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Machine learning techniques have lately attracted a lot of attention for their

potential to execute expert-level clinical tasks, notably in the area of medical

image analysis. Chest radiography is one of the most often utilized diagnostic

imaging modalities in medical practice, and it necessitates timely coverage

regarding the presence of probable abnormalities and disease diagnoses in

the images. Computer-aided solutions for the identification of chest illness

using chest radiography are being developed in medical imaging research.

However, accurate localization and categorization of specific disorders in

chest X-ray images is still a challenging problem due to the complex nature

of radiographs, presence of di�erent distortions, high inter-class similarities,

and intra-class variations in abnormalities. In this work, we have presented

an Artificial Intelligence (AI)-enabled fully automated approach using an

end-to-end deep learning technique to improve the accuracy of thoracic

illness diagnosis. We proposed AI-CenterNet CXR, a customized CenterNet

model with an improved feature extraction network for the recognition of

multi-label chest diseases. The enhanced backbone computes deep key points

that improve the abnormality localization accuracy and, thus, overall disease

classification performance. Moreover, the proposed architecture is lightweight

and computationally e�cient in comparison to the original CenterNet model.

We have performed extensive experimentation to validate the e�ectiveness of

the proposed technique using the National Institutes of Health (NIH) Chest

X-ray dataset. Our method achieved an overall Area Under the Curve (AUC)

of 0.888 and an average IOU of 0.801 to detect and classify the eight types

of chest abnormalities. Both the qualitative and quantitative findings reveal

that the suggested approach outperforms the existing methods, indicating the

e�cacy of our approach.
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Introduction

The easier availability of multimedia content such as digital images and videos has

enhanced the growth of tasks performed in the field of computer vision (CV). The

well-known applications of CV involve object detection (1), object tracking (2), medical

image analysis (3–5), text analysis (6, 7), and video processing (8). The usage of CV
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approaches in the area of medical image analysis is assisting

the practitioners to perform their jobs quickly and accurately.

One of such applications is chest X-ray (CXR) analysis. The

CXR is the highest employed modality in the world to identify

several thoracic abnormalities such as pneumonia, COVID-19,

atelectasis, and lung nodule. The easier and more economic

behavior of CXR leads to significant medical inspections every

day (9). However, the manual examination of CXR is highly

reliant on the availability of domain specialists. Moreover,

the manual CXR study is a taunting and time-taking activity

accompanying high chances of wrong predictions. Whereas, the

automated CXR recognition system can fasten this process and

increase the accuracy of the system as well.

Chest abnormalities are the major reasons of deaths and

disability around the globe with about 65 million people

suffering from one disease or the other and 3 million demises

per year. Hence, timely identification of such diseases can save

the lives of patients and protect them from painful treatment

procedures (10). Therefore, to tackle the problems of manual

CXR inspection, the researchers have focused their attention to

present reliable automated solutions. Initially, the handcrafted

feature computation approaches were used for the classification

of several CXR abnormalities. Such methods are simple in

nature and can work well-with a small amount of data (11,

12). However, the handcrafted key points calculation methods

need extensive domain information and take huge time to

produce accurate results. Furthermore, there remains always a

trade-off between time complexity and classification results for

such techniques. The employment of huge key points enhances

the recognition power of these methods but at the cost of

the increased computational burden (12). The usage of small

key points causes increase in the efficiency of the hand-coded

approaches but results inmissing acquiring the significant aspect

of image modality which in turn decreases the classification

results. Due to such reasons, these methods are not found to be

proficient for the CXR analysis (13).

Now, the success of Artificial Intelligence (AI)-based

techniques in the automatic diagnosis of medical diseases is

astonishing. AI, when applied to the medical field, helps with

managing, diagnosing, and treating patients. This reduces the

stress of physicians and also serves as a helping hand to them.

It also helps on the administrative side by automating and

managing a large portion of the administrative burden (14).

Recently, the advancement of deep learning (DL) frameworks is

attracting the attention of the research community to use them

for digital image processing including the CXR examination

(15, 16). Numerous well-explored DL models such as CNN

(17) and Recurrent neural networks (RNNs) (18) are used

for segmentation and classification problems. This makes deep

learning a very powerful tool in healthcare, as most of the

work being done is categorized as either a classification or a

segmentation task. The empowerment of DL approaches has

made them highly suitable for medical image analysis as these

frameworks are capable of computing a more discriminative

set of key point vectors without the need for area specialists.

The CNN models are inspired by the working of human

brains to visualize and recall several objects. The well-known

CNN models i.e., VGG (19), ResNet (20), DenseNet (21), and

EfficientNet (22) are highly used for several image classification

tasks. Such methods can exhibit reliable performance with

minimum processing time (23–25). The main idea of using the

DL-based techniques for the medical image examination is that

these approaches are capable of computing the fundamental

information of the input samples and can deal with complex

image distortions such as intensity and color variations, noise,

blurring, and size changes.

Although existing techniques have acquired inspiring CXR

classification results; however, there is space for enhancement

both in terms of computational complexity and classification

accuracy. Hence, a more comprehensive investigation of

the existing traditional machine learning (ML) and DL

frameworks is required that can increase the CXR-related

disease classification performance. The major problem of ML

methods for the CXR abnormality classification is their low

effectiveness with increased computational time (26). The

power of DL approaches to resolve complicated real-world

issues is remarkable in comparison to human brain intellect.

While the DL approach resolves problems of ML techniques,

however, increased the model complexity as well. Hence, there

is a need for a more robust approach to the CXR-related

disease classification.

The timely and accurate classification of several CXR

diseases is a complex job due to the extensive similarities found

among different chest abnormalities. Besides, the incidence

of noise, blurring, light variation, and intensity changes

in the input samples further complicates the classification

procedure. To tackle the problems of existing methods, we

have presented a novel framework namely AI-CenterNet CXR

to detect and classify eight types of chest abnormalities. More

clearly, we have presented the DenseNet-41-based CenterNet

approach, where the key points from the input samples are

computed by using the DenseNet-41 model. The computed

features are later localized and classified by the one-stage

object detector of the CenterNet model. The experimental

results show that our technique is capable of discriminating

various types of chest diseases effectively under the presence

of different image distortions. The key contributions of our

work are:

• We proposed a novel AI-enabled framework namely AI-

CenterNet CXR with DenseNet-41 as a feature extractor to

enhance the identification and classification results of eight

types of chest abnormalities.

