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Abstract

Patient-specific analysis of molecular networks is a promising strategy for making individual risk predictions and treatment
decisions in cancer therapy. Although systems biology allows the gene network of a cell to be reconstructed from clinical
gene expression data, traditional methods, such as Bayesian networks, only provide an averaged network for all samples.
Therefore, these methods cannot reveal patient-specific differences in molecular networks during cancer progression. In this
study, we developed a novel statistical method called NetworkProfiler, which infers patient-specific gene regulatory
networks for a specific clinical characteristic, such as cancer progression, from gene expression data of cancer patients. We
applied NetworkProfiler to microarray gene expression data from 762 cancer cell lines and extracted the system changes
that were related to the epithelial-mesenchymal transition (EMT). Out of 1732 possible regulators of E-cadherin, a cell
adhesion molecule that modulates the EMT, NetworkProfiler, identified 25 candidate regulators, of which about half have
been experimentally verified in the literature. In addition, we used NetworkProfiler to predict EMT-dependent master
regulators that enhanced cell adhesion, migration, invasion, and metastasis. In order to further evaluate the performance of
NetworkProfiler, we selected Krueppel-like factor 5 (KLF5) from a list of the remaining candidate regulators of E-cadherin
and conducted in vitro validation experiments. As a result, we found that knockdown of KLF5 by siRNA significantly
decreased E-cadherin expression and induced morphological changes characteristic of EMT. In addition, in vitro experiments
of a novel candidate EMT-related microRNA, miR-100, confirmed the involvement of miR-100 in several EMT-related aspects,
which was consistent with the predictions obtained by NetworkProfiler.
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Introduction

Currently, several large-scale omics projects, such as the National

Cancer Institute’s Cancer Genome Atlas (http://cancergenome.nih.

gov/) and the Sanger Institute’s Cancer Genome Project (http://

www.sanger.ac.uk/genetics/CGP/), produce large amounts of data,

including genomic, epigenomic, and transcriptomic information,

about cancer patients or cell lines. Two challenges in omics are to

construct and analyze patient-specific molecular networks to develop

a comprehensive understanding of the molecular mechanisms of

tumorigenesis and to identify molecules that are critical for tumor

proliferation and progression [1]. If these challenges can be

overcome, it may be possible to personalize cancer therapy, improve

its efficacy, and reduce its toxicity and cost [2,3].

Systems biology integrates various types of omics data and

computational tools to represent and analyze complex biological

systems. For example, gene network estimation that is based on

Bayesian networks or mutual information networks can reconstruct

biological systems from gene expression data [4]. However, most

traditional gene network estimation methods construct a static

network by using gene expression data from different cellular

conditions. As a result, these methods only produce an averaged

network for all patients and cannot reveal patient-specific molecular

mechanisms of cancer. In addition, it is very difficult to infer a patient-

specific gene network from only a few gene expression profiles of the

patient without making any assumptions about the network.

In this study, we developed a novel statistical method called

NetworkProfiler, which infers patient-specific gene regulatory

networks from a dataset of cancer gene expression profiles.

NetworkProfiler is based on a statistical graphical model with varying

coefficients and a kernel-based data integration method with elastic

net regularization for parameter estimation. A key feature of

NetworkProfiler is that the strengths of the relationships between

genes are allowed to vary depending on cancer characteristics, such as

cancer progression, metastasis, disease-free survival, and drug

sensitivity. NetworkProfiler groups samples according to the specific

cancer characteristics so that neighboring samples have common

gene regulatory systems. Then, by integrating the gene expression

profiles of neighboring samples with a kernel method, NetworkPro-

filer produces a gene regulatory network for each sample. Finally, we

analyzed 2 post-analysis to discover upstream regulatory genes and

downstream target genes for specific cancer characteristics. Network-
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Profiler is the first algorithm for constructing patient-specific gene

regulatory networks from clinical cancer gene expression data to

elucidate cancer heterogeneity.

We applied NetworkProfiler to gene expression microarray data

from 762 cancer cell lines to determine system changes related to the

epithelial-mesenchymal transition (EMT). The epithelial-mesenchy-

mal transition (EMT) is a process that changes proliferating cells from

an aplanetic state to a motile state [5], which allows cancer cells to

leave the primary tumor and metastasize. The loss of E-cadherin, a

cell adhesion molecule, is a biomarker of EMT [5]. NetworkProfiler

identified 25 key regulators of E-cadherin, of which half have been

previously described and the other half were novel candidates.

NetworkProfiler also revealed regulatory changes in miR-141, ZEB1,

and E-cadherin. Specifically, our results suggested that decreased

expression of miR-141 in mesenchymal cells disrupts the negative

feedback loop between miR-141 and ZEB1, which would allow ZEB1

to decrease the expression of E-cadherin during the EMT. In

addition, we predicted 45 EMT-dependent putative master regula-

tors that control sets of genes involved in cell adhesion, migration,

invasion and metastasis, namely, 17 of which are downstream targets

of TGFB1, a master switch of the EMT. To further validate the

performance of NetworkProfiler, we experimentally evaluated in silico

predictions obtained by NetworkProfiler. We consequently found

that knockdown of KLF5, a new candidate regulator of E-cadherin,

decreased E-cadherin expression and induced morphological changes

characteristic of EMT. In addition, the functional involvement of

miR-100 was validated in some EMT-related aspects, which was

consistent with the predictions obtained by Network Profiler.

Results

Overview of NetworkProfiler
Here, we provide an overview of NetworkProfiler; please refer to

the Methods section for a complete description. NetworkProfiler is a

modulator-dependent graphical model because it includes a

modulator (M) variable in addition to regulator (R) and target (T )

variables (genes). R controls the transcription of T and M is a

cofactor that modulates the interaction between R and T . In this

study, we defined M as a biological or a clinical feature that is related

to cancer, such as drug response, survival risk, or a molecule or

pathway that is related to cancer initiation, progression, or metastasis.

The relationships between R, T , and M are illustrated in Figure 1a.

As shown in Figure 1b, the strength of the relationship between R and

T varies depending on the value of M. Thus, M does not affect R
and T directly; instead, it influences the strength of the relationship

between R and T . In contrast, existing graphical models, such as

Bayesian networks and mutual information networks [4], do not

consider the effect of M (Figure 1c), so the strength of the relationship

between R and T remains constant for all values of M (Figure 1d).

In addition, NetworkProfiler can infer the relationships between

R and T , given a value of M. As a result, we could use

NetworkProfiler to construct patient-specific networks with varying

R-T relationships that reflect changes in the feature of interest in

cancer patients. A simple example with synthetic data for R, T , and

M is shown in Figure 2a. In this example, we assume that R
regulates T only with a high value of M (Figure 2b). In this case,

most existing methods that only consider R and T in all of the

samples (Figure 2c) and ignore M would conclude that R does not

regulate T . In contrast, NetworkProfiler attempts to quantify the

strength of the relationship between R and T for a specific value m
of M by reweighting the data according to the value of M to identify

the neighborhood of samples with values of M that are close to m.

Then, NetworkProfiler measures the dependency between R and T
on the basis of these neighboring samples. The optimization of the

size of the neighborhood is explained in the Method section.

