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Abstract

The integration of cloud resources with federated data retrieval has the potential of
improving the maintenance, accessibility and performance of specialized databases
in the biomedical field. However, such an integrative approach requires technical
expertise in cloud computing, usage of a data retrieval engine and development of a
unified data-model, which can encapsulate the heterogeneity of biological data. Here,
a framework for the development of cloud-based biological specialized databases is
proposed. It is powered by a distributed biodata retrieval system, able to interface with
different data formats, as well as provides an integrated way for data exploration. The
proposed framework was implemented using Java as the development environment,
and MongoDB as the database manager. Syntactic analysis was based on BSON, jsoup,
Apache Commons and w3c.dom open libraries. Framework is available in: http://nbel-
lab.com and is distributed under the creative common agreement.

Keywords: MongoDB, Specialized databases, Federated databases, Cloud-based
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Background
The growing rate of biological data generation has produced unprecedented data

streams, which regularly renovate our understanding of system biology [1], as well as

alter our practice in healthcare [2]. As biomedical research became transdisciplinary,

data across numerous levels of granularities and perspectives has to be acquired and

integrated. Moreover, for meta-analysis, data is often gathered from multiple archival

databases. To mitigate the growing rate of biodata origination, new frameworks for

data acquisition, classification, storage, retrieval and analysis are being developed

continuously.

Among the challenges underlying many such frameworks are the heterogeneity of

biological data types and the emergence of new relations between data entities [3]. As

a result, on top of the traditional primary and secondary databases, specialized data-

bases were developed. Specialized databases include organism-centered datasets [4, 5],

biological pathways [6] and diseases [7], each with its own data specifications, often cu-

rated to serve consortiums or single laboratories. Specialized databases often integrate

data from numerous primary, secondary and other specialized databases.
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The necessity of finding a piece of data in a vast array of databases led to the devel-

opment of meta search engines, which are traditionally based on a distributed ap-

proach. A distributed search engine is a decentralized service, allocating mining and

query generation among numerous edges, integrating the retrieved results in a unified

framework, constituting a federated database. For example, the Neuroscience Informa-

tion Framework (NIF) [8], one of the most important database federations for the

neuroscience community, has been cataloging and surveying the neuroscience resource

landscape since 2006. NIF currently gives access to over 250 data sources categorized

to different subjects ranging from software tools to funding resources. NIF provides a

distributed query engine to specialized data bases, which are independently created and

curated. This type of distributed search among independent databases is enabled

through NIF’s DISCO registry tool with which a Web resource can send both auto-

matic or manual data updates to the NIF system [9].

One of the most important stepping stones in modern biodata mining is cloud com-

puting, providing scalable virtualized resources and distributed computing, and enab-

ling optimization of cost and computing efficiency [10]. Thus, cloud providing

frameworks, such as IBM Cloud [11], Microsoft Azure [12], Amazon AWS [13] and

Google Cloud [14] are routinely adopted by research groups and organizations.

Cloud-based federated data-bases can provide powerful framework for integrated

data-centered research. For example, Todor and colleagues developed the ChemCloud,

a semantic-web based framework, which integrates specialized local databases with

online datasets in the fields of chemistry and pharmacy, aiming at semantic search,

semantic data enrichment, ontology-enhanced navigation, machine generated eLearning

trajectories and semantic knowledge discovery over multiple databases [15]. O’Connor

and colleagues developed the SeqWare, a database framework aiming at handling and

querying a wide range of genomic-related data types, utilizing the Hadoop MapReduce

environment and the Hadoop HDFS distributed filesystem [16].

Integrating cloud resources and federated data retrieval engine in the context of the

development of specialized databases holds great promise; however, it is not a trivial

task. It requires technical expertise in cloud computing, as well as the development of

a unified data-model to which different models can be translated. For example,

Pareja-Tobes and colleagues developed the Bio4j framework in which heterogeneous

proteomic data is modelled with graphs, stored in a cloud and retrieved using domain

specific language implemented in Java [17]. An interesting contribution to cloud-based,

federated database development, is the development of BioCloud Search EnGene (BSE),

by Dessi and colleagues [18]. BSE is a gene-centric distributed search engine, built upon

Google App Engine (GAE). GAE provides a distributed data storage service, which per-

forms distribution, replication and load balancing automatically and supports opera-

tions to access objects (i.e. create, read, update, delete) by means of an SQL-like

language called GQL.

