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Abstract

Background

Machine learning (ML) is a powerful tool for identifying and structuring several informative

variables for predictive tasks. Here, we investigated how ML algorithms may assist in echo-

cardiographic pulmonary hypertension (PH) prediction, where current guidelines recom-

mend integrating several echocardiographic parameters.

Methods

In our database of 90 patients with invasively determined pulmonary artery pressure (PAP)

with corresponding echocardiographic estimations of PAP obtained within 24 hours, we

trained and applied five ML algorithms (random forest of classification trees, random forest

of regression trees, lasso penalized logistic regression, boosted classification trees, support

vector machines) using a 10 times 3-fold cross-validation (CV) scheme.

Results

ML algorithms achieved high prediction accuracies: support vector machines (AUC 0.83;

95% CI 0.73–0.93), boosted classification trees (AUC 0.80; 95% CI 0.68–0.92), lasso penal-

ized logistic regression (AUC 0.78; 95% CI 0.67–0.89), random forest of classification trees

(AUC 0.85; 95% CI 0.75–0.95), random forest of regression trees (AUC 0.87; 95% CI 0.78–

0.96). In contrast to the best of several conventional formulae (by Aduen et al.), this ML algo-

rithm is based on several echocardiographic signs and feature selection, with estimated

right atrial pressure (RAP) being of minor importance.

Conclusions

Using ML, we were able to predict pulmonary hypertension based on a broader set of echo-

cardiographic data with little reliance on estimated RAP compared to an existing formula

with non-inferior performance. With the conceptual advantages of a broader and unbiased
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selection and weighting of data our ML approach is suited for high level assistance in PH

prediction.

Introduction

Within the broader field of artificial intelligence science, the term machine learning (ML)

refers to advanced algorithms with features of supervised or even unsupervised adoption to

problem solving [1,2]. Such algorithms need to be "trained" with data that is annotated to a

variable of interest in order to give a mathematical model for more general applicability. This

model is then capable of generalization to solve annotation tasks on similar data of unknown

annotation. While this concept has existed for many decades, recent conceptual advances and

a significant increase in computational capacity suggest ML may be on the verge of becoming

a valuable clinical tool [3–5]. Frequently, clinical tasks require integration of a multitude of

variables to be weighted for estimation of the likelihood of a diagnosis or outcomes. ML-assis-

ted decision making should theoretically be advantageous over decisions based on experience

or reasoning alone due to its capacity to process information with less bias as well as measur-

able, comparable and constant performance [6]. However, the application of more advanced

ML algorithms to assist in cardiovascular diagnostics is only emerging [7]. In cardiology, echo-

cardiographic estimation of the likelihood of a diagnosis may be ideally suited for a ML assis-

ted approach, as a large amount of data from an individual needs to be integrated intellectually

by the examiner. Moreover, computational data processing is already an integrated technical

part of the echocardiographic examination facilitating its early adoption [8,9].

Mean pulmonary artery pressure (PAPm)� 25mmHg measured by right heart catheteriza-

tion (RHC) defines pulmonary hypertension (PH). Echocardiographic estimation of the likeli-

hood of pulmonary hypertension is an important clinical problem, as it is required to establish

sufficient pre-test probability to control risks and resources of the invasive RHC examination.

To estimate the likelihood of PH it is possible to achieve an approximation of PAP using echo-

cardiography. This is conducted by calculating the pressure difference between RA and RV

from tricuspid regurgitation velocity (TRV) (using the simplified Bernoulli equation) and by

adding right atrial pressure (RAP) to this value. However, the European guidelines recom-

mend considering TRV instead of estimating PAP. This is due to concerns that derived values,

in particular estimation of RAP, exaggerate error. Instead, estimation of the likelihood is based

on consideration of categorical values of TRVmax (cutoff 2.8 m/s and 3.4 m/s) and the pres-

ence of any one additional sign for PH from a set of several echocardiographic signs. Although

we have recently demonstrated that PH can be predicted with high accuracy based on echocar-

diographically estimated RAP/PAP in the particular setting of experienced examiners, we also

endorse the restrictive recommendation regarding estimating RAP as mentioned in the guide-

lines but in view of a more general applicability. Therefore, the approach to allow for consider-

ation of a broad set of echocardiographic signs with less emphasis on RAP seems more robust.