A schematic representation of the entire analytical process of

NetworkProfiler is shown in Figure 3. NetworkProfiler used 2

inputs: (1) gene expression data and (2) the modulator for each

sample (Figure 3a). The gene expression data was represented as a

p|n matrix, where p is the number of genes and n is the number

Figure 1. The relationships between a regulator (R), a target(T), and a modulator (M) in NetworkProfiler and existing graphical
models. (a). The relationships between R, T and M in NetworkProfiler. The directed solid-line edge from R to T represents ‘‘R regulates the
transcript of T ’’. The directed dot-line edge from M to the edge between R and T describes ‘‘M controls the strength of the relationship between R
and T ’’. (b). The strength of the relationship between R and T in NetworkProfiler that varies depending on the value of M . (c). The relationships
between R and T in existing graphical models that do not consider the effect of M . (d). The strength of the relationship between R and T in existing
graphical models that remains constant for all values of M .
doi:10.1371/journal.pone.0020804.g001
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of samples (patients). If the modulator was an observable variable,

then we directly applied NetworkProfiler to these inputs. However,

if the modulator was a variable that is difficult to observe, then we

used a signature-based hidden modulator extraction algorithm to

estimate the value of the modulator. The output of NetworkPro-

filer is a set of gene networks for every value of M (i.e., sample-

specific gene networks) shown in Figure 3b.

Afterwards, we used 2 post-analysis techniques to extract

biological information from the networks. The first technique

identified upstream regulators of a target gene of interest in the

constructed modulator-dependent gene networks. To evaluate the

modulator-dependent strength of a regulator for the target gene,

we created a measure called the regulatory effect. The regulatory

effect profiles of the upstream regulators for specific target genes

are shown in Figure 3c. The second technique discovered putative

master regulators that control downstream target gene sets with

previously curated functions. To evaluate the enrichment of the

target genes on a functional gene set, we created measure called

the enrichment score. The resulting regulator-function matrix

(Figure 3d) illustrates the candidate regulators (rows) of functions

(columns) that are enhanced in the target genes.

Identification of system changes in the epithelial-
mesenchymal transition

To identify system changes during the EMT, we applied

NetworkProfiler to gene expression profiles of 762 cancer cell lines

from the Sanger Cell Line Project (http://www.broadinstitute.

org/cgi-bin/cancer/datasets.cgi). This dataset included the ex-

pression profiles of 22,777 probes, which correspond to 13,006

mRNAs in these cancer cell lines from the Affymetrix GeneChip

Figure 2. A regulatory change between a regulator (R) and a target (T) depending on the value of a modulator M. (a). A simple
example with synthetic data from 1000 samples for R, T , and M where x-, y-, and z-axises correspond to the expressions of R and T , and the values
of M , respectively. (b). The 3 scatter plots of R and T that are conditioned on the value of M . The left, middle, and right figures represent the scatter
plots from 1-st sample to 333-th sample, from 334-th sample to 666-th sample, and from 667-th sample to 1000-th sample in order of ascending M ,
respectively. (c). The scatter plot of R and T that are not conditioned on the value of M .
doi:10.1371/journal.pone.0020804.g002
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Human Genome U133 Array Set (HG-U133A) and the expression

profiles of 502 human microRNAs from bead-based oligonucle-

otide arrays. The MAS5-normalized mRNA dataset was further

transformed to the log scale and quantile-normalized. During the

mapping of the probes to genes, we selected 1 probe for each gene

that had the largest variance, which produced a final 13,508

(genes) | 762 (cancer cell lines) gene expression matrix.

In this study, we considered transcription factors, nuclear

receptors, and microRNAs to be potential regulators. To identify

transcription factors and nuclear receptors, we selected human

genes that were annotated as a ‘‘transcription regulator’’ or

‘‘ligand-dependent nuclear receptor’’ from the Ingenuity Knowl-

edge Base (IKB; http://www.ingenuity.com). We also included

some transcription factors that were not annotated in the IKB but

were annotated in the Biobase Knowledge Library (BKL; http://

biobase-international.com/). We mapped a total of 1230 genes in

the HG-U133A microarray gene set to 1183 transcription factors

and 47 nuclear receptors (Table S1). In addition, we included 502

human miRNA probes (Table S2).

To calculate the modulator values for the EMT in the 762 cancer

cell lines, we applied a signature-based hidden modulator extraction

algorithm (see Methods for details) to the expression data. First, we

selected 122 genes labeled ‘‘EMT_UP’’, ‘‘EMT_DN’’, ‘‘JECHLIN-

GER_EMT_UP’’, and ‘‘JECHLINGER_EMT_DN’’ from Molec-

ular Signatures Database v2.5 ([6]; http://www.broadinstitute.org/

gsea/msigdb/index.jsp). Then, this algorithm narrowed the set to

Figure 3. A schematic representation of the entire analytical process of NetworkProfiler. (a). Inputs of NetworkProfiler: gene expression
data matrix and the modulator for each sample. (b). Outputs of NetworkProfiler: a set of gene networks for every value of M (i.e., sample-specific
gene networks). (c). The regulatory effect profiles of the upstream regulators for a specific target gene. (d). The resulting regulator function matrix
whose columns are the candidate regulators and rows are functions that are enhanced in the target genes.
doi:10.1371/journal.pone.0020804.g003
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50 functionally coherent genes with pv10{5 by using the

extraction of expression module (EEM) [7] (Table S3) and

computed the first principal component of these 50 genes as hidden

values of the EMT-related modulator (Table S4). Since the

direction of the first principal component did not always correspond

to that of the EMT, we changed the sign of the modulator values by

Figure 4. Expression profiles of the 50 functionally coherent genes in ascending order of the EMT-related modulator values. The
heatmap represents normalized expression profiles so that the mean and variance for each gene are 0 and 1, respectively. The red color represents
positive expressions and the green color represents negative expressions. The upper strings indicate cell line names which are known to be epithelial
or mesenchymal. The upper horizontal color bar represents the values of the EMT-related modulator with the signature-based hidden modulator
extraction algorithm. The bottom horizontal color bar shows primary histories of 762 cancer cell lines whose color corresponds to one of the eight
primary histories or the other histories (black). The bottom histograms represent frequencies of the primary histories between samples with the 200
lowest and 200 highest values of the EMT-related modulator, respectively.
doi:10.1371/journal.pone.0020804.g004
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multiplying either plus or minus one so that epithelial-like cells have

lower modulator values than mesenchymal-like cells.

Figure 4 shows the expression profiles of the 50 functionally

coherent genes in ascending order of the EMT-related modulator

values. These modulator values clearly discriminated cell lines that

were epithelial-like or mesenchymal-like. Specifically, cells with

smaller or larger modulator values had more epithelial or

mesenchymal phenotypes, respectively. Furthermore, many carci-

nomas and squamous tumors had low modulator values, while

many gliomas and melanomas had high values. By using these

EMT-related modulator values, NetworkProfiler constructed 762

regulatory gene networks that are related to the EMT. The list of

the estimated edges in each of these networks can be downloaded

from the supporting web site (Files S1, S2, and S3; http://bonsai.

hgc.jp/*shima/NetworkProfiler).