Here we propose a cloud-based framework of a distributed search engine for bio-

logical data. Our framework distributes a query (written in a “google-like” fashion)

among several strategic web-based biological databases, such as NCBI’s datasets and

Malacards, storing the retrieved results over MongoDB cloud service, and annotating

them with the query keywords for future retrieval. Our framework provides a Graphical

User Interface, with which the user can explore the retrieved data.
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Implementation
Framework

Our proposed framework is comprised of three main data streams: (I) from a ser-

ver to web-based databases; (II) from a server to a cloud provider; and (iii) from

the user to the server. The construction of a specialized database is administered

by an admin user. The admin can ask the server to execute a distributed search

over several databases for a specific entry. The server translates the admin’s request

to a query object. The query is then translated to a series of structured URLs. Da-

tabases often use a fixed URL syntax, which is comprised of a standard set of pa-

rameters and retrieval information. The Entrez Programming Utilities, for example,

provide a structured URL interface for most NCBI’s databases [19]. Each URL is

used to retrieve the query response from a specific source. URLs are sent to the

appropriate data base, each responds with the requested information. Since differ-

ent databases have different data representation, the retrieved information is intro-

duced to a parser – specifically designed for each database - producing a list of

objects. The retrieved objects from each database are presented to the admin. If

the admin chooses to save the entries to his specialized databases, the server anno-

tates the data with the searched keywords and sends it to a cloud service via a

synchronizer, which checks for existing entries, and a persistency agent, which is

responsible for data conversion. A ‘guest’ user can search the administered

cloud-based specialized database, directly interfacing with the data and exploring

results. Schematic of the framework is illustrated in Fig. 1.

Software description

Our proposed framework can be implemented with several different technologies.

Here we chose various open-source and free resources for implementation. Java

was chosen as the development environment, and MongoDB as the cloud provider.

Java was used to create interfaces to online databases such as Malacards and

Fig. 1 Framework schematic, comprised of server to databases, server to a cloud provider and user to
server data streams. System admin can ask the server to execute a distributed search over several databases
for a specific entry. The server translates the admin’s request to a query object which is used to define a
structured URL. URLs are sent to the appropriate data base, each responds with the requested information,
which is parsed to produce a list of corresponding objects. The retrieved objects can be annotated and
persisted to a cloud-based specialized database
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NCBI’s Gene, Protein, Pubmed and Structure databases. Various processing tools

were utilized for data parsing. The w4c.dom was used for XML processing, the

BSOB library for reading and writing JSON files, Apache Commons’ libraries for

CSV parsing, and the jsoup library for HTML processing. The retrieved data is vi-

sualized with JAVA’s SWT imaging capabilities. User-server communication was im-

plemented using TCP/IP sockets. A schematic of the implementation is presented

in Fig. 2.

The system is comprised of 8 main packages. API packages include the admin and

guest packages, each comprised of the appropriate setting parameters, GUI implemen-

tation and a communication module. The admin and guest packages make use of spe-

cific capabilities, implemented within the ‘hidden’ Persistence, Database and model

packages. The server package is also comprised of a GUI and communication capabil-

ities and makes use of all ‘hidden’ packages, including the Parsers and URL packages.

UML schematic is shown in Additional file 1: Figure S1.

The admin can initiate a query, defined with a retrieved type, and comprised of an in-

stance of a Database class and a list of Field instances. The database class includes a

reference to a specific type of database (which includes all supported databases) and

the Field class includes a reference to search fields (e.g. journal, or publication date

when the database is Pubmed). UML schematic is shown in Additional file 1: Figure

S2. Once a query is defined it is sent to a querybuilder function, where it is translated

to the appropriate database-specific structured URL. Following query execution, the re-

trieved data is analyzed by the appropriate parsers. UML schematic is shown in

Additional file 1: Figure S3. Each parser creates an object for each instance of the re-

sults. For example, the Pubmed parser will create a list of Article objects, the Malacard

parser will create a list of disease objects, etc. All created objects implement both

Persistable and Serializable interfaces. The persistable interface provides an encap-

sulation layer, which unifies all objects that are to be persisted in a cloud. The