• The presented method is capable of accurately locating and

classifying the diseased portion from the X-ray samples

because of the effectiveness of the CenterNet technique.
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• We have improved the classification performance because

of the ability of the AI-CenterNet CXRmodel to better deal

with the model’s over-tuned training data.

• We have presented a computationally robust model to

classify several CXR abnormalities due to the one-stage

object detector framework of CenterNet.

• Huge evaluation is presented, and extensive

experimentation is performed against the latest approaches

for the CXR disease classification on a complex dataset

namely NIH Chest X-ray to show the accurateness of

our approach.

Related work

A lot of research work is proposed in the area of

CXR disease detection. This section provided a brief review

of previous research done for the detection of multi-class

chest diseases from medical images. Ayan and Ünver (27)

proposed a DL-based method using Xception and Vgg16 CNN

models for the diagnosis of pneumonia. Initially, different

data augmentation techniques, such as rotation, zooming, and

flipping, were applied to the input images to increase diversity

and avoid overfitting. Then, the DL models were fine-tuned

using transfer learning to extract discriminative key points.

The results showed that the Xception network achieved better

classification accuracy as compared to Vgg16; however, the

performance can be further improved. Bhandary et al. (28)

suggested a DL-based framework for the identification of

pneumonia and lung cancer that included two different models.

The first network was based on a modified AlexNet (MAN)

model to identify pneumonia class. The second network was

built using an ensemble strategy that combined handcrafted

features collected by the Haralick and Hu approach (29) with

deep features from the MAN model. For classification, the

Support Vector Machine (SVM) classifier was employed and

its performance was compared with the softmax classifier. This

technique attained a classification accuracy of 97.27% using

CT images from LIDC-IDRI benchmark dataset. In (30), the

authors evaluated the performance of different pre-trained

CNN models such as GoogLeNet, InceptionNet, and ResNet

using different image sizes and transfer learning. Moreover, the

network visualization was used to analyze the features learned

by these models. The results showed that shallow networks,

such as GoogleNet, outperform deeper network architectures

for discriminating between healthy and abnormal chest X-

rays. Rajpurkar et al. (31) presented a DL-based model namely

CheXNet to identify different illnesses in chest. The model

was comprised of 121 layers utilizing dense connectivity and

batch normalization. The authors retrained the ChexNet model,

which had previously been trained on ImageNet data, using

the CXR dataset. This approach achieved an F1 score of 43.5%

and Area Under the Receiver Operating Characteristic curve

(AUROC) of 0.801. In (32), the author proposed a DL model

for COVID-19 illness categorization across a wide range of other

chest diseases (multi-class classification) from chest x-rays. They

employed a Generative Adversarial Networks (GAN)-based

approach to generate synthetic images to solve the issues of class

imbalance data. The author analyzed the performance using

various scenarios such as data augmentation, transfer learning,

and imbalanced class data. The results showed that the ResNet-

based model yields higher accuracy of 87% with balanced data.

Ho and Gwak (33) designed a two-stage approach for the precise

identification of 14 different diseases from chest x-ray images.

Initially, the abnormal region was localized using activation

weights obtained from the last convolutional layer of fine-tuned

DenseNet-121 network. Then, classification was performed by

using a combination of handcrafted feature extractors i.e., SIFT,

HOG, LBP, GIST, and deep features. Several supervised learning

classifiers such as SVM, KNN, AdaBoost, and others were used

to classify hybrid features. The experimental findings showed

that the Extreme Learning Machines (ELM) classifier performs

well in comparison to other classifiers, with an accuracy of

0.8462. In (34), the authors developed a CNN-based network

comprising three convolutional layers for the identification of

12 different diseases using the CXR samples. They investigated

the performance against competitive NN and backpropagation

NN with unsupervised learning. The results demonstrated

that the proposed CNN attains high recognition rates and

better generalization power due to robust feature learning.

However, computation time and convergence iterations were

slightly higher.

In (35), the authors designed amulti-scale attention network

for enhanced multi-class chest disease identification accuracy.

The proposed network employed DenseNet169 as a backbone

with a multi-scale attention block that fused local characteristics

gathered at different scales with global features. A novel loss

function using perceptual and multi-label balance was also

introduced to solve issues of data imbalance. This approach

achieves an AUROC of 0.850 on CheXpert and 0.815 on the

CXR dataset. Ma et al. (36) suggested a cross-attention-based,

end-to-end architecture to address class unbalanced multi-label

x-ray chest illness classification. The model comprised a feature

extraction network based on densenet121 and densenet169 as

its backbone and a loss function based on an attention loss

and multi-label balance loss for better key point representation

through mutual attention. This model showed an improved

AUROC of 0.817 on the Chest X-ray14 dataset. Wang and Xia

(37) presented the ChestNet model to improve the accuracy of

multi-class thoracic illness diagnosis using chest radiography.

The model was comprised of two sub-networks: classification

and attention network. The classification network was based on

a pre-trained ResNet-152 model that was used to extract unified

key points. The attention network was used to investigate the

relationship between class labels and abnormal regions by using

the extracted key points. The suggested model outperformed

the existing models in classification using the CXR dataset.

Ouyang et al. (38) presented an approach to simultaneously
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perform both abnormality localization and multi-label chest

disease classification. The model was based on the hierarchical

visual attention mechanism comprising three levels and was

trained using a weakly supervised learning algorithm due to the

limited number of available box annotations for the abnormal

region. This approach exhibited a mean AUC score of 0.819 over

the CXR dataset.

Pan et al. (39) used pre-trained DenseNet and MobileNetV2

models for categorizing chest radiographs as healthy or diseased.

They evaluated these models for 14 different chest pathologies.

To analyze the generalization ability, the authors utilized

two different datasets. The results showed that MobileNetV2

outperformed the DenseNet model in the majority of scenarios.

Albahli and Yar (40) presented a multilevel classification

approach using DL to diagnose COVID-19 and other chest

disorders using CXR images. Initially, the first model was

used to classify the input into three classes: normal, COVID-

19 affected, and other. The second model was then used to

perform classification into 14 chest and associated disorders.

The suggested approach was evaluated using different pre-

trained DL models such as ResNet50, NasNetLarge, Xception,

InceptionV3, and InceptionResNetV2. The results exhibit that

ResNet50 performed best with an average accuracy of 71.905%

for COVID-19 identification and 66.634% for other diseases.

Alqudah et al. (41) introduced an approach for the diagnosis of

bacterial and viral pneumonia from healthy chest radiographs.