Unfortunately, there is no systematic scientific evaluation of the suggested guideline approach.

Thus, we sought to establish an algorithm for echocardiographic prediction of PH, that 1) is

based on ML to ensure its objective unbiased generation, 2) includes a relatively broad, yet

routinely obtained set of parameters in order to achieve sensitivity and limit reliance on very

few and problematic parameters such as RAP estimation, while avoiding lengthy or compli-

cated examinations 3) yields meaningful weights of informative vs. less informative signs and

4) achieves the same or a higher level of sensitivity while retaining overall predictive
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performance for the presence of PH (i.e. similar AUC in ROC analysis) compared to the cur-

rently best performing algorithm for estimating PAP in experienced hands. We present the

development and internal validation of a machine learning model to diagnose PH from echo-

cardiographic measurements.

Methods

An expanded methods section is included in the online supplement (S1 Appendix).

Study population

This paper presents results obtained on data from a retrospective study on echocardiographic

examinations and the results of RHC performed at the Clinic for Cardiology and Pulmonol-

ogy, University Medical Center Göttingen; King’s College Hospital, London; and the Depart-

ment of Internal Medicine II, University of Regensburg between 2011 and 2016 [10]. The

study was conducted as a database search limited to echocardiographic and RHC data as

approved by the local ethics committees and in accordance to the amended Declaration of Hel-

sinki. All data were fully anonymized before the data were accessed. Inclusion criteria were

(1.) invasively determined pulmonary artery pressure (PAP) within 24 hours after echocardio-

graphic examination and (2.) sufficient data quality defined as at most 40% of the relevant

information missing.

Risk factor variables

As risk factor variables the basic patient characteristics of age, gender, BMI, and body surface

area (BSA) were used in conjunction with 21 echocardiographic measurements. RVD variables

are defined as detailed in Rudski et al. [11]. The variable set especially allows calculation of the

risk of PH using several established methods. Most variables show some missing values

(Table 1). No variables were dropped due to missing values. To obtain unbiased performance

estimates from the cross validation (CV) no pre-imputation was performed, but handling of

missing values was conducted as part of the CV.

Outcomes

Presence or absence of PH was the pre-defined outcome of this analysis and following the

2015 European Society of Cardiology guidelines for the diagnosis and treatment of PH was

defined as PAPm� 25 mm Hg as assessed at rest by RHC [12]. For regression methods direct

modeling of the PAPm measurement itself is used as alternative.

Machine learning algorithms

Five ML algorithms were evaluated: support vector machine (SVM [13]) lasso penalized logis-

tic regression [14], boosted classification tree models using Quinlan’s C5.0 algorithm [15], ran-

dom forest of classification trees, and random forest of regression trees [16]. Technical details

are given in the supplement (S1 Appendix). The guidelines of the transparent reporting of a

multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement

were followed (S1 Appendix).

Statistical analysis

Descriptive values were computed for all variables under consideration. Factor analysis for

mixed data (FAMD [17]) was used to extract components explaining most of the variance.