Fig. 2 Implementation schematic, comprised of interfaces to online datasets such as Malacards and NCBI’s
Gene, Protein, Pubmed and Structure databases, and various processing tools for data parsing
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serializable interface allows easy streaming of objects over the communication

ports. UML schematic is shown in Additional file 1: Figure S4. Notably, we built a

smart data exploration engine that allows the user to interact with the different

visualization tools available in our framework. For example, Structure-derived in-

stances can be visually explored via a direct web-based interface to NCBI’s struc-

ture viewer, and Gene-derived instances can be similarly explored via NCBI’s

sequence explorer.

Persistable objects can be saved to a MongoDB database following tagging and

sync, using our MongoDB persistency object. In order to save data over MongoDB,

the user has to create a MongoDB account, establishing a link to a specialized

database. Account settings can be configured in our framework using a GUI. This

account will be used to save as well as to retrieve data from the database. Commu-

nication between our framework and the cloud-based database is managed using

the persistence package. This package is comprised of a PersistencySetting class,

which manages the cloud configuration settings, and a PersistencyAgent. The Per-

sistencyAgent provides a full API to MongoDB allowing for object storing and re-

trieval. UML schematic is shown in Additional file 1: Figure S5. Data is stored

with JSON files. Once data is saved over the cloud it is available for ‘local’ search

by guest users. The MongoDB cloud allows for a non-relation-based data storage,

which, as previously mentioned, is more appropriate for biological data. Inside the

MongoDB, data is organized in collections. Here we initiated 5 collections – each

for every type of retrieved data.

For efficient data retrieval from the cloud, data is retrieved in two phases. First, only

partial information is displayed (e.g. name and keywords). Following user request the

entire instance is retrieved for exploration. This two phases system dramatically re-

duces the server workload. Moreover, to make searching more informative, a smart tag-

ging mechanism was defined, with which instances of data are tagged with the

keywords that were used to retrieve them. When data is displayed for user investiga-

tion, it is displayed with these keywords.

Running example

First, the server has to be initiated. Afterwards, either the admin or a guest application

may be launched. Since the guest permitted functionalities are a subset of the admin,

we will concentrate here on the admin interface. The GUI is shown in Fig. 3a. In

the settings menu, the user has to specify the server IP and the URL connection

link to a MongoDB account, where the specialized database is to be hosted. The

admin application offers an online search, where the user can specify his search

openly in a ‘google’ like fashion. At the tab bar, there are several tabs – each for

every supported database. Once data is retrieved, results from each database can

be explored in the appropriate tab. Let us search for example, the term ‘blood can-

cer’. Under the Gene tab, a gene list appears. Each gene represents a data instance

which was retrieved from NCBI’s Gene database in the first phase of the search.

We would choose the ‘major histocompatibility complex’ and the second phase is

initiated, in which all information regarding this data instance is retrieved for ex-

ploration. Also, a NCBI’s genome data viewer is initiated and can be used to
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interactively explore the retrieved sequence (Fig. 3b). Under the Pubmed tab a list

of retrieved articles is shown. Choosing an article will enable seeing his title, au-

thors, abstract and other publication details in the details window (Fig. 3c). Under

the Protein tab, a list of retrieved proteins is shown. Choosing one of them, such

as the ‘Kinase CK II’, will open NCBI’s protein sequence viewer, in which the pro-

tein sequence can be interactively explored (Fig. 3d). Similarly, 3-dimensional

visualization of protein’s structure can be explored under the Structure tabs with

the viewer tool (Fig. 3e), and related diseases can be explored under the Malacard

tab (Fig. 3f ).

Once the user chooses the ‘save to local’ option, all data is persisted to the MongoDB

cloud account and can be monitored via their web interface. For example, the user can

monitor the average rate of commands, queries, updated, deletes and inserts. Monitor-

ing example is given in Additional file 1: Figure S6. Moreover, the logical size of the

database can be traced in real time (Additional file 1: Figure S7), as well as the number

of established connections (Additional file 1: Figure S8), and data-streams (Additional

file 1: Figure S9).

The user can explore the stored data in the MongoDB web interface as well.