Initially, a modified CNN model pre-trained on other medical

images was fine-tuned to learn pneumonia disease-specific

features. Then, classification was performed using different

classifiers such as softmax classifier, SVM, and KNN. The

results exhibit that SVM outperformed the other classifiers;

however, the performance was evaluated on the limited dataset.

Kim et al. (42) presented an end-to-end learning approach

to perform multi-label lung disease classification. Initially, the

input images were preprocessed by applying crop and resize

operations to remove meaningless information from images.

Then, the pre-trained EfficientNetv2model was fine-tuned using

input images for the extraction of discriminative key point

vector and then classified into respective classes. This method

depicts improved results for three-class classification; however,

the model suffers from overfitting and performance degrades

on increasing the number of classes. Baltruschat et al. (43)

examined the execution of various ResNet-based models for the

task of multi-label chest x-ray images. The authors extended

the architecture and incorporated non-image features such as

the patient’s age, gender, and image acquisition category in

the network for improved classification. The results show that

ResNet-38 with integrated meta-information performed best

with an AUC of 0.727 as compared to others. Ibrahim et al. (44)

presented a DL-based multi-class identification method using

both CXR and CT images. The authors compared four different

custom architectures based on VGG19, ResNet152V2, and

Gated Recurrent Unit (GRU). The results exhibit that custom

VGG-19 outperformed the other models (i.e., ResNet152V2,

ResNet152V2 followed by GRU and Bi-GRU) by attaining an

accuracy of 98.05% on both X-ray and CT images; however,

the approach suffers from data overfitting issues. Ge et al.

(45) presented a multi-label CXR disease diagnosis approach

using illness and health label dependencies. The model was

comprised of two distinct sub-CNNs that were trained using

pairs of different loss functions, i.e., binary cross-entropy, multi-

label softmax loss, and correlation loss. The authors further

introduced bilinear pooling to compute meaningful features for

fine-grained categorization. This method (45) exhibits an AUC

of 0.8398 using ResNet as base model; however, it suffers from

high computational complexity.

The studies described above have shown remarkable

outcomes; however, they are limited to the identification

of a few chest-related diseases and lack generalizability for

the classification of multiple chest illnesses. A review of

approaches for recognizing chest diseases from the literature

is given in Table 1. It can be seen that there is still potential

for improvement in performing multi-label chest disease

classification in terms of accuracy, computation complexity, and

generalization ability.

Proposed methodology

Chest X-ray disease detection is based on two essential

modules: the first is the Localization of chest disease pathologies,

and the other is a classification of chest disease into eight

categories. The complete functionality of our novel method is

described in Figure 1.

For the classification of Chest X-ray disease, we have

presented the novel method named CenterNet with Densenet-

41. For training of our model, we have the publicly available

dataset having eight classes and also their bounding boxes values

of disease pathologies. So, we can perform localization of chest

X-ray disease lesions directly from images due to the availability

of bounding box ground truths. The proposed CenterNet

method recognizes the region of interest (ROI) in feature

extraction using DenseNet-41, afterward the localized areas are

classified into eight classes of chest diseases. Moreover, we have

evaluated all samples as per parameters in the field of CV.

CenterNet

Feature extraction is an essential step for recognizing the

regions in images and also for classification. So, efficient

features are required to correctly locate the disease areas from

CXR images and recognize their categories into eight classes.

However, this task is challenging due to the overfitting problem

which occurs because of the large feature vector. Another

challenge is the skip of essential areas (such as texture, shape,
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TABLE 1 A comparison of the multi-class chest disease diagnosis.

Reference Methodology Findings Gaps identified

Ayan and Ünver

(27)

VGG16

Xception network

Accuracy= 0.87% (VGG16)

Accuracy= 0.82% (Xception network)

The accuracy can be improved by combining

features from both networks

Bhandary et al. (28) Modified AlexNet (MAN) and Haralick and

Hu approach

Accuracy= 97.27% The generalization performance of the model

can be enhanced

Tataru et al. (30) GoogLeNet, InceptionNet, and ResNet Accuracy= 80%, F1 score of 0.66 The performance can be improved by the

inclusion of a segmentation approach to

allow the network to learn more

disease-specific attributes

Rajpurkar et al. (31) Novel CNN (121-layer) F1 score= 43.5% and AUROC=

0.801

Performance requires further improvement

Albahli (32) Novel CNN Accuracy= 87% Performance needs improvement

Ho and Gwak (33) A hybrid model with a DenseNet-121

network and hand-crafted feature extractor

i.e., SIFT, HOG, LBP, GIST, and different ML

classifiers such as SVM, KNN, AdaBoost, and

others

Accuracy= 0.8462, F1-score=

0.9413, AUC= 0.8097

Requires improvement in the generalization

ability of the model

Abiyev and Ma’aita

(34)

Novel CNN Accuracy= 92.4% The model can be made deeper to enhance

performance

Xu et al. (35) Densenet169 with multi-scale attention

network

AUROC= 0.850 The performance can be improved further

AUROC= 0.815

Ma et al. (36) Densenet121 and densenet169 with cross

attention

AUROC= 0.817 The model is computationally complex

AUROC= 0.775

Wang and Xia (37) ResNet-152 with attention network AUC= 0.781 The model is computationally complex and

suffers from high inference time

Ouyang et al. (38) ResNet with a hierarchical visual attention

mechanism

AUC= 0.819 The model is dependent on the availability of

box annotations

AUC= 0.9166

Pan et al. (39) DenseNet and MobileNetV2 AUROC= 0.924 The generalizability of the model requires

improvement

AUROC= 0.900

Albahli and Yar (40) ResNet50, NasNetLarge, Xception,

InceptionV3, and InceptionResNetV2

AUC= 96.9,

Sensitivity= 93.4, Specificity= 93.72

The images were segmented before the

classification

Alqudah et al. (41) Novel CNN with softmax classifier, SVM, and

KNN

Accuracy= 94%,

Sensitivity= 93.33%,

Specificity= 96.68%

Performed classification between Normal vs.

Bacterial Pneumonia vs. Viral Pneumonia

classes

Kim et al. (42) EfficientNetv2 Accuracy= 82.15%, Sensitivity=

81.40%, Specificity= 91.65%

The evaluation was performed on 4 classes

only Pneumonia, Pneumothorax,

Tuberculosis, and Normal class

Baltruschat et al.