Identification of regulators of E-cadherin that induce the
epithelial-mesenchymal transition

To identify possible regulators that might control the

expression of E-cadherin during the EMT, we calculated the

regulatory effects of the upstream regulators of E-cadherin. Out

of 1732 potential regulators, NetworkProfiler inferred that 370 of

them may control the expression of E-cadherin in any of the 762

cancer cell lines (Table S5). These putative regulators were

ranked according to the change in their regulatory effect during

the EMT. Although we did not include any information on

known E-cadherin regulators, about half of the 25 highest ranked

regulators were previously reported in the literature (Table 1).

For example, 2 zinc finger transcription factors, ZEB1 and ZEB2,

are direct repressors of E-cadherin and are involved in the EMT

[9,15]. In addition, the miR-200 family indirectly suppresses the

EMT by inhibiting the translation of ZEB1 and ZEB2 mRNAs

[8]. Similarly, miR-192 inhibits the translation of ZEB2 [13,14].

In addition, SNAI2, a member of the Snail superfamily of zinc

finger transcription factors, also is involved in the EMT [16].

Likewise, TCF4 (also known as E2-2), a class I bHLH

transcription factor, is an EMT regulator; its isoforms induce

the EMT in MDCK kidney epithelial cells [12]. In contrast,

FOXA1 and FOXA2 are positive regulators of E-cadherin, which

suppress the EMT in pancreatic ductal adenocarcinoma [11].

KLF4 also inhibits the EMT by regulating E-cadherin expression

[10]. NetworkProfiler also identified several other known direct

repressors of E-cadherin, such as TWIST1 [17] and TCF3 (also

known as E47) [18]; however, these regulators were ranked 38th

and 84th, respectively.

The other half of the 25 highest ranked regulators has not yet

been reported and may be novel EMT-dependent regulators of E-

cadherin. For example, although the relationship between

GRHL2 and EMT is not known, GRHL2 is required for

morphogenesis of epidermal and tracheal cells and plays an

important role in regulating the expression levels of E-cadherin in

Drosophila post-embryonic neuroblasts [19]. ZNF217 binds the E-

cadherin promoter [20], which suggests that ZNF217 might be a

transcription factor for E-cadherin.

Next, we compared the performance of NetworkProfiler with

that of a structural equation model (SEM) of E-cadherin that was

inferred by the elastic net [22]. This model was equivalent to a

regression model where the response variable is the expression of

E-cadherin and the explanatory variables are the 1732 regulator

expressions. The significance of each regulator was evaluated

based on the number of non-zero regression coefficients in 1000

bootstrapped datasets. The SEM inferred 627 putative regulators

(Table S6). Among these putative regulators, there were only 6

regulators, namely, ZEB1, miR-141, ZEB2, TCF3, miR-200b, and

miR-200c, in the 25 highest ranked regulators that were previously

reported in the literature. This result suggested that NetworkPro-

filer was superior to the traditional gene network estimation

methods to identify regulators of E-cadherin that are involved in

the EMT. Moreover, NetworkProfiler can reveal regulatory

changes among genes during the EMT. Figures 5a and 5b show

the regulatory profiles of putative regulators of E-cadherin when

the lengths of the paths from the regulators to E-cadherin is 1 and

2, respectively.

NetworkProfiler can also predict mechanistic interpretations

of published experiments. For example, it is known that ZEB1

and ZEB2 induce EMT by repressing E-cadherin transcription

and that ectopic expression of the miR-200 family (miR-200a,

miR-200b, miR-200c, and miR-141) or miR-205 leads to

downregulation of ZEB1 and ZEB2, upregulation of E-

cadherin, and mesenchymal-epithelial transition (MET) in cells

[8]. As the relationships between these genes, the prediction of

NetworkProfiler provides the following results. As shown in

Figures 6c and 6d, although the expression of miR-141 had a

strong positive effect on that of E-cadherin in epithelial-like

cells, this effect decreases during the EMT. In contrast, although

the expression of ZEB1 had a weak negative effect on that of E-

cadherin in epithelial-like cells, this effect increased during the

EMT. Interestingly, miR-141 and ZEB1 had a strong, direct

Table 1. 25 top-ranked regulators of E-cadherin for the
change in the regulatory effect change among the EMT with
published evidence.

regulator type regulatory effect change Evidence

IRF6 A 101.04

miR-141 A 87.58 [8]

GRHL2 A 64.13

ZEB1 (SIP1) I 50.72 [9]

LSR I 46.89

miR-200b A 31.55 [8]

KLF4 A 26.28 [10]

OVOL2 A 22.08

miR-200a A 17.70 [8]

FOXA2 A 17.26 [11]

TCF4 (E2.2) I 14.15 [12]

ELF3 A 13.58

ZNF217 A 13.53

MYB A 12.50

KLF5 A 12.42

miR-192 A 12.30 [13, 14]

FOXA1 A 11.69 [11]

ZNF165 A 11.39

NKX2-1 A 11.21

HNF1B A 11.08

TFE3 A 11.01

ZEB2 (dEF) I 10.66 [15]

TRIM29 I 9.87

SNAI2 I 9.74 [16]

The labels ‘‘A’’ and ‘‘I’’ indicate 2 types of the regulator: activator (A) and
inhibitor (I). See Table S5 for the complete table of the 370 putative regulators
for E-cadherin.
doi:10.1371/journal.pone.0020804.t001
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negative effect on each other only when the EMT-related

modulator values were low. This implied that there is a negative

feedback loop between miR-141 and ZEB1 in epithelial-like

cells, which is consistent with a previous study [23]. Further-

more, during the EMT, the expression levels of miR-141 and E-

cadherin decreased, while the expression level of ZEB1

Figure 5. Regulatory effect profiles of the putative regulators of E-cadherin among the EMT. (a). The regulatory effect profiles of the 13
putative regulators among the EMT when the length of the paths from the regulators to E-cadherin is 1 where rows indicate the putative regulators
of E-cadherin and columns indicate samples (cancer cell lines). The positive (red) and negative (green) regulatory effect indicate that the parent
regulator controls the transcript of E-cadherin positively and negatively, respectively. (b). The regulatory effect profiles of the 13 putative regulators
among the EMT when the length of the paths from the regulators to E-cadherin is 2.
doi:10.1371/journal.pone.0020804.g005

Figure 6. Regulatory changes among miR-141, ZEB1, and E-cadherin among the EMT. (a). The relationship among miR-141, ZEB1, and
E-cadherin in epithelial-like cells. (b). The relationship among miR-141, ZEB1, and E-cadherin in mesenchymal-like cells. (c). The expression profiles of
miR-141 (left), ZEB1 (middle), and E-cadherin (right) in order of ascending the EMT-related modulator values. The green and red colors indicate
epithelial- and mesenchymal-like cells, respectively. (d). The regulatory effects from ZEB1 to miR-141, from miR-141 to ZEB1, from miR-141 to
E-cadherin, and from ZEB1 to E-cadherin when the length of the paths is 1.
doi:10.1371/journal.pone.0020804.g006
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Table 2. Selected relationships between the 47 putative master regulators and the 5 functional categories with published
evidence.