Variables with established cutoffs for dichotomization into high and low were dichotomized
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Table 1. Characterization of patients.

parameter level noPH PH p value

n 22 68

age (years) < 0.01

mean ± sd 54 ± 19 68 ± 14

median(min; max) 55(21; 83) 74(22; 88)

missing 0 0

sex 1.0

m 8(50.0%) 32(47.1%)

w 8(50.0%) 36(52.9%)

missing 6 0

BMI (kg/m2) 0.15

mean ±sd 25 ±3.6 26 ±3.9

median (min; max) 26(18;29) 26 (19;38)

missing 7 2

BSA (m2) 0.3

mean ±sd 1.9 ±0.26 1.9 ±0.23

median(min;max) 2(1.4;2.3) 1.9(1.4;2.5)

missing 7 2

IVSd (mm) 0.7

mean ±sd 12 ±3.3 12 ±2.7

median (min; max) 12(8;22) 12(7;21)

missing 6 3

LVEDD (mm) 0.25

mean ±sd 46 ±8.2 49 ±12

median (min;max) 46(29;62) 47(26;78)

missing 6 3

PW (mm) 0.81

mean ±sd 12 ±3.2 12 ±2.8

median (min;max) 12 (7;22) 12 (8;24)

missing 6 3

LAD (mm) 0.59

mean ±sd 41 ±9.7 43 ±10

median (min; max) 40 (29;55) 46 (23;68)

missing 16 35

EF (%) 0.12

mean ±sd 52 ±17 46 ±14

median (min; max) 55 (10;80) 53 (10;66)

missing 0 3

RVD1 (mm) 0.02

mean ±sd 41 ±7.6 48 ±8.7

median (min; max) 42 (25;51) 49 (26;66)

missing 10 18

RVD2 (mm) < 0.01

mean ±sd 31 ±4.8 37 ±9.6

median (min; max) 31 (22;38) 36 (18;63)

missing 10 18

RVD3 (mm) 0.36

mean ±sd 72 ±9.7 75 ±12

(Continued)
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Table 1. (Continued)

parameter level noPH PH p value

median (min; max) 72 (58;90) 74 (48;100)

missing 10 21

RVenlargement (0/1) 0.72

0 4 (33.3%) 13 (26.0%)

1 8 (66.7%) 37 (74.0%)

missing 10 18

TAPSE (mm) 0.02

mean ± sd 21 ±5.2 17 ±4.6

median (min; max) 22 (12;33) 17 (8;29)

missing 6 11

RAPestimated (mmHg) < 0.01

mean ±sd 5.4 ±3.2 8.9 ±5.4

median (min; max) 3 (3;15) 8 (3;15)

missing 0 0

RAP�15 (0/1) < 0.01

0 21 (95.5%) 41 (60.3%)

1 1 (4.5%) 27 (39.7%)

missing 0 0

AS (0/1/2/3) 0.73

mean ±sd 0.47 ±0.99 0.33 ±0.81

median (min; max) 0 (0;3) 0 (0;3)

missing 7 2

AR (0/1/2/3) 0.38

mean ±sd 0.4 ±0.74 0.39 ±0.6

median (min; max) 0 (0;2) 0 (0;2)

missing 7 2

MS (0/1/2/3) 0.32

mean ± sd 0 ±0 0.17 ±0.45

median (min; max) 0 (0;0) 0 (0;2)

missing 7 2

MR (0/1/2/3) 0.85

mean ± sd 0.87 ±0.99 1.1 ±0.98

median (min; max) 1 (0;3) 1 (0;3)

missing 7 1

TR (0/1/2/3) 0.21

mean ±sd 1.3 ±1.1 1.7 ±0.89

median (min; max) 1 (0;3) 2 (0;3)

missing 7 2

TRVmax (m/s) < 0.01

mean ±sd 2.7 ±0.6 3.4 ±0.84

median (min; max) 2.6 (1.8;3.9) 3.3 (1.6;5.5)

missing 1 2

TRVm (m/s) < 0.01

mean ±sd 1.9 ±0.43 2.5 ±0.59

median (min; max) 1.9 (1.3;2.9) 2.4 (1.3;3.9)

missing 1 2

PVAT (ms) 0.1

(Continued)
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for the machine learning evaluation.A 10 times repeated 3-fold CV leading to 3 folds of size 28

in each repetition was constructed (S3 Fig). The ML algorithms were then trained in turn on

two partitions and evaluated on the remaining partition. The low number of folds was chosen

in order to arrive at large test sets which allow for reasonable imputation within each fold. A

stratified sampling scheme was applied to achieve the same distribution in all training and test

sets. Within the CV both training and test set were imputed separately so as to avoid a bias in

the performance estimation.