(43)

ResNet38, ResNet50, ResNet101 AUC= 0.822 The performance can be improved further

Ibrahim et al. (44) CustomVGG19, ResNet152V2,

ResNet152V2-GRU, and

ResNet152V2-BiGRU

Accuracy= 98.05%, Recall= 98.05%,

Specificity= 99.5%, F1-score=

98.24%, AUC= 99.66%

The model is evaluated only using

COVID-19, Pneumonia, Lung Cancer, and

Normal classes

Ge et al. (45) ResNet and DenseNet with novel multi-loss

function

AUC= 0.8398 (ResNet)

AUC= 0.8392 (DenseNet)

The model is evaluated using only four

classes
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FIGURE 1

Flow diagram of proposed method namely AI CenterNet CXR.

and color changes) of the model due to the small set of the

feature vector.

To accomplish the robust and efficient feature vector,

it is essential to apply an automated key points extraction

approach, avoiding the handcrafted feature methods. Because

the handcrafted approaches of features extraction are not

effective in correctly recognizing the disease lesions from the

CXR images due to different variations, positions, and textures

of lesions. To tackle all these problems, we have presented

an efficient and novel method, which is the DL method and

based on CenterNet. The presented approach named Efficient

CenterNet has the ability to directly extract the features

efficiently from CXR images. CenterNet has the convolution

filter (CF) for key points calculation that extracts the structure

of disease areas from images. The inspiration for using the one-

stage method i.e., CenterNet (26) over the other object detectors

e.g., RCNNs (28) and (15, 29) for chest disease identification

is that these are complex structures and take more time due

to the two-stage approach. Faster-RCNN uses Region Proposal

Network (RPN) for localization of objects from images, then

collective features intimate with each ROIs split detection heads

and detect the class of object with bounding box. However, these

approaches are economically not robust and are not applicable to

real-world requirements of object localization. The DL approach

CenterNet addresses the issues of the abovementioned methods

by identifying features and also the location of ROIs in input

parallelly. Moreover, the one-step technique is the ability of

CenterNet that makes it more accurate and timelier efficient.

For recognizing and categorizing CXR diseases, it is

challenging to locate the features of ROIs because of numerous

factors i.e., finding the actual location of ROIs due to extreme

color and light variations, and other is finding the category

of each object. CenterNet can precisely classify and detect

the disease areas of numerous categories through heatmaps,

which switched the two-stage into a one-step object detector.

The heatmap unit acts by utilizing the center features that

accomplish greater recall values, which facilitate to decrease in

the computation cost of feature extraction.

Customize centernet

The conventional CenterNet (30) used ResNet-101 for

computing features to execute medical image analysis. However,

this method i.e., ResNet employs skip connections to prevent

non-linear conversions, which reason the immediate gradient

flow from the previous to the next layers through the identity

module. Figure 2 describes the Res-Net-101 technique that

encompasses huge parameters and ultimately produces the

vanishing gradient problem. To overcome the above issue, we

proposed a DenseNet-41 for feature extraction that is densely

accompanying the convolution approach. In the presented

approach, DenseNet is utilized as a backbone network of

CenterNet, which makes CenterNet more efficient due to a

smaller number of parameters than ResNet-101. The introduced

network consists of numerous Dense Blocks (D_B), which

consecutively join up by additional convolutional and pooling

layers among successive D_Bs. The DenseNet can exhibit the

complex renovation that facilitates overwhelming the challenge

of the inadequacy of the output position information for the

upper-level key points, in some measure. Moreover, this method

encourages feature reproduction, which makes them highly

convenient for Chest X-ray disease localization and improves

the training procedure. So, we introduced the DenseNet-41

(31) in CenterNet approach for feature extraction from Chest

Xray Images.

DenseNet-41 feature extractor

DenseNet-41 encompasses four D_Bs along with the equal

layers as employed in ResNet-101. The DenseNet-41 has less no

of parameters than Resnet-101, which makes it computationally
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FIGURE 2

The architectural view of ResNet-101.

TABLE 2 Description of DenseNet-41.

Layer DenseNet-41

Size Stride

Con L1 7× 7 conv 2

Pool L1 3× 3 max _pool 2

Dense B1

[

1× 1 conv

3× 3 conv

]

× 3 1

Transition L1 Con L2 1× 1 conv 1

Pool L2 2× 2 avg_pool 2

Dense B2

[

1× 1 conv

3× 3 conv

]

× 6 1

Transition L2 Con L3 1× 1 conv 1

Pool L3 2× 2 avg_pool 2

Dense B3

[

1× 1 conv

3× 3 conv

]

× 6 1

Transition L3 Con L4 1× 1 conv 1

Pool L4 2× 2 avg_pool 2

Dense B4

[

1× 1 conv

3× 3 conv

]

× 3 1

Classification Layer 7× 7 avg_pool

FC layer

SoftMax

efficient for feature computation of disease detection. Table 2 has

the description of DenseNet-41, including D_Bs (as shown in

Figure 3), convolutional, and transition layers (T_L).

The D_B is the vital component of DenseNet, l × l ×

m0 demonstrates the key points maps (KM) of the L-1 layer.

N specifies the dimension of KM, whereas all channels are

characterized by m0. P(.) is the non-linear conversion that

contains different modules i.e., batch normalization (BaN),

ReLU activation method, a 1 × 1 Conv layer (C_L), utilized

to lessen all the channels, and a 3 × 3 C_L, used for features

reorganization. Dense links are represented by long-dashed

arrows, which are utilized to join the L-1 to the L layer and

combined them through the result of the P(.). Lastly, l × l ×

(m0+ 2m) is the result of the L+ 1 layer.

The numerous dense connections enhance KMs; so, the

T_L is activated for reduction in feature size from the previous

DB, which is briefly explained in (32, 33). The calculated key

points are down-sampled with the four stride rate, after that

these features are utilized for the estimation of various heads,

illustrated in the proceeding subsections.

FMs increase because of vast dense links, so the T_L

is represented to decrease the size of the feature map from

the preceding D_B (32, 33). The feature set comes from the

DenseNet-41 is put down using four stride rate and then transfer

to calculate the several heads which are explained below:

Heatmap head

This head offers a key points approximation on the reduced

deep key points from the DenseNet-41 to find the diseased

portions with their category. The respective features are the

center of bbox when localize the ROIs can be calculated

as follows:

Ôi,j,c = exp
(

−
(i−p̂i)

2
+(j−p̂j)

2
�2σ 2

p

)

(1)

where i and j are the original feature values, p̂i and p̂j are

the positions of estimated down-sampled features, σp displays
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FIGURE 3

Dense block and transition layer.

the region size-adaptive standard deviation, c is the total of

categories, and ox,y ,c shows the center for a candidate features,

in case it is marked as 1 means affected; or else, considered

as healthy.