regulator function -log10(q-value) mode of action (E[M) evidence

AX AY IX IY {

FOSL1 migration 9.82 29 2 42 3 41 [25]

invasion 8.42 14 2 24 3 22 [26]

EPAS1 adhesion 5.90 26 1 10 0 16 [27]

migration 7.66 32 1 14 0 24 [28]

KLF5 migration 5.93 28 2 27 5 25 [29]

AHR metastasis 3.67 12 0 11 0 9 [30]

FOXF1 metastasis 6.10 24 0 9 0 8 [31]

migration 6.09 29 0 17 0 14 [32]

ELK3 migration 6.23 41 8 17 7 19 [33]

SMAD3 adhesion 4.57 9 3 23 0 10 [34]

metastasis 3.12 5 1 12 1 9 [35]

migration 5.24 14 5 26 1 21 [36]

EMT 2.47 1 1 2 0 0 [37]

WWTR1 migration 5.08 32 0 17 3 16 [38]

invasion 3.48 17 0 8 2 5 [38]

hsa-miR-145 invasion 2.52 13 0 8 3 17 [39]

CEBPD metastasis 4.88 17 2 10 0 9 [31]

TGFB1I1 adhesion 5.12 25 2 23 5 11 [40]

HIF1A adhesion 3.84 10 0 25 3 10 [27]

metastasis 4.45 14 1 14 0 8 [41]

migration 5.00 18 3 25 4 21 [42]

invasion 3.65 12 0 9 3 10 [43]

SNAI2 migration 3.45 36 2 25 14 25 [25]

ELF3 adhesion 7.87 24 4 24 11 14 [44]

invasion 4.45 9 3 18 6 21 [44]

SOX9 adhesion 6.80 18 2 19 0 26 [45]

migration 5.46 28 2 15 1 23 [46]

GLI3 migration 4.53 24 7 24 7 26 [47]

TCF7L2 migration 4.52 19 10 18 1 27 [48]

NFKBIA adhesion 2.73 12 2 14 3 12 [49]

metastasis 2.39 5 0 5 3 9 [50]

migration 3.98 18 2 18 7 23 [51]

invasion 2.69 9 2 5 2 12 [50]

VAV1 adhesion 5.51 3 5 15 3 14 [52]

migration 5.10 7 10 16 5 16 [53]

JUN adhesion 3.03 15 4 6 5 6 [54]

migration 3.31 19 2 7 7 14 [25]

invasion 2.07 8 2 7 2 5 [55]

ETV1 invasion 2.50 13 1 13 5 7 [56]

PDLIM1 adhesion 4.27 16 6 17 6 29 [57]

MAFB metastasis 4.41 9 0 3 8 6 [31]

GATA6 metastasis 3.25 11 3 4 1 4 [31]

RUNX1 adhesion 6.27 15 5 16 12 14 [58]

migration 2.46 23 7 20 7 20 [59]

YAP1 migration 3.30 7 2 20 0 9 [60]

The labels ‘‘AX’’, ‘‘AY’’, ‘‘IX’’, and ‘‘IY’’, and ‘‘{’’ indicate the number of the five modulator modes of action for the relationship between a regulator and its target included
in the functional gene set: ‘‘the activation of a regulator on the expressions of its target genes with the functional category was increased by the modulator’’, ‘‘inhibition
increased’’, ‘‘activation decreased’’, ‘‘inhibition decreased’’, and ‘‘the modulator mode of action is not determined’’, respectively.
doi:10.1371/journal.pone.0020804.t002
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increased. These results suggested that reduced expression of

miR-141 disrupts the negative feedback loop between miR-141

and ZEB1 (Figures 6a and 6b), which would allow ZEB1 to

decrease the expression of E-cadherin, as illustrated in Figure 6c.

It should be noted that these results cannot be predicted by

traditional graphical models which infer a static gene network

structure.

Identification of relationships between regulators and
epithelial-mesenchymal transition-related functional
gene sets

The EMT-dependent relationships between downstream target

genes for each regulator and previously curated functional gene

sets in each sample were analyzed by applying gene set analysis

(see Methods for details) to the constructed gene networks for 762

cancer cell lines. We tested five curated gene sets included in

Ingenuity Knowledge Base (IKB; http://www.ingenuity.com).

These gene sets were related with adhesion, migration, invasion, and

metastasis which were hallmarks of EMT [5], and EMT itself. By

using gene set analysis, the statistical significances (q-values) for the

enrichments of downstream genes for the 1732 regulators on the

five functional gene sets were calculated in each of the 762 cell

lines. These results can be downloaded from the supporting web

site (File S4; http://bonsai.hgc.jp/*shima/NetworkProfiler).

To search for regulators that strongly affected the five EMT-

related functional gene sets, the change in the enrichment score

during the EMT and their integral q-value were calculated. The

result was summarized by a regulator function matrix (Table S7).

We focused on 45 regulators with the integral q-values less than

10{10 as putative master regulators that strongly enhanced the

Figure 7. Induction of EMT by KLF5 knockdown in A549 NSCLC
cell line. (a) Phase contrast images of A549 cells 72 hours after siRNA
transfection, showing a fibroblast-like morphology in siKLF5 treated
cells. TGF-b treatment serves as a positive control for EMT induction in
A549 cells. (b) Representative immunofluorescence staining images,
showing reduced E-cadherin expression in siKLF5-treated A549 cells. (c)
Western blot analysis of E-cadherin and vimentin, showing EMT-related
changes in their expression in A549 cells treated with two differenct
siRNAs.
doi:10.1371/journal.pone.0020804.g007

Figure 8. miR-100-induced changes in biologic characteristics
in A549 NSCLC cell line. (a) Quantitative real-time RT-PCR analysis of
miR-100 in six NSCLC cell lines, showing low miR-100 expression in
A549, NCI-H727 and NCI-H1437. (b) Motility assay showing increased
migration in miR-100-transfected A549 cells. Error bars indicate SE in
three independent experiments (*, pv0:05). NC#2, negative control. (c)
Western blot analysis of E-cadherin, vimentin and a-tubulin, showing
lack of noticeable changes in miR-100-transfected A549 cells (d)
Representative phase contrast microscopic images showing negligible
changes in miR-100-trasfected A549 cells.
doi:10.1371/journal.pone.0020804.g008
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functional gene sets related with the EMT. Interestingly, among

the 45 regulators, 17 regulators were downstream targets of

transforming growth factor b-1 (TGFB1), a master switch of EMT

[24], with published evidence (Table S8). This result suggests that

these regulators have crucial roles in TGFB1-induced EMT.

As a control, we tested how well the NetworkProfiler analysis

identified known relationships between regulators and functional

gene sets in the Ingenuity Knowledge Base. The known functional

relationships of the 45 putative master regulators are shown in

Table 2. For example, FOSL1 increases the migration of MDA-

MB-436 cells [25] and the invasion of A549 cells [26]. SMAD3

increases the adhesion [34], the metastasis [35], and the migration

[36] of cells, respectively. Similarly, HIF1A increases the adhesion

of undifferentiated trophoblast stem cells [27], the metastasis of

LM2 cells [41], the migration of HUVEC cells [42], and the

invasion of Achn cells [43], respectively.