The random forest methods as well as the boosted classification trees are able to handle

missing values internally. Prior to applying the other algorithms, missing values were imputed

using the iterative FAMD algorithm [18]. Reported are performance measures, especially the

area under the receiver operator characteristic (ROC) curve (AUC), averaged over the 10 repeti-

tions. Confidence intervals for the AUC were calculated from the CV using the method by

LeDell et al. [19] specifically dealing with the CV structure. Variable importance for the regres-

sion tree forest was calculated using Breiman-Cutler permutation variable importance (16). All

analyses were performed using the statistical programming environment R (version 3.4.3, [20]).

Results

Study population characteristics

The data set comprised 90 patients of which 68 (75.6%) had invasively confirmed PH using

the recommended criterion of PAPm�25 mm Hg and of which 22 (24.4%) did not exhibit

PH in the invasive measurement. Six patients were dropped from the analysis due to the high

degree of missing values. Patients with confirmed PH were significantly older than patients

without (68 ± 14 vs 54 ± 19 years; p< 0.01). As expected, several of the echocardiographic

Table 1. (Continued)

parameter level noPH PH p value

mean ±sd 102 ±26 87 ±21

median (min; max) 100 (60;150) 83 (56;141)

missing 11 33

TRPm (mmHg) < 0.01

mean ±sd 15 ±6.8 26 ±12

median (min; max) 14 (6.5;32) 23 (6.6;61)

missing 1 2

WHO classification

0: no PH 21 (95.5%) 0 (0.0%)

1: PAH 0 (0.0%) 6 (8.8%)

2: due to LH-Disease 1 (4.5%) 48 (70.6%)

3: due to lung diseae 0 (0.0%) 2 (2.9%)

4: CTEPH 0 (0.0%) 0 (0.0%)

5: unknown / multifactorial 0 (0.0%) 12 (17.6%)

Incident Case

0: known PH or pre-evaluated patient 0 (0.0%) 13 (19.1%)

1: new evaluation 22 (100.0%) 55 (80.9%)

The cohort of the available 90 patients grouped into 68 patients with confirmed (by means of RHC) PH and 22 patients without PH. This table shows descriptive values

for four basic characteristics age, sex, BMI and body surface area (BSA) as well as for 23 echocardiographic measurements and the WHO classification. The last column

contains p values from comparisons between the two patient subgroups. t test and χ2 test were used as appropriate.

https://doi.org/10.1371/journal.pone.0224453.t001
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measurements (RVD1, RVD2, TAPSE, RAP, TRVmax, TRVm, and TRPm) show a significant

difference between the two patient groups (Table 1).

The variables TRVmax, TRVm, and TRPm form a group of highly correlated variables (cor-

relation coefficient between 0.94 and 0.99). The RVD variables (RVD1, RVD2, RVD3, and

RVD enlargement) form another group of positively correlated variables; although the correla-

tion to RVD3 is not strong enough to stay significant after correction for multiple testing. Both

groups are slightly positively correlated with RVD2 showing the strongest correlation signal to

the first group. All pairwise correlations have been calculated and variables were clustered (S1

and S2 Figs).

Correlation based clustering (Fig 1A) and factor analysis for mixed data (FAMD) (Fig 1B–

1D) show some separation between patients with confirmed PH and patients without con-

firmed PH. The first dimension in the FAMD explains 15.6% of the variance and carries some

separating tendency. The strongest signal towards this separation is due to the variables

TRVm, TRVmax, and TRPm (Fig 1C).