Dimension head

This type of head is utilized for the prediction of values of

bbox, which is responsible for computing the dimensions of the

box. The width and height of the bbox can be computed by the

L1 norm i.e., (x2-x1, y2-y1), for the k object with values (x1, x2,

y1, y2).

O�set head

After applying down-sampling on input images, the

discretization error appears that needs to be minimized. So, the

offset head is calculated for this purpose and then the center

points are again represented in the high-resolution input image.

Multitask loss

Multitask loss is the technique to improve the performance

of DL-based approaches like CenterNet, our proposed technique

used this type of loss for performance enhancement with

accurate localization and classification of disease regions. So, the

multitask loss is represented with L on every head, which can be

estimated as follows:

Lcenternet = Lmap + λdimLdim + λoff Loff (2)

The total loss calculated by our method is LCenterNet , in which

heatmaps, offset, and dimension head losses are described by

Lmap, Ldim, and Loff , respectively. And λdim and λoff are equal

to constant values of 0.1 and 1 simultaneously.

The Lmap is calculated through the following equation:

Lmap =
−1

n

∑

i,j,c

{

(1− Ôi,j,c)
α
log(Ôi,j,c) if Ôi,j,c = 1

(1−Oi,j,c)
β (Ôi,j,c)

α
log(1− Ôi,j,c) otherwise

(3)
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The total key points are shown by n. Oi,j,c is the center of the

original feature center, whereas oi,j,c is the estimated value of the

center. Hypermeters of loss in our case is described by α and β

having the values of 2 and 4 for the whole test.

The Ldim can be estimated by using the Equation 4,

Ldim =
1

n

n
∑

k=1

∣

∣

∣
b̂k − bk

∣

∣

∣
(4)

where bk is the actual and b̂k is the predicted bbox coordinates,

total samples are shown by n.

Ultimately, the Loff is determined by the Equation 5:

Loff =
1

n

∑

p

∣

∣

∣
F̂p̂ − (p�R − p̂)

∣

∣

∣
(5)

The predicted offset rate is denoted by F̂ , while R is the

resultant stride. The real key point is p, while p̂ is the down-

sampled value.

Creation of bounding box

Lastly, the estimated values with each category are processed

separately which are gained through heatmaps. In this work, we

have utilized the 8 nearest neighbors, and then the highest 100

values are considered.

Let Q̂ is producing N-related center points of class c using

Equation 6:

Q =
{(

x̂j, ŷj
)}N

j=1 (6)

where the location of every estimated point is symbolized as

(x̂j, ŷj). We have utilized all values of key points denoted by Q̂ ,

and bbox and coordinates can be found through Equation 7:

(x̂j + ˆ∂xj − ŵj/2, ŷj + ˆ∂yj − ĥj/2, (7)

x̂j + ˆ∂xj + ŵj/2, ŷj + ˆ∂yj + ĥj/2)

In Equation 7, ( ˆ∂xj, ˆ∂yj) = offset prediction, while (ŵj, ĥj)

= size prediction.

The final bbox is created immediately from the

valuation of the features with no usage of IoU-based

non-maxima suppression.

Detection process

CenterNet is an efficient technique as compared to other

methods, which are explained in previous sections. So, in this

method, input X-ray image along their bbox is given to the

trained framework, whereas the CenterNet estimates its center

values of disease regions. The complete flow of the introduced

solution is described in Algorithm 1.

Input 1. CXR images from the NIH dataset

2. Eight categories of diseases are

nominated i.e., Atelectasis (AT),

Cardiomegaly (CD), Effusion (EF),

Infiltration (IF), Mass (M),

Nodule (ND), Pneumonia (PN), and

Pneumothorax (PX)

3. Bonding boxes containing the

region of interest

Output 4. Localized region identifying the

diseased area

5. Output label with a classification

score

6. Trained model

Environment 7. Python with TensorFlow and others

requires libraries

8. GPU-based machine

Configuration 9. Importing samples

10. Distribution of dataset into

train, validation, and test sets

Data

Configuration

11. Batch size = 16

Directories

Configurations

12. Generate 2-folders of the samples

with their output labels and

bounding box values employed for

the model training and

validation, respectively

Training and

Testing

13. Create the CenterNet model with

the Dense-41 base network and

fine-tuned it on the NIH images

to perform the model training.

14. Samples from the test set are

used to evaluate the trained

model performance for the CXR

disease classification.

Validation 15. Compilation of model with 25

epochs along with the 0.001

learning rate

16. The multi-loss function is used

to measure three types of losses

i.e., heatmaps, offset and

dimension head losses for model

performance optimization

Evaluation 17. Measure model performance by

using standard metrics:

• mAP

• IOU

• Confusion matrix

• Precision

• Recall

• Accuracy

• F1-Score

• Error rate

• AUC

• Test time

Algorithm 1. Flow of the introduced method.
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Experiment and results

In this portion of the paper, we have provided detailed

information about the dataset being used for the model

verification. Further, we have elaborated on the evaluation

measures that are used to compute the quantitative results of our

approach. Besides, extensive experiments have been performed

to test the proposed approach in numerous ways to show its

robustness for CXR disease detection and classification.We have

performed the experiments in Python language by using an

Nvidia GTX1070 GPU-based system. In the presented technique

for CXR recognition, the CenterNet model is employed with

pre-trained weights obtained from the MS-COCO dataset, and

transfer learning is carried out on the NIH X-ray dataset to

modify it for the chest disease classification.

Dataset

For model training and testing, we have used a standard

dataset of CXR namely the NIH Chest X-ray dataset (46). The

employed database comprises a total of 112,120 samples from

30,805 subjects. The details about the entire NIH CXR dataset

are shown in Figure 4. The outer layer in the figure shows

the number of images in the respective class, and the second

outer layer represents all the 14 classes. The complete dataset

has 14 classes, however, the dataset contains the annotations

for eight types of chest diseases such as AT, CD, EF, IF,

M, ND, PN, and PX, respectively. There are a total of 984

annotated samples available for model training, which are

marked by a panel of radiologists. As the proposed work is

concerned with the employment of an object detection-based

model for the CXR classification, therefore, we have considered

the abovementioned eight diseases for our approach. A few

samples from the NIH CXR dataset are presented in Figure 5.

The used dataset is quite complex in nature due to the presence

of intense light variations, noise, blurring, color changes, and

class imbalance problems.