Although some of the 47 putative master regulators have not

been reported to enhance the EMT-related functions in IKB,

some predictions were supported by other resent works which

were not included in IKB. For example, the prediction of

NetworkProfiler suggested that PTRF regulates gene sets related

with migration (q-value = 2:45|10{8) and with metastasis (q-

value = 2:03|10{6) during the EMT. Consistent with the in

silico result, PTRF expression inhibits migration and correlates

with metastasis in PC3 prostate cancer cells [61]. Similarly,

NetworkProfiler predicted that miR-146 contributes to migra-

tion (q-value = 3:27|10{9) and invasion (q-value = 1:01|10{4)

during the EMT. This in silico result is comparable with the in

vitro result that miR-146 inhibits invasion and migration, and

acts as a metastasis suppressor [62]. In addition, some

predictions between miRNAs and functions seem reasonable

based on the known functions of the miRNA host genes. For

example, the prediction of NetworkProfiler provided the

hypothesis that miR-143 and miR-145 promotes metastasis (q-

value = 7:17|10{4 and 3:15|10{5) and migration (q-

value = 1:37|10{6 and 6:10|10{8), respectively. miR-143

and miR-145 cooperatively target a network of transcription

factors, such as KLF4, to control smooth muscle phenotype

switching [63]. Since KLF4 increases the migration of cells [29]

and induces EMT [10], these miRNAs might be related with

EMT-related functions or control EMT by targeting KLF4.

Again, it should be noted that these relationships between

regulators and functions cannot be predicted from one gene

network constructed by traditional graphical models, and only

the results of multiple network comparison between epithelial-

like and mesenchymal-like cells based on NetworkProfiler

enables us to support the recent biological knowledge and new

hypotheses about unknown relationships.

Comparison between in silico predictions and in vitro
results

To validate the performance of NetworkProfiler, in silico

predictions obtained by NetworkProfiler were evaluated experi-

mentally. We first conducted in vitro experiments of a new

candidate regulator of E-cadherin listed in Table 1, KLF5, to

investigate whether KLF5 affects E-cadherin expression and

induces morphologic changes characteristic of EMT using A549

lung adenocarcinoma cell line, which is well known to exhibit

EMT in response to TGF-b [64]. KLF5 knockdown markedly

altered a cobblestone epithelial morphology of A549 cells and

induced a more fibroblast-like morphology with reduced cell-cell

contact, which was similar to that seen in TGF-b-treated A549

cells (Figure 7a and Figure S1). Immunofluorescence analysis

showed significant reduction of E-cadherin expression in A549

cells knocked down for KLF5 (Figure 7b), which was also

confirmed by western blot analysis (Figure 7c). Conversely,

vimentin expression was shown to be modestly increased by

siKLF5 treatment (Figure 7c). Consistent with the in vitro results,

the prediction of NetworkProfiler suggested that KLF5 affects E-

cadherin expression as well as Vimentin expression during the

EMT, since the changes in the regulatory effects from KLF5 to E-

cadherin and Vimentin were much larger compared with the

other regulators (12.42 and 16.57, respectively) which was ranked

15-th and 10-th among the 1732 regulators (Table S9). The result

of gene set analysis (Table S7) also suggested that KLF5 affects

EMT (q-value = 1:60|10{24). Thus, we consequently found that

in silico predictions obtained by NetworkProfiler was confirmed

with the results of in vitro experiments; KLF5, a newly identified

candidate regulator of EMT, was shown to affect expressions of E-

cadherin and Vimentin as well as morphologic characteristics

related to EMT as a repressor of EMT.

We also conducted in vitro experiments to validate functional

involvement of a novel candidate EMT-related microRNA, miR-

100 whose expression was increased in 762 cancer cell lines during

the EMT (Figure S2). miR-100 was found to be expressed at a low

level in A549, NCI-H727 and NCI-H1439 NSCLC cell lines,

which had low EMT-related modulator values among the 762 cell

lines panel (Figure 8a). miR-100 was transiently introduced into

A549 cells, resulting in a significant increase of cell migration

activity (Figure 8b). However, overexpression of miR-100 did not

affect expressions of an epithelial marker, E-cadherin, and a

mesenchymal marker, vimentin (Figure 8c), and also did not

influence cell morphology (Figure 8d). However, overexpression of

miR-100 significantly increased cell migration without noticeably

affecting morphology in NCI-H727 and NCI-H1437 cells (Figure

S3). Consistent with the in vitro results, the prediction of

NetworkProfiler suggested that miR-100 enhances migration (q-

value = 1:42|104) but does not affect EMT itself (q-value = 0.24)

from gene set analysis (Table S7). It also suggested that miR-100

does not affect the expressions of E-cadherin and Vimentin during

the EMT, since E-cadherin and Vimentin were not target genes of

miR-100 in all the 762 cell line-specific gene networks related with

the EMT(Files S1, S2, and S3) and the changes in the regulatory

effects from miR-100 to E-cadherin and Vimentin were much

smaller compared with the other regulators (0 and 1.72,

respectively), which were ranked 371-th and 151-th among the

1732 regulators (Table S9). Thus, we conclude that several

hypotheses of miR-100 functions provided by NetworkProfiler are

consistent with the results of in vitro experiments; NetworkProfiler

has the potential to uncover novel biological mechanisms.

Discussion

We developed a novel algorithm called NetworkProfiler to infer

patient-specific, modulator-dependent gene regulatory networks

from gene expression data. Unlike traditional methods that infer a

static network for a specific state of a cell or an averaged network for

many patients, NetworkProfiler can be used to construct patient-

specific gene networks for specific diseases, such as cancer.

Subsequently, information about the regulatory effects of individual

genes and functional gene sets can be extracted from these networks.

In order to show the performance of NetworkProfiler, we applied

NetworkProfiler to microarray gene expression data from 762

cancer cell lines to identify the system changes that were related to

the EMT. As a result, we identified 25 EMT-dependent regulators

of E-cadherin. Although some of these regulators have been

reported in the literature, others may be novel master regulators of

E-cadherin that induce the EMT. Moreover, in comparison to the
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traditional SEM approach, the performance of NetworkProfiler was

superior for identifying regulators of E-cadherin during the EMT.

We also showed that NetworkProfiler can reveal regulatory changes

of E-cadherin during the EMT. In particular, our results suggested

that decreased expression of miR-141 disrupts the negative feedback

loop between miR-141 and ZEB1, which would allow ZEB1 to

decrease the expression of E-cadherin.

Furthermore, we also identified putative relationships between

regulators and EMT-dependent functional gene sets, some of

which had published evidence. Based on the significance of the

enrichment of downstream target genes for the regulator on the 5

functional gene sets, we identified 45 putative master regulators for

the EMT. We found that 17 regulators were downstream targets of

TGFB1 that is a master switch of the EMT. We then showed that

NetworkProfiler can not only predict the relationships between

these regulators and functions that were supported by many

published evidence, but also produce new hypotheses that some of

them might enhance EMT-related functions or induce EMT.

Finally, it is of note that we were able to validate the in silico

predictions obtained by NetworkProfiler in our in vitro experiments.

