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a b s t r a c t

The natural world is constantly changing, and planetary boundaries are issuing severe warnings about 
biodiversity and cycles of carbon, nitrogen, and phosphorus. In other views, social problems such as global 
warming and food shortages are spreading to various fields. These seemingly unrelated issues are closely 
related, but it can be said that understanding them in an integrated manner is still a step away. However, 
progress in analytical technologies has been recognized in various fields and, from a microscopic per-
spective, with the development of instruments including next-generation sequencers (NGS), nuclear 
magnetic resonance (NMR), gas chromatography-mass spectrometry (GC/MS), and liquid chromatography- 
mass spectrometry (LC/MS), various forms of molecular information such as genome data, microflora 
structure, metabolome, proteome, and lipidome can be obtained. The development of new technology has 
made it possible to obtain molecular information in a variety of forms. From a macroscopic perspective, the 
development of environmental analytical instruments and environmental measurement facilities such as 
satellites, drones, observation ships, and semiconductor censors has increased the data availability for 
various environmental factors. Based on these background, the role of computational science is to provide a 
mechanism for integrating and understanding these seemingly disparate data sets. This review describes 
machine learning and the need for structural equations and statistical causal inference of these data to solve 
these problems. In addition to introducing actual examples of how these technologies can be utilized, we 
will discuss how to use these technologies to implement environmentally friendly technologies in society.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction

Tilman et al. indicated the importance of new incentives and 
policies to ensure the sustainability of agriculture and ecosystem 
services [1,2]. Subsequently, the concrete framework of the plane-
tary boundary was emphasized [3]. In particular, biodiversity con-
servation and the efficient recycling of carbon, nitrogen, and 
phosphorus resources are urgent global issues [3–5]. Along with 
these problems, global warming [6,7], food problems [8,9], and hy-
brid problems [10,11] are emerging. For nitrogen control, nitrogen 
fixation or denitrification balance in soil [12], lakes [13], and oceans 
[14,15] is important. Nitrogen fixation will lead to a reduction in the 
number of chemical fertilizers produced with petroleum [16] and 
indirectly contribute to the suppression of global warming. In ad-
dition, the generation of nitrous oxide, a greenhouse gas, has a direct 
impact on global warming: it is essential to control denitrification. 
These controls are expected to involve symbiotic relationships be-
tween multiple organisms, including nitrogen-fixing bacteria, ana-
mmox bacteria, fungi [17,18], ticks [19], and insects [20]. 
Furthermore, management in recycling [21,22] and livestock man-
agement technology [23] will also be affected. Phosphorus is an 
essential element for organisms, and in agriculture [24], animal 
husbandry [25–27], and fisheries [28], the dynamics on the input 
and output sides is closely watched. In particular, excess phosphorus 
in soil and water affects eutrophication [29–31], so a well-balanced 
management is necessary to reduce the environmental impact. The 
management of phosphorus from livestock feed is closely related to 
soil through fecal manure compost [27]. Control of phosphorus and 
nitrogen by livestock fecal manure of livestock [32] requires man-
agement, and research to consider the balance between nitrogen and 
phosphorus at the global level is emphasized [33]. The control of the 
balance between nitrogen and phosphorus is closely related to bio-
diversity. Generally, it is difficult to evaluate the viewpoint of bio-
logical diversity, and methods based on DNA classification, mainly 
targeting microorganisms [34,35], methods focusing on metabolites 
[36,37], or combinations [20,38] are performed. Land research has 
advanced in assessing diversity on land and sea, and it has been 
pointed out that at least the diversity of soil symbionts is extremely 
important in the animal-plant-human relationship [39]. Many re-
searchers have been conducting research to gain insight into these 
complex environmental factors from various angles in the fields of 
agriculture, animal husbandry, fisheries, and environmental pur-
ification. This environmental complexity can be elucidated by com-
bining a data science approach with physical environmental 
monitoring data and biochemical analytical data. Namely, visuali-
zation of homeostatic plasticity can show “environmental health (or 
illness)”, like as an assessment of a healthy human state [40,41].

We will introduce a multifaceted approach method from the 
viewpoint of computational science to these research subjects and 
describe future perspectives.

2. Approach

2.1. Scheme

This review will discuss how the various impacts caused by 
human activities should be captured throughout the ecosystem 
from the viewpoint of water, soil, forests, agriculture, livestock, the 
water industry, and recycling (Fig. 1). Each ecosystem is connected 
in the cycles of carbon, nitrogen