Performance metrics

To assess the CXR detection and classification performance

of the proposed Custom-CenterNet model, we have utilized

several standard metrics used in the area of object detection and

classification domain. We have used the mean average precision

(mAP), Intersection over Union (IOU), precision, accuracy,

and recall, metrics for performance analysis. The mathematical

description of the accuracy measure is given in Equation 8:

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Equation 9 depicts the mathematical formulation of AP, and

equation 10 is the mAP measure, where AP shows the average

precision for all classes and t is the test sample. T is representing

all test samples:

AP =

1
∫

0

p(r)dr (9)

Here, p(r) is the accuracy of the target area or detection:

mAP : =

T
∑

i=1

AP(ti)/T (10)

Figures 6–8 explain the visual demonstration form of IOU,

precision, and recall, respectively.

Localization results

An effective CXR disease classification should be capable of

correctly recognizing and classifying all categories of diseases.

For this reason, we have performed an analysis to check the

CXR abnormalities detection and classification performance of

our approach. The test images from the NIH CXR dataset are

applied to confirm the localization and categorization power of

the customCenterNet approach, and visual samples are reported

in Figure 9. We have reported some test results in Figure 9

for all eight classes, which include class labels and confidence

scores. The first row is showing the localization results of the

Atelectasis class, the second row is for the Cardiomegaly class.

Similarly, the remaining six rows in Figure 9 show the detection

results for Effusion, Infiltration, Mass, Nodule, Pneumonia,

and Pneumothorax, respectively. From localization results, we

analyze that this dataset has both smaller and larger disease

regions such as Effusion and Nodule diseases have smaller

affected areas, while others have larger affected regions. So,

our model can detect both the smaller and larger regions

precisely with better results. The samples shown in Figure 9

having different intensity variations are depicting that our

model can accurately identify the diseased portion and can

differentiate several chest diseases efficiently. Moreover, the

model is capable of reliably locating the diseased portion for

the distorted samples, which are depicting the robustness of

our method. For example, in Figure 9, the second case of

the last row has a smaller region and is also similar to the

background area, but our method detected it accurately. To

numerically discuss the localization ability of the DenseNet41-

based CenterNet approach, we have computed the mAP score

which is the standard evaluation metric and we have acquired

the mAP score of 0.91. From both the visual and quantitative

results analysis, we can say that the proposed custom CenterNet
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FIGURE 4

A pictorial view of sample information from the NIH Chest X-ray dataset (47).

model can be reliably applied for the CXR disease identification

and classification.

Class-wise results

Here, we have elaborated the class-wise results of our

approach to elaborate the recognition power of our approach in

categorizing eight types of chest diseases from the X-ray image

modality. For this reason, we employed the DenseNet41-based

CenterNet framework on all the suspected samples from the

NIH CXR database and computed the performance in the forms

of precision, recall, accuracy, and F1 measure.

Firstly, we have reported the category-wise obtained

precision values for our approach as this metric permits us

to check how much a model is competent in discriminating

the diseased images from the normal samples. The acquired

results are shown in Figure 10 from where it is quite visible that

our approach has correctly detected the affected samples. More

clearly, we have obtained the average precision value of 89%,

which is showing the efficacy of the presented technique.

Moreover, we have computed the recall evaluation metric

as it allows us to analyze how much a framework is capable

of differentiating the different diseases from each other. The

obtained AP and recall values are shown in Figure 11, which

is clearly showing that our proposed model is empowered to
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FIGURE 5

Samples images of NIH CXR dataset.

FIGURE 6

Visual depiction of IOU metric.

correctly recognize all eight types of CXR abnormalities and

shows an average recall value of 91%.

Furthermore, we have computed the F1-Score as the more

the value of the F1-Score the better the model performance.

The calculated F1-Score along with the error rate for all

eight classes of CXR abnormalities are shown in Figure 12.

The custom CenterNet approach shows the maximum F1

score of 94.30% along with the minimum error rate of

5.70% for the Pneumothorax class while reporting the lowest

F1-Score of 87.88% along with a maximum error rate of

12.12% for the Nodule abnormality. More clearly, we have

attained the average F1-Score and error rate of 89.99 and

10.01%, respectively.

Furthermore, we have reported the confusion matrix to

further demonstrate the CXR abnormality categorization power

of the proposed approach as the confusion matrix is capable of

showing the classification performance of a model in a viable

manner by showing the actual and predicted values. More
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FIGURE 7

Visual demonstration of Precision metric.

FIGURE 8

Pictorial representation of Recall measure.

descriptively, we have acquired the True Positive Rate (TPR)

of 89.55, 87.65, 87.69, 93.33, 90.87, 89.98, 93.78, and 94.82%. It

is quite evident from Figure 13 that the presented method can

efficiently discriminate the affected regions of several classes of

CXR diseases.

Finally, we have calculated the accuracy values for all

eight classes of the CXR diseases, and values are shown in

Figure 14 from where it is quite evident that the proposed

approach shows robust classification results for all classes.

More clearly, we have acquired an average accuracy value

of 92.21%. Based on the conducted analysis, we can say

that our approach shows better classification performance in

terms of all performance measures due to its efficient feature

computation power.

Evaluation of proposed model

In this section, we have provided a comparison of the

classification results of our approach against other DL-based

methods. For this reason, we have selected the AlexNet (48),

GoogleNet (49), VGG16 (50), and ResNet50 (51) models by

considering their results for the CXR disease classification as

mentioned in (52).

Initially, we performed the class-wise performance analysis

of our approach with the nominated DL approaches, and the

results are elaborated in Table 3. It can be seen from the table

that the DenseNet41-based CenterNet model has outperformed

the other approaches for all categories of diseases. More clearly,

for the AT and CD diseases, the selected DL methods show
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FIGURE 9

Localization results of the proposed method.

the average values of 0.65 and 0.73 which are 0.88 and 0.95 for

our case. So, for the AT and CD diseases classification, we have

shown performance gains of 22.75 and 22.25%, respectively.

While for the EF, IF, and M chest diseases, we have given the

average values of 0.78, 0.91, and 0.85, while the comparative

methods show the average values of 0.68, 0.60, and 0.54,

respectively, so we have shown the performance gains of 24.5,

17.75, and 36.75% for the mentioned diseases, respectively.

Similarly, for the ND, PN, and PX chest diseases, the peer

approaches report the average values of 0.645, 0.57, and 0.735,
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FIGURE 10

Class-wise precision values for the custom CenterNet model.

which are 0.85, 0.84, and 0.96 for the proposed approach. Hence,

we have presented the 20.5, 27, and 22.5% of performance gains

for the ND, PN, and PX chest disease classification, respectively.