KLF5, a newly identified candidate regulator of EMT, was

experimentally shown to affect E-cadherin expression as well as

morphologic characteristics related to EMT, validating the

NetworkProfiler-based prediction that KLF5 is a negative regulator

of EMT. We also conducted in vitro experiments of another

regulator, miR-100, for which NetworkProfiler predicted its

association with some EMT-associated functions. As a result, we

found that the predicted miR-100 functions conformed to the results

of in vitro experiments. Thus, we conclude that the effectiveness of

the proposed method was validated not only from published

literature but also from new in vitro validation experiments.

We anticipate several possible applications and extensions of

NetworkProfiler. In this study, we only focused on the system

changes that are associated with the EMT. NetworkProfiler also

could be used to infer system changes and reconstruct modulator-

dependent gene networks for other well-defined modulators, such

as drug sensitivity and prognosis risk. Currently, a significant

limitation of NetworkProfiler is that the modulator must be one-

dimensional. However, cancer development is a multivariate

process. It may be possible to use multivariate kernel functions in

NetworkProfiler to overcome this limitation.

During the past decade, cancer therapy has become increasingly

personalized [2,3]. Unlike the traditional ‘‘one-size-fits-all’’

approach to cancer therapy, patient-specific cancer therapy

reduces the side effects of chemotherapy and predicts the odds

of cancer recurrence more accurately by tailoring cancer

treatment to specific genetic defects in the tumors of individual

patients. However, this goal is not an easy task since cancer is an

extremely complex and heterogeneous disease. We believe that

NetworkProfiler will help elucidate the systems biology of cancer

and facilitate personalized chemotherapy.

Materials and Methods

Cell lines and reagents
Human non-small cell lung cancer (NSCLC) cell lines, A549, NCI-

H1437 and NCI-H727, were purchased from American Tissue

Culture Collection, while other NSCLC cell lines, Calu1, Calu6 and

SK-MES1, were generously provided by Dr. L. J. Old (Memorial

Sloan-Kettering Cancer Center). Cells were maintained in RPMI

1640 supplemented with 10% fetal bovine serum. The anti-E-

cadherin antibody was purchased from BD Transduction Labora-

tories, anti-vimentin from Santa Cruz Biotechnology, anti-a-tublin

from Sigma Aldrich, and anti-mouse IgG from Cell Signaling

Technology. The Alexa-conjugated anti-mouse IgG was purchased

from Molecular Probes. siRNAs against KLF5 (siKLF5 #1 and #2)

and a negative control (siNC) were purchased from Sigma Genosys.

Pre-miR has-miR-100 and negative control #2 were purchased from

Ambion. Human TGF-b was purchased from R&D Systems, Inc.

Immunostaining, western blot analysis and in vitro
motility assay

2|104 cells in 6-well plates were transiently transfected with either

20 nM siRNA or 10 nM Pre-miR molecules using Lipofectamine

RNAiMAX (Invitrogen), as previously described [65]. Immunoflu-

orescence staining was carried out after fixation with 3.7%

formaldehyde and postfixing with 0.1% Triton X-100 each for

10 min at RT. Photographs were taken 72 hr after transfection. Cells

were harvested 48 hr after transfection for western blot analysis. In

vitro motility assay based on Transwell-chamber culture systems was

performed, as previously described [66].

Quantitative real-time reverse transcription (RT)-PCR
analysis

Quantitative real-time RT-PCR analysis of KLF5 was per-

formed using Power SYBR Green (Applied Biosystems) and the

following PCR primers:

59-CCCTTGCACATACACAATGC-39 and 59-GGATGGA-

GGTGGGGTTAAAT-39. Quantitative real-time RT-PCR anal-

ysis of miR-100 and RNU44 was performed using TaqMan

probes and 7500 Fast Real-Time PCR system (Applied Biosys-

tems), essentially as previously described [67].

NetworkProfiler
NetworkProfiler employed a varying-coefficient structural

equation model (SEM) to represent the modulator-dependent

conditional independence between gene transcripts. Let there be q

possible regulators, R1, . . . ,Rq, that may control the transcription

of the k-th target gene Tk when the modulator M~m. Then the

varying-coefficient structural equation model for Tk is

Tk~
Xq

j~0

bjk(m):Rjzek,

where bjk(m) is the coefficient function that represents the effect of

Rj on Tk, R0~1, and ek is a noise term. If Tk~Rl , then the term

blk(m):Rl can be omitted from the model, i.e., blk(m)~0 for all m.

By estimating the parameters bjk(m), we obtain the transcriptional

regulatory gene network at M~m.

We used a kernel-based method to estimate these parameters.

Let there be n sets of gene expression profiles. Then, the SEM for

the a-th sample can be rewritten as

tak~
Xq

j~0

bjka
:rajzeak,a~1, . . . ,n,

where tak, raj , and ma are the values of the k-th target gene, the j-

th regulator, and the modulator for the a-th sample, respectively;

r0k~1, and bjka~bjk(ma). For n samples, we obtain n modulator-

dependent gene regulatory networks, i.e., the regulatory effects of

Rj (j~1, . . . ,q) on Tk (k~1, . . . ,p) are determined by

b̂b111, . . . ,b̂bqpn, where b̂bjka is the estimate of bjka.

We assumed that the values of the coefficients are almost

constant for the neighborhood samples of the a-th sample with

respect to the modulator m, that is, bjki&c for the i-th sample that
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satisfies jmi{majv d for some constant c and small d. Then, we

estimated the parameters bjka for fixed a by minimizing a

regularized kernel-based weighted residual sum of squares

Lk(b1ka, . . . ,bqkajhk)~
1

2

Xn

i~1

ftik{
Xq

j~1

bjka
:rijg2

K(mi{majhk)

zlka

Xq

j~1

wjka
: bjka

�� ��z cka

2

Xq

j~1

b2
jka, ð1Þ

where K(mi{majhk) is a Gaussian kernel function defined by

K(mi{majhk)~ exp {
1

hk

(mi{ma)2

� �
,

and lka and cka are hyperparameters that control the L1 (lasso

[68]) and L2 (ridge [69]) penalties, respectively. In addition, wjka is

an importance weight for bjka, and hk is the bandwidth of the

Gaussian kernel. The kernel function K(mi{majhk) defines the

neighborhood around the a-th sample in terms of M; a large value

of K(mi{majhk) means that the i-th sample is in the

neighborhood of the a-th sample. By fixing lka, cka, wjka, and

hk, we obtain the estimates

fb̂b1ka, . . . ,b̂bqkag~ arg min
bjka

Lk(b1ka, . . . ,bqka):

This parameter estimation method is a weighted version of the

elastic net [22]. The L1 penalty zeroes some coefficients [68],

which produces a sparse network structure. In contrast, the L2

penalty stabilizes the solution by a grouping effect that promotes

the collective inclusion or exclusion of highly correlated variables

in the model [22]. The importance weights wjka allow tuning

parameters to take on different values for different coefficients bjka.