Prediction accuracy

Prediction performance measures as assessed within the CV for the ML algorithms as well as

the established formula by Aduen et al. [21] demonstrated high accuracy (Table 2). For the ML

methods mean values across CV repeats are shown. All methods yield AUC values> 0.78 and

all confidence intervals largely overlap. No algorithm performs significantly worse than Aduen

et al. (smallest p value 0.08 for the logistic regression according to DeLong’s significance test

for difference in ROC curves). However, the classification methods group at slightly lower lev-

els (AUC values 0.80–0.85) whereas the random forest of regression trees achieve similar clas-

sification performance to the performance of Aduen et al. (AUC 0.87 in both cases). While

Aduen et al. balances sensitivity (0.86) and specificity (0.86), the random forest of regression

trees emphasizes sensitivity (0.89) over specificity (0.67) (Fig 2; for individual ROC curves S4

Fig). This emphasis of sensitivity over specificity is present for all trained machine learning

methods and is due to the imbalance present in the studied cohort. Precision recall curves for

the prediction of PH give a similar picture (S5 Fig). The combination of Aduen et al. with the

random forest of regression trees achieves a slightly larger AUC of 0.89 (95% CI 0.81–0.98).

Interestingly the emphasis of sensitivity (0.95) over specificity (0.52) is bigger still.

The random forest of regression trees models the PAPm so that it is possible to compare

the model predictions to the invasively measured values. The modeled values correlate with

the invasively measured values at lower levels for the machine learning derived method com-

pared to Aduen et al. with Pearson’s correlation coefficients 0.63 for random forest and 0.70

for Aduen et al. The combined method achieves the same correlation again with a correlation

coefficient of 0.69 (Fig 3A). The bias in the random forest of regression trees is smallest, while

Aduen et al. on average underestimate the measured PAPm by 5mmHg. The random forest as

well as the combined method, on the other hand, show regression to the mean behavior (S6

Fig).

Machine-Learning variable rankings

Aduen et al. is calculated as the sum of TRPm and RAP and proved to be the best performing

of several studied established prediction methods. Since the random forest of regression trees

achieves comparable levels of classification performance, we asked which variables it predomi-

nantly uses. Permutation provides a manifest measure of the importance of variables within a

random forest. For each variable the increase of the prediction error is averaged across all trees

in the forest when the values of that variable are permuted. The RAP values show only little
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variable importance for the random forest of regression trees (Fig 3B). Instead the predictions

are based mainly on TRVm, TRVmax and RVD2. TRVm is ranked as most important variable

and RVD2 is among the most important variables also for all other algorithms except the lasso

penalized logistic regression (S7 Fig).

Fig 1. Data overview. (A) Heatmap of the 27 variables (columns) across the 90 patients (rows). The variables are studentized. Both patients and variables are

re-ordered by hierarchical clustering. The color bar at the right shows patients with PH (pink) and without PH (blue). (B)-(D) Results from a factor analysis

for mixed data (FAMD). (B) The first two dimensions explaining the largest parts of the variance in the data. Each dot represents one patient, where patients

with PH are shown in pink, patients without confirmed PH are shown in blue. (C) Contribution of each of the variables to the first two dimensions of the

FAMD. (D) Percentage of variance for the first five dimensions in the FAMD.

https://doi.org/10.1371/journal.pone.0224453.g001
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Discussion

Although only two echocardiographic measurements suffice to estimate PAP with high preci-

sion in experienced hands, the European guidelines prefer consideration of several signs over

PAP due to concerns regarding error amplification [12]. To establish an algorithm that

achieves this task, we interrogated several ML methods for their performance, as ML is ideally

suited to integrate multiple parameters. Fig 4 gives an overview over the patient cohort, the

collected data, and the processing (Fig 4). The large majority of the cohort were patients in

WHO group 2 (due to left heart disease). A possible application of PH prediction in this cohort

is risk estimation, e.g. in the context of interventional or surgical procedures.