Entirely, for all diseases, the competent methods attain the

average AUC value of 0.645, while our work acquires 0.887,

hence we have provided an overall performance gain of 24.20%.

In the second phase, we assessed the custom CenterNet

approach with the nominated DL approaches by comparing

the results on the entire dataset using several standard

metrics, namely, precision, recall, accuracy, and F1-measure.

The comparative analysis is shown in Table 4 from where it

is quite clear that the proposed framework is more efficient

for CXR abnormality categorization. We have obtained the

highest performance values for all the evaluation measures

with the values of 89, 91, 92.21, and 89.99% for the precision,

recall, accuracy, and F1-Score, respectively. The second largest

results are shown by the EfficientNet with the values 87.74,

88.95, 88.01, and 87.61% for the precision, recall, accuracy,

and F1-Score respectively. DenseNet-121 attained better results,

however, this model is computationally complex as compared to

our proposed DenseNet-41. Furthermore, the ResNet50 model

the values of 77, 75, 77.63, and 75.99% for the precision, recall,

accuracy, and F1-Score, respectively. Moreover, the AlexNet

model shows the lowest classification results with values of 65,

66.14, 67.45, and 65.57% for the precision, recall, accuracy, and

F1-Score, respectively. From the conducted analysis, we can say

that the proposed DenseNet41-based CenterNet model is quite

efficient to recognize each category of chest diseases and show

robust performance on the entire dataset as compared to the

other DL-based approaches. The main cause for the enhanced

classification results of our model is because of the usage of

the DenseNet41 as its base network, as this model employs

the shallow network architecture which permits it to select a

more reliable set of images key points. While comparatively, the

selected DL-based approaches are quite complex in structure

and unable to perform well for the samples with intense light,

and color variations causes decrease in their performance for the

CXR abnormalities recognition. So, we can say that our model
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FIGURE 11

Class-wise AP and recall values for the proposed Custom CenterNet approach.

presents an efficient and effective solution for classifying chest

disease from the X-ray image modality.

Comparison with other object detection
models

Here, we experimented to analyze the results of our

approach by comparing it against several other DL-based object

recognition approaches for the CXR abnormality categorization.

For this reason, we have taken both the one and two-stage

techniques. The major distinction between the one and two-

stage object detection models is that in the case of two-stage

approaches, initially numerous region proposals are created

to identify the location of the diseased portion, and then the

associated class is determined. While for the one-stage object

detection methods, the position and class of RoI are determined

in a single step. In the case of two-stage approaches, we have

chosen the Fast-RCNN (53), Faster-RCNN (4, 54), and Mask-

RCNN (55) models, while for the other, we have taken the

RetinaNet (56) and conventional CenterNet (21) models.

For performance comparison, we have used the mAP

performance measure as it is the highly designated metric

used in the area of object recognition. Additionally, the test

time of all competitor methods is also considered to discuss

the computational efficiency as well. The obtained comparison

is shown in Table 5 from which it is quite evident that our

approach is proficient for CXR disease classification both in

terms of performance results and test time with the values of

0.91 and 0.21 s, respectively. The Fast-RCNNmodel employs the

hardcoded-based approaches for its key points computation that

are unable to tackle the image distortions reliably. The Faster-

RCNN and Mask-RCNN approaches have tackled the issues

of the Fast-RCNN model; however, these are computationally

inefficient due to their two-stage networks. Whereas, the

RetinaNet approach is unable to learn the discriminative

anchors for the acentric key points of suspected samples.We also

compared our model with the YOLO object detector, it achieved

a 0.76 mAP value and the test time is 0.22 s. This model is faster,

however, attained a low localization rate because it strives to

detect small regions of disease from the images.

The conventional CenterNet model shows better

performance; however, still unable to generalize to real-

world scenarios due to its high computational cost. The

proposed approach that is the DenseNet41-based model has

better addressed the limitations of existing approaches by

identifying the diseased portion in a more viable manner. The

major cause for the better performance of our model is due to

the employment of the DenseNet41 model as a feature extractor,

which empowers it to better designate the image features which

in turn enhances its recognition power and reduces its time

complexity as well.
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FIGURE 12

Class-wise F1-Score along with the error rate for CXR diseases classification using custom CenterNet model.

FIGURE 13

Confusion matrix obtained for CXR disease classification with the custom CenterNet.
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FIGURE 14

Class-wise accuracy values.

TABLE 3 Comparison with base models in terms of the AUC metric.

Model Atelectasis Cardiomegaly Effusion Infiltrate Mass Nodule Pneumonia Pneumothorax

AlexNet 0.64 0.69 0.66 0.60 0.56 0.65 0.55 0.74

GoogLeNet 0.630 0.70 0.69 0.61 0.54 0.56 0.59 0.78

VGG16 0.63 0.71 0.65 0.59 0.51 0.65 0.51 0.63

ResNet50 0.71 0.81 0.74 0.61 0.56 0.72 0.63 0.79

Proposed 0.88 0.95 0.93 0.78 0.91 0.85 0.84 0.96

The bold means highest AUC metric.

TABLE 4 Comparative comparison with base models.

Model Precision Recall Accuracy F1-Score

AlexNet 65.00% 66.14% 67.45% 65.57%

GoogLeNet 69.53% 71.88% 70.35% 70.69%

VGG16 72.00% 74.32% 75.41% 73.14%

ResNet-50 77.00% 75.00% 77.63% 75.99%

Inception V4 79.32% 75.65% 79.32% 79.22%

DenseNet-121 83.01% 81.84% 83.21% 82.87%

EfficientNet 87.74% 88.95% 88.01% 87.61%

Proposed 89.00% 91.00% 92.21% 89.99%

Comparative analysis against ML
classifiers

We have further explained the robustness of our approach

for the CXR disease recognition by evaluating its results

against the Conventional ML-based classifiers. For this reason,

we have nominated two renowned ML classifiers named the

SVM and KNN, and obtained values are shown in Table 6.

The values in Table are clearly showing that the presented

approach obtains the highest AUC with the value of 0.887. The

second highest result is attained by the SVM classifier with

the value of 0.745, while the KNN classifier shows the lowest
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TABLE 5 Comparison with object detection models.

Model Base mAP Test time

(sec/img)

Fast-RCNN VGG-16 0.65 0.28

Faster-RCNN VGG-16 0.77 0.25

Mask-RCNN ResNet-101 0.79 0.23

RetinaNet ResNet-101 0.63 0.27

YOLO ResNet-50 0.76 0.22

CenterNet ResNet-101 0.82 0.25

Proposed CenterNet DenseNet-41 0.91 0.21

TABLE 6 Comparison with ML-based classifiers.