However, data exploration is possible in the free tier subscription only via Mongo

Shell (see installation manual for installation and connection details). For example,

Fig. 3 User interface. a Graphical user interface. b-f A running example of a search for ‘breast cancer’
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after connecting to your account you can explore your database with the ‘show

dbs’ command:

Select your database using the ‘use’ command and explore the created collections

using the ‘show collections’ command:

For example, you can explore the Article collections using the ‘find’ function:

Entries can also be found with JSON-based queries. For example, a specific article can

be retrieved using its id:

As was described before, our framework uses smart tagging of data entries, allowing

to retrieve data according to the search query which was used to retrieve it. For

example:

Detailed description of the MongoDB shell command is given in: https://docs.mon-

godb.com/v3.4/reference/mongo-shell/. To conclude, we have an integrated environment

in which data can be retrieved from multiple databases using our distributed search en-

gine and persisted on a cloud, for future exploration and analysis.
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Software extensions

The above illustrates the architecture used to derive data from online databases and

store the retrieved data in a cloud-based specialized data-set. And therefore, being a

powerful, easy to use, federated data retrieval engine. However, it is tailored to a spe-

cific set of datasets (Malacards, Gene, Protein, Structure and Pubmed), which holds to-

gether a tremendous amount of data, but can be extended as needed. More

importantly, most specialized databases, being curated by consortiums and labs, must

incorporate data which originated from their own work, and not from web-based re-

sources. This framework can therefore be extended in two dimensions: (I) supporting a

larger set of databases, and (II) incorporating data from lab work into the larger data-

base. Extending supported databases can be implemented in our proposed framework

by creating a parser, a query builder and a data object for this purpose. Our design con-

sists of general support for a data base and query building, encapsulating them with the

DataBase and Query classes, which are easily extendable (Additional file 1: Figure S2).

As our framework is comprised of various parsing libraries for XML, JSON and HTML

documents, they can be easily utilized for the creation of a specific database, as demon-

strated for all the databases listed above. Furthermore, as long as the data object imple-

ments the Persistable and Serializable interfaces, it can be persisted to the cloud-based

database, as illustrated before. The Incorporation of lab-originated data instances in the

database is as easy as encapsulating it with an appropriate data class, as mentioned above,

and persisting it to memory. Since the proposed framework is freely distributed to the

community via Github, we anticipate that the supported list for databases will grow.

Conclusions
The ever-growing production and coverage of biomedical data introduces challenges in

three dimensions (I) the volume (amount of data), variety (types of data), and velocity

(speed required for data processing). These 3 dimensions were popularized as the 3Vs

of big data. Accordingly, integrating cloud resources and federated data retrieval engine

in the context of the development of specialized databases has the potential to enhance

the constant development in databases in the biomedical field. Here we propose an ex-

tendable, freely distributed framework, allowing for a distributed search among several

strategic web-based biological databases, as well as lab-originated data instances over a

cloud-based data center. This framework also provides a graphical user interface, with

which the user can explore the retrieved data from both online and cloud-based

repositories.

While similar frameworks provide integration of some aspects of cloud resources

with distributed search (such as the BioCloud Search EnGene), they are primarily fo-

cusing on one specific arena (EnGene for example, is focusing on genomic data). Our

framework is (1) open source - it can be easily extended to support different niches as

well as provide general framework for biodata retrieval and storage and (2) providing a

bridge to a cloud database provider. It is unique in the sense that it is based on free

community-supported tools, and that it can be extended further if required.

Our framework is distributed under the creative common agreement. To ensure pub-

lic access to the framework, the source code was uploaded to GitHub at: https://

github.com/NBEL-lab/DistCloudBiodata, and it is also accessible via NBEL-lab.com
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(software). As described above, the framework uses a series of dependable modules,

which are freely accessible.

Additional files

Additional file 1: Figure S1. UML schematic of the framework. Figure S2. UML schematic of the Query and
DataBase classes. Figure S3. UML schematic of the parsing classes. Figure S4. UML schematic of the data classes.
Figure S5. UML schematic of the persistency classes. Figure S6. MongoDB cloud commands monitor. Figure S7.
MongoDB cloud storage monitor. Figure S8. MongoDB cloud connection monitor. Figure S9. MongoDB cloud
data-streams monitor. (PDF 506 kb)
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