Prediction of the likelihood of pulmonary hypertension based on echocardiography is a

routine clinical task but in practice estimation of the likelihood and in particular PAP is still

Table 2. Prediction performance measures.

method AUC ACC sensitivity specificity PPV NPV

Aduen et al. 0.87 [0.78; 0.96] 0.85 0.86 0.86 0.93 0.65

random forest of regression trees with Aduen et al. 0.89 [0.81; 0.98] 0.84 0.95 0.52 0.87 0.87

random forest of regression trees 0.87 [0.78; 0.96] 0.83 0.89 0.67 0.89 0.66

random forest of classification trees 0.85 [0.75; 0.95] 0.85 0.9 0.67 0.9 0.7

lasso penalized logistic regression 0.78 [0.67; 0.89] 0.8 0.93 0.4 0.83 0.65

boosted C5.0 0.80 [0.68; 0.92] 0.82 0.9 0.58 0.87 0.64

SVM 0.83 [0.73; 0.93] 0.84 0.95 0.49 0.85 0.76

Prediction performance is assessed using a 10 times repeated 3-fold CV and is measured using the AUC. The first column gives the AUC for the ML algorithms under

consideration as well as the established method by Aduen et al. together with the 95% confidence interval according to DeLong. At the Youden index the accuracy,

sensitivity, positive predictive value, and negative predictive value are evaluated additionally.

https://doi.org/10.1371/journal.pone.0224453.t002

Fig 2. Classification performance. Random forest of regression trees shows performance comparable to the best of several established PH prediction

methods by Aduen et al. (A) Area under the ROC curve (AUC) for all methods with estimated 95% confidence intervals. (B) Consensus ROC curves of the

five machine learning algorithms under consideration as well as the ROC curve of the method by Aduen et al. (light blue).

https://doi.org/10.1371/journal.pone.0224453.g002

Machine learning assisted prediction of pulmonary hypertension

PLOS ONE | https://doi.org/10.1371/journal.pone.0224453 October 25, 2019 9 / 16

https://doi.org/10.1371/journal.pone.0224453.t002
https://doi.org/10.1371/journal.pone.0224453.g002
https://doi.org/10.1371/journal.pone.0224453


difficult, frequently resulting in inaccurate estimates and wrong diagnosis. In an earlier analy-

sis we sought to identify the best of various existing algorithms and found the relatively simple

formula first described by Aduen at al.: PAPm = TRPm + RAP performed best and with high

accuracy in the particular setting of experienced examiners [10]. In this formula, RAP was

informative, i.e. inclusion increased the predictive accuracy (as compared to TRPm alone).

However, estimating RAP under routine conditions is not a trivial task and has been criticized

in current guidelines for its potential to increase inaccuracy [12]. Moreover, due to its few

parameters the formula might ignore several typical features of PH that can be readily uncov-

ered by routine echocardiographic examination. This suggests that meaningful information

may be lost and that the result is highly prone to erroneous measurement of one of the two

parameters e.g. in less experienced hands. ML provides an unbiased approach to derive predic-

tions with the potential to recognize unknown interactions and assist in meaningful feature

selection. Machine learning is not principally more advantageous over experienced examiners

who through experience integrate several parameters with high accuracy without statistical

reasoning. Rather, it offers a contemporary solution to standardize and simplify consideration,

integration and reasoning based on several parameters [22]. Thus, we examined ML for its

capability to assist in assigning the likelihood of PH. With the intention to include ML in

future echocardiographic devices, our aim was to address typical problems in addressing the

likelihood of PH during routine echocardiography.

