial conditions of mathematical models. Of the given
methods, the particle swarm optimization method gave the best results for the model at hand.
The particle swarm optimization method [67] imitates the behavior of a biological swarm (e.g.
a flock of birds) to iteratively optimize model parameters. Starting with given parameter values,
the method searches through the parameter space to find the optimal parameter set, i.e. the
parameter set which minimizes the error between the current model solution and the experi-
mental values. For this, each parameter set has a position and velocity in the parameter space
and also remembers its best-achieved value and position. Depending on its own information
and the position of its neighbors a new velocity is calculated and the parameters are updated.
More information about the implementation of the algorithm in COPASI can be found at
http://www.copasi.org.

To minimize the problem of being trapped in local minima, a Python script was imple-
mented to run the particle swarm algorithm 1000 times with random initial parameter values
as well as random upper and lower parameter bounds. For the estimation of the initial condi-
tions experimentally verified concentration ranges were used (see Tables 3-5). The “straight
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coefficients" L;; were allowed to be positive only, the “cross coefficients" L;; were allowed to be
either positive or negative. The options iteration limit 400, swarm size 40, standard deviation
le—6, random number generator Mersenne Twister [68] and random seed showed good results
at a reasonable duration. The best matching parameter sets of the 1000 runs were finally taken;
in case a parameter was located at a boundary, this boundary was extended by a factor of 100
and subsequent parameter estimation was performed. The time course simulation was solved
with the deterministic LSODA method [69].

Supporting Information

S1 Text. This file contains a description of the sensitivity analysis and of the behavior of
phenomenological coefficients over time.
(DOCX)

S1 Data. Data representing net fluxes of K" and H" measured non-invasively using the
microelectrode ion flux measuring (MIFE; University of Tasmania, Hobart, Australia)
technique as described in the section Materials and Methods. Fluxes have been measured
over time after addition of 10pM, 100puM, 1mM, or 10mM KCl to cells of S. cerevisiae.
(XLSX)
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