Classifier AUC

SVM (57) 0.745

KNN (57) 0.721

Proposed 0.887

The bold means highest AUC metric.

value of 0.721, respectively. More descriptively, the comparative

classifiers show the average value of 0.733, which is 0.887 for

the proposed work. So, we have given a performance of 15.40%.

The comparative analysis is clearly depicting that the presented

custom CenterNet is more proficient in classifying the several

diseases of the chest from the X-ray image modality because of

its high recognition ability.

Comparative analysis with
state-of-the-art methods

In this part, a comparative analysis is executed in

comparison to several latest approaches introduced for the CXR

disease classification employing the same dataset. For a fair

comparison, the highest average results reported in (52, 58–62)

are taken and evaluated against our obtained average results.

Initially, we have compared the proposed approach in terms

of the AUC metric and the obtained comparison is reported in

Table 7. Wang et al. (58) proposed a DL-based approach for the

CXR disease classification, where the CNN-RNN framework was

introduced to compute the deep features from the input samples

and perform the classification task. The work (58) acquired an

average AUC value of 0.753. Another DL-based approach was

presented in (59) employing the concept of boosted cascaded

convents and attained the average AUC value of 0.778. Liu

et al. (60) introduced an approach namely the Contrast-

Induced Attention Network (CIA-Net) that used the concept

of constructive learning to perform the CXR abnormalities

recognition and show the average AUC value of 0.801. Seyyed-

Kalantari et al. (61) presented a CNN-based approach to

categorize several diseases of the chest via employing the X-ray

modality and obtained the average AUC value of 0.821. Han et al.

(62) presented a residual-based approach for recognizing several

CXR diseases and acquired an average AUC value of 0.838.

While in comparison, the presented approach acquired the

highest value of the AUC measure with the value of 0.837. More

descriptively, for the AT disease, the competent approaches

show an average value of 0.786 and 0.880 in our work; hence,

we presented a performance gain of 9.40%. For the CD, EF,

and IN classes, the competitor methods show the average values

of 0.894, 0.856, and 0.698, respectively, which are 0.99, 0.93,

and 0.95 for our technique. Therefore, for the CD, EF, and

IN classes, the custom CenterNet approach shows the average

performance gains of 9.6, 7.4, and 15.2%, respectively. Similarly,

for the M, ND, PN, and PX classes, the presented framework

provides the average performance gains of 10.2, 10.8, 9.6, and

0.4%, respectively. While collectively, the approaches in (58–62)

show the average AUC value of 0.789, while our method shows

the average AUC value of 0.888 and presented the performance

gain of 8.98%, which is showing the robustness of our approach

for the CXR abnormalities classification.

Secondly, the performance comparison of our work in terms

of IOU is discussed against the latest methods reported in

(52), and obtained comparison is presented in Table 8. Wang

et al. (52) introduced a deep CNN model for identifying and

classifying the CXR diseases and attained the average IOU value

of 0.569. Similarly, a CNN-based approach was introduced in

(62) and acquired an average IOU value of 0.746. Li et al. (63)

proposed a Residual-based approach for classifying the CXR

abnormalities and attained an average IOU value of 0.728. In

comparison, our proposed customCenterNet model exhibits the

average IOU value of 0.801 which is the greatest among all peer

methods. More clearly, the peer techniques show the average

IOU value of 0.681 which is 0.801 for the proposed solution.

Hence, for the IOUmeasure, the custom CenterNet model gives

the average performance gain of 12%.

From the conducted analysis, it is quite clear that the

proposed approach for the CXR disease classification is more

competent in terms of both IOU and AUC evaluation measures

as compared to the latest approaches. The major reason for

the robust recognition power of the proposed solution is due

to the more discriminative feature computation ability of our

model, which assists it to recognize all categories of disease

in an efficient manner. While in comparison, the approaches

in (52, 58–62) are quite complex in structure which results

in the model over-fitting issue. Moreover, the approaches are

unable to deal with several distortions of suspected samples such

as color and light variations which make them inefficient to

capture the image information accurately. While in comparison,

our technique is more effective to tackle the transformation

changes in the suspected samples. Hence, we can say that the

presented customCenterNet is more competent for CXR disease

recognition and categorization.
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TABLE 7 Comparison of latest approaches in terms of the AUC metric.

Approach Atelectasis Cardiomegaly Effusion Infiltrate Mass Nodule Pneumonia Pneumothorax

Wang et al. (58) 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85

Kumar et al. (59) 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86

Liu et al. (60) 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89

Seyyed-Kalantari et al. (61) 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88

Han et al. (62) 0.84 0.93 0.88 0.72 0.87 0.79 0.77 0.90

Proposed 0.88 0.99 0.93 0.95 0.90 0.84 0.84 0.88

The bold means highest AUC metric.

TABLE 8 Comparison of latest techniques in terms of the IOU metric.

Approach Atelectasis Cardiomegaly Effusion Infiltrate Mass Nodule Pneumonia Pneumothorax

Wang et al. (52) 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38

Han et al. (62) 0.72 0.96 0.88 0.93 0.74 0.45 0.65 0.64

Li et al. (63) 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63

Proposed 0.76 0.99 0.93 0.95 0.74 0.56 0.74 0.74

The bold means highest IOU metric.

Conclusion

In our work, we presented AI-CenterNet CXR, an end-

to-end DL-based framework for the automated recognition

and categorization of thoracic illness from chest radiographs.

Our method is based on a CenterNet model that uses the

DenseNet network for the computation of effective image

attributes. More specifically, we integrated the DenseNet-41

network to extract a discriminative set of key points from the

chest x-rays for the accurate identification of abnormalities.

Moreover, due to the one-stage object detector framework

CenterNet model, the suggested architecture is computationally

robust to classify several CXR abnormalities. We conducted

extensive experiments using the NIH CXR dataset to show the

effectiveness of the proposed approach. Our technique attained

an overall AUC of 0.888, an average precision value of 89%,

a recall value of 91%, and an IOU of 0.801 to identify and

classify eight categories of chest illness. According to the results,

the proposed technique outperforms existing approaches in

terms of both time and computational complexity. Moreover,

the approach can correctly identify the aberrant regions and

categorize the various types of chest illness in the presence

of distortions, significant inter-class similarities, and intra-class

variances. In the future, we will incorporate fourteen classes and

perform experiments on other latest DL-based models.
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