We found that: 1) the regression based random forest ML method identified patients with

PH (confirmed by RHC within 24h) with very high accuracy. 2) Feature importance analysis

Fig 3. Best performing Machine Learning Method: Random forest of regression trees. The random forest of regression trees performed best among the 5

machine learning methods under consideration and achieves performance levels comparable to the prediction by Aduen et al., the best of several established

prediction methods. (A) Invasively measured PAPm (y-axis) in comparison to the predictions (x-axis). Displayed are predictions by a random forest of

regression trees (blue), predictions by the combination of the random forest of regression trees and the method of Aduen et al. (purple), and predictions by

the method of Aduen et al. (pink). The lines show a linear fit with confidence bands (gray shades). The plot shows the predictions from the first repetition of

the CI The text annotation gives Pearson’s correlation coefficients with 95% confidence intervals. For the ML method these are average values across all CV

repeats. (B) Variable importance for the random forest of regression trees.

https://doi.org/10.1371/journal.pone.0224453.g003
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Fig 4. Overview procedure and main results. The data set comprises measurements of 68 patients with confirmed PH and 22

patients without PH. Four socio-demographic and 21 echocardiographic variables were measured. Six patients were dropped
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demonstrated that this ML algorithm was largely independent of estimated RAP at the same

time as being capable of integrating various echocardiographic features of PH and thus capable

of managing missing values. 3) The studied binary classification methods achieve slightly (not

significantly) lower discrimination levels (assessed by AUC). 4) Both traditional formula and

ML algorithms may be combined to further increase sensitivity albeit at the expense of

specificity.

RAP is considered an error-prone parameter and therefore not recommended by the ESC

guidelines [12] due to its dynamic change depending on fluid intake, the requirement of a sub-

costal view that is robust towards deep respiration, a patient that complies with a breathing

command and difficulties in measuring vena cava diameter during movement of the liver dur-

ing inspiration. Although these issues can be addressed well in the majority of patients by

experienced examiners, avoiding Aduen et al. may lead to an even more robust result in the

setting of less experienced examiners. As we determined Aduen et al to represent the best per-

forming established method in an earlier analysis, the dataset is limited to a set of patients

were application of the method of Aduen et al. was possible. Therefore, the dataset is restricted

to patients for whom a good subcostal view and compliance with respiratory commands for

calculation of RAP were achieved. Hence, in this setting ML offers at least a powerful alterna-

tive to Aduen et al., by selecting additional parameters without loss of precision. Furthermore

ML favorably addresses the desire to incorporate as much information as possible while allow-

ing for the clinical reality of some missing values. Due to these conceptual advantages it is

highly likely that the benefit of ML might be greater in patients with less ideal acoustic

windows.

Except for RAP and TRVmax, in our cohort we dealt with some degree of missing data. We

expected the performance of the ML approaches to increase if more complete data were avail-

able for training. If we pre-impute and evaluate the performance, we achieve AUC values of

0.93. While this probably over-estimates the classification performance it gives reason to

believe even better classification might be possible with more data. Interestingly, sensitivity is

increased while specificity is diminished compared to Aduen et al. This can even be intensified

by combining Aduen et al with ML. The higher specificity of Aduen et al. is, however, coupled

with a lower negative predictive value, while for the proposed ML method the NPV and PPV

are balanced. Although following the ML prediction more patients without PH will be sub-

jected to RHC, we believe specificity is best warranted by RHC (rather than by echocardiogra-

phy). RHC effectively limits the number of patients (without PH) that would falsely be

subjected to therapy based on echocardiographic prediction, but by applying ML fewer

patients with true PH will be excluded from RHC and hence from treatment and the confi-

dence of rightly excluding these patients is higher compared to application of the formula by

Aduen et al.

Our study has some limitations. The analysis focusses on distinguishing PH from no PH as

defined via a binary cut-point at 25 mmHg, which does not consider borderline PH (20–24

mmHg), a simplification made due to the restrictive sample size. The foundation of ML proj-

ects remains high quality data acquisition and–annotation. This is why the dataset is limited to

90 patients from three institutions with a maximum interval of only 24h between echocardiog-

raphy and the gold standard invasive measurement. Consequently, small sample size is a limi-

tation of this cohort. Despite this restriction, our cohort is still the largest compared to

due to the high degree of missingness. As reference the formula by Aduen et al. was evaluated. Five ML methods were applied

and evaluated using a 10 times repeated 3-fold CV scheme. Two ML methods required an imputation as pre-processing step

within each fold of the CV. The predictions of the random forest of regression trees have additionally been combined with the

predictions by Aduen et al.