For example, if wjka has a large value, then an estimator b̂bjka tends

to be zero. In contrast, if wjka has a small value that is nearly equal

to zero, b̂bjka tends to be non-zero. These weights create a sparser

network structure than the lasso and elastic net methods. The

parameters bjka were estimated by using a recursive procedure,

and the weights wjka were updated by wjka~1=(~bbjkazj) [70],

where ~bbjka is the estimate from the previous step and j~10{5 to

avoid dividing by zero. Then, the modulator-dependent networks

for n samples can be derived from the estimates of b̂bjka

(j~1, . . . ,q, k~1, . . . ,p, and a~1, . . . ,n).

For convenience of subsequent explanations, we introduce the

following notations:

tka(hk)~

k1a(hk):t1k

..

.

kna(hk):tnk

0
BBB@

1
CCCA,and

Ra(hk)~

k1a(hk):r11 � � � k1a(hk):r1q

..

.
P

..

.

kna(hk):rn1 � � � kna(hk):rnq

0
BBB@

1
CCCA,

where kia(hk)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(mi{majhk)

p
.

In these expressions, tka(hk) and Ra(hk) were normalized so that

the means and variances for tka(hk) and each column of Ra(hk)
were 0 and 1, respectively. As a result, the intercept b0ka was not

included in the loss function (1). For fixed hk, the loss function (1)

can be minimized by using a kernel-based weighted version of the

recursive elastic net [70]. The tuning parameters lka and cka were

selected by minimizing a modified version of the bias-corrected

weighted Akaike information criterion (AIC) [71]:

mWAICcka~(na(hk)z1): log (2pŝs2
ka)z

2na(hk)( d̂df kaz1)

na(hk){ d̂df ka{2
,

where na(hk)~
Pn

i~1 kia(hk), and ŝs2
ka is estimated by

ŝs2
ka~

1

na(hk)
Etka(hk){Ra(hk)b̂bkaE

2
2,

with b̂bka~(b̂b1ka, . . . ,b̂bqka)’. In addition, d̂dfka is the unbiased

estimate of the degrees of freedom given by

d̂dfka~ tr (~RR(hk)’~RR(hk)zckaI){1 ~RR(hk)’~RR(hk)
� �

,

where I is the identify matrix and ~RR(hk) is the submatrix of R(hk),
which has columns that correspond to the nonzero coefficients,

respectively.

The NetworkProfiler algorithm is shown below:

Algorithm: NetworkProfiler.

1: ~wwjka / 1 (j~1, . . . ,q)

2: iter / 1

3: for cka~c½r� (r~1, . . . ,G) do

4: repeat

5: Calculate b̂bka½l,r� and mWAICcka½l,r� corresponding to

lka~lk½l� (l~1, . . . ,L).

6: zr½ iter � / minfmWAICcka(l,r); l~1, . . . ,Lg
7: l�/arg minlfmWAICcka(l,r); l~1, . . . ,Lg
8: if zr½ iter �{zr½ iter{1�w0 then

9: Exit loop

10: else

11: z�½r�/zr½ iter �
12: ~bbka½r� / b̂bka½l�,r�
13: ~wwjka/1=(j~bbjka(r)jzj) (j~1, . . . ,q)

14: iter/ iterz1

15: end if

16: untill iter reaches to M.

17: end for

18: r�/arg minrfz�½r�; r~1, . . . ,Gg
19: Return the coefficient vector b̂bka~

~bbka½r��.
The results from NetworkProfiler, which are the estimates of q

coefficients b̂bjka (j~1, . . . ,q) for the k-th target gene of the a-th

patient, depend on the values of hk. We used cross-validation to

select an optimal value of hk and estimate q|n coefficients,

b1k1, . . . ,bqkn by minimizing the cross-validation error:

CVk~
X
a[S

(tak{
Xq

j~0

b̂b
({a)
jka

:raj)
2, ð2Þ

where S is a randomly selected set of samples and b̂b
({a)
1ka , . . . ,b̂b

({a)
qka

are estimated from the remaining samples by minimizing:
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L{a
k (b1ka, . . . ,bqkajhk)~

1

2

X
i =[S

ftik{
Xq

j~0

bjka
:rijg2

K(mi{majhk)

zlka

Xq

j~1

wjka
:jbjkajz

cka

2

Xq

j~1

b2
jka: ð3Þ

The algorithm in NetworkProfiler for minimizing this loss

function (3) is shown below:

Algorithm: Conditional optimization with cross-

validation.

1: for hk~hl (l~1, . . . ,H ) do

2: for all a such that a[S do

3: Calculate b̂b({a)
1ka ½hl �, . . . ,b̂b({a)

qka ½hl � with NetworkProfiler.

4: end for

5: Calculate CVk½hl �.
6: end for

7: h�k/argminhl
fCVk½hl �; l~1, . . . ,Hg

8: for a~1, . . . ,n do

9: Calculate b̂b1ka½h�k�, . . . ,b̂bqka½h�k� with NetworkProfiler.

10: end for

11: Return a sequence of the coefficient vectors

b̂bk1(h�k), . . . ,b̂bkn(h�k).

Subsequently, the modulator-dependent gene networks for n
samples are determined from the coefficient vectors b̂bk1(ĥhk), . . .,
b̂bkn(ĥhk) (k~1, . . . ,p) by applying the above algorithm for all

k~1, . . . ,p. The computational cost of this algorithm rapidly

increases as the number of samples and genes increase. Thus, for

computers that only have a single central processing unit (CPU), this

algorithm is only practical for medium-sized networks with up to

several genes. However, since this algorithm can be executed in

parallel for every k, it can be run on a stand-alone workstation with

multi-core CPUs and computer clusters. Figure S4 represents the

histogram of computational times based on 12 core CPUs (Intel

Xeon Processor E5450 (# of cores = 4, clock speed = 3.0GHz) | 3)

for calculating 762 cancer cell line-specific gene networks from

13,508 | 762 gene expression data through 100,000 iterations

when 100 target genes were randomly selected among 13,508 genes

and the number of regulators was not restricted, i.e., 1732 regulators

were used. The average computational time was about 9 days. In

this situation, we can find putative master regulators of the focused

target genes related with a modulator of interest. Of course, for

calculating gene networks of 762 samples for a large number of

target genes, a supercomputer is required. In this study, we used the

Super Computer System at the Human Genome Center, Institute

of Medical Science, University of Tokyo, Japan, to analyze 762 gene

networks with 13,508 target genes.

Signature-based hidden modulator extraction
When the modulator was a variable that is difficult to observe,

we used a signature-based hidden modulator extraction algorithm

to estimate the value of the modulator for each sample. This

algorithm takes seed genes that are related to the modulator and

computes the underlying latent variable of the modulator by using

principal components and extraction of expression modules (EEM)

[7]. Let M be a gene set that is related to the modulator and let

XM be an n|jMj matrix of n expression levels of M. Then, a

linear model, which is a special case of the single factor model

[72], relates M�, a subset of M, to an underlying latent variable U
as follows:

Xj~a0jza1jUze’j , j[M�(M, ð4Þ

where Xj is the expression level of the j-th gene in M�, a0j is the y-

intercept, a1j is a coefficient, and e’j is a noise term. We assumed

that other genes that do not include M� (fXj ; j 6 [M�g) are

independent of U .

The values of U for n samples, ui (i~1, . . . ,n), can be estimated

by the following procedure:
Algorithm: signature-based hidden modulator

extraction.

1: For a given set M, find a subset M� based on the expression

coherence with the EEM algorithm [7].

2: Given M�, singular value decomposition of the data matrix

XM� estimates ui by the largest principal component.

3: Return the values ui (i~1, . . . ,n).

In the first step, we estimate M�. In the second step, we assume

that the noise terms e’j have Gaussian distributions with equal

variances. As a result, the singular value decomposition generates

maximum likelihood estimates of ui for the single factor model

[72].

Regulatory effect
To identify upstream regulators that had strong effects on the

expression of a target gene of interest in the constructed

modulator-dependent gene networks, we defined a measure,

called the regulatory effect, of the effect of the j-th regulator on

the k-th target gene in the a-th sample as

REjka~
X

l[pjka

b̂b(j?k)
l (ma):raj , ð5Þ

where pjka is the set of all possible paths from Rj to Tk, and

b̂b
(j?k)
l (ma) is the product of the estimated coefficients on the l-th

path that includes pjka. For example, given all the possible paths

from R1 to T2 in the a-th sample (Figure S5), the set p12a is

p12a~fR1?T2,R1?R3?T2,R1?R3?R4?T2g, ð6Þ

and the regulatory effect RE12a is

RE12a~(b̂b12azb̂b13a
:b̂b32azb̂b13a

:b̂b34a
:b̂b42a):raj : ð7Þ

In our analysis, the length of the paths from Rj to Tk is restricted

to either 1 or 2.

To determine how the modulator affects the regulatory effect

REjka, we also defined the change in the regulatory effect of the j-
th regulator on the k-th target as

RECjk~maxfREjka; a~1, . . . ,ng{ minfREjka; a~1, . . . ,ng: ð8Þ

In addition to this definition, it is also possible to use percentiles

instead of max and min to achieve more robust results. However,

in our analysis, we used max and min to increase the power of the

method. It should be noted that the change in the regulatory effect

RECjk does not explain the mode of action for the modulator with

respect to the regulator-target relationship. File S5 (http://

bonsai.hgc.jp/,shima/NetworkProfiler) is provided to determine

the modulator mode of action by statistical test.
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Gene set analysis of downstream genes for a regulator
To identify regulators that enhanced the functions of their

targets, we calculated the statistical significance of the enrichment

of targets for a given regulator in each sample. To test the

enrichment, we use the degree of independence between the two

properties:

Aja :gene is in the list of targets for the j-th regulator in the
a{th sample
Bu :gene is a member of the u-th priori set

Testing the association between the properties Aja and Bu

corresponds to Fisher’s exact test. The p-value calculated by this

test, Pjua, indicates the probability of observing at least the same

amount of enrichment when downstream genes are randomly

selected out of all genes. Thus, a very small p-value gives strong

evidence for an association between Aja and Bu for the j-th
regulator in the a-th sample. To correct for multiple hypotheses

testing, Benjamini-Hochberg (BH)-corrected p-values (q-values)

[73], Qjua, were calculated.

To determine how the modulator affects the functions of

downstream genes for a regulator, we defined the enrichment

score, ESju, as a change in the statistical significance of the

enrichment of targets for the j-th regulator on the u-th function:

ESju~ log ( maxfQjua; a~1, . . . ,ng=minfQjua; a~1, . . . ,ng): ð9Þ

Thus, a very large ESju indicates that the modulator causes a

significant change of the enrichment of the targets for the j-th
regulator on the u-th function.

To identify putative master regulators that control more

functional gene sets than other regulators, we also calculated the

total enrichment score, TESj , by combining independent

enrichment scores, ESj1, . . . ,ESjU , where U is the number of

functional gene sets:

TESj~2
XU

u~1

ESju: ð10Þ

The total enrichment score is equivalent to the difference of the

Fisher’s statistic {2
Pk

i~1 log Pk [74] which was used to combine

independent tests obtained from k studies based on the p-values,

P1, . . . ,Pk. The Fisher’s method is based on the fact that the

statistic {2
Pk

i~1 log Pi follows a chi-square distribution with 2k
degrees of freedom under the global null hypothesis that all null

hypotheses are true. A small integral p-value for the hypothesis

indicates that the j-th regulator controlled at least one or more

functional gene sets during the change of the modulator.
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Figure S1 Quantitative real-time RT-PCR analysis of
KLF5 in siKLF5-treated A549 cells.

(PDF)

Figure S2 Expression profiles of miR-100 in order of
ascending the EMT-related modulator values.
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Figure S3 miR-100-induced changes in biologic charac-
teristics in NCI-H1437 and NCI-H727 NSCLC cell lines.
(a) Representative phase contrast microscopic images showing

negligible changes in morphology by miR-100 introduction in

both NSCLC cells lines. NC#2, negative control. (b) Motility

assay showing increased migration by introduction of miR-100 in

both NSCLC cell lines. *, Pv0:05:
(PDF)

Figure S4 Histogram of computational times for infer-
ring cancer cell line-specific gene networks running on
12 core CPUs. The 762 cancer cell line-specific gene networks

related with the EMT were calculated from 13,508 | 762 gene

expression data when 100 target genes were randomly selected

among 13,508 genes and the number of regulators was not

restricted, i.e., 1,732 regulators were used. The comptational times

were based on 12 core CPUs (Intel Xeon Processor E5450 (# of

cores = 4, clock speed = 3.0 GHz)|3). The histogram was

calculated by 100,000 iterations.

(PDF)

Figure S5 Example of paths among four genes, R1, T2,
R3 , and R4:
(PDF)

Table S1 List of candidate regulators mapped to 1183
transcription factors and 47 nuclear receptors.
(XLS)

Table S2 List of candidate regulators mapped to 502
human microRNAs.
(XLS)

Table S3 List of coherent genes (p-valuev10{5) related
to EMT calculated by extraction of expression module
(EEM).
(XLS)

Table S4 EMT-related modulator values of 762 cancer
cell lines calculated by signature-based hidden modula-
tor extraction.
(XLS)

Table S5 List of 370 putative master regulators of E-
cadherin during the EMT which were estimated by
NetworkProfiler.
(XLS)

Table S6 List of 627 putative master regulators of E-
cadherin which were estimated by a structual equation
model (SEM) with the elastic net.
(XLS)

Table S7 Regulator function matrix between 1732
regulators and 5 functions. The row and column indicate

regulator and functional gene set, respectively. The (i,j)-th element

represents the change during the EMT in the statistical

significance (-log10(q-value)) for the enrichment of target genes

of the i-th regulator on the j-th function. The last column indicate

the integral q-value of each row regulator which were used to

determine which regulator strongly affected the functional gene

sets.

(XLS)

Table S8 List of 17 putative master regulators (integral
q-valuev10{10) which correlated at least one or more
EMT-related functions and were known to be down-
stream targets of TGFB1 with published evidence from
Ingenuity Knowledge Base (http://www.ingenuity.com).
(XLS)

Table S9 List of the changes in the regulatory effects
from 1732 regulators to E-cadherin and vimentin during
the EMT.
(XLS)
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