https://doi.org/10.1371/journal.pone.0224453.g004
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previously published cohorts comparing echocardiographic to invasive determination and

these studies applied less restrictive inclusion criteria—such as Chemla et al. (n = 31) [23],

Friedberg et al. (n = 17) [24], Syyed et al (n = 65) [25], Dabestani et al. (n = 39) [26], Granstam

et al (n = 29) [27], Kitabatake et al. (n = 33) [28]. On the other hand, the dataset is relatively

small to train some ML models. However, ML has been applied very successfully in similar

medical settings and sample sizes [22,29,30]. Moreover, the short delay (< 24 h) between echo-

cardiography and invasive measurement in our cohort reduces the sample size, but adds to

prediction accuracy, emphasizing that quality of annotation may compensate for small sample

sizes in ML projects. The cohort only contains data from patients that allow calculation of

Aduen et al. to allow for comparison against this algorithm. This raises the possibility that ML

might perform better in a cohort with missing values for RAP or TR velocity. However, at this

stage it is clear that no ML algorithm convincingly outperformed the simple Aduen formula

and whether the conceptual advantages of ML algorithms may suffice to replace current

approaches needs to be explored in a real world cohort that is larger by an order of a magni-

tude. Unfortunately, to the best of our knowledge such a cohort is currently unavailable.

In order to further counteract the limited size of the data set and the risk of overfitting our

experimental setup, we used some expert knowledge: We binarized some variables using estab-

lished cutoffs, we used pre-selected variables, and we removed patients with high degree of

missing values. However, in comparison with the chosen ML algorithm, the other components

of the experimental setup proved to be of little impact. For simulation purposes, we also

included the continuous versions of the binarized variables, all variables instead of the filtered

set, and all patients instead of only the ones with lower degrees of missing values. While the

presented setup yields the best classification performance, the lowest AUC observed for the

random forest of regression trees was 0.82 (95% CI 0.71–0.93), suggesting a high level of

robustness. Nevertheless, although cross-validation compensates for the lack of a separate veri-

fication cohort, we still feel that prospective evaluation of the model in a large cohort should

be the next step to evoke the expected paradigm shift in clinical decision making for PH. Of

note, to date this has not been achieved for the suggested ESC algorithm and many traditional

formulae.

Using ML approaches also provides a means to study and compare the importance of dif-

ferent variables–not only individually but their effect within multivariate modeling. We have

seen that next to TRV, RVD2 is also highly informative. Thus, ML helps in understanding

which of several parameters are associated with information gain in a particular setting. This

also emerged from a recently conducted ML project with a large dataset, revealing important

insights into prognostic performance of various echocardiographic variables [31]. When large

cohorts are not available, our study demonstrates that ML is feasible to discriminate in smaller

datasets. Thus ML may become a major component in clinical decision making in echocardi-

ography in the near future [32].

Conclusion

A late or missed diagnosis of PH may be detrimental. As ML algorithms can be easily inte-

grated into echocardiographic machines, we explored the value of ML based statistics in the

difficult clinical prediction of PH. The best machine learning algorithm for prediction of PH

was equally accurate compared to the best traditional formula for estimating the likelihood of

PH, already offering a reliable alternative with several conceptual advantages. The combina-

tion of both approaches further augmented the predictive accuracy and in particular sensitiv-

ity. Thus our ML algorithm may complement or replace the formula of Aduen et al. and may

certainly replace it in cases were RAP cannot be determined reliably. Although the training
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data set is unique in terms of accuracy of PAP measurement, given the maximum of only 24 h

between echocardiography and invasive measurement, the training set is small for ML. Thus

provided our results can be confirmed in a larger independent cohort, the advantages of toler-

ance of missing values, its little reliance on RAP and competitive classification performance

make our ML approach a smart alternative for prediction of the likelihood of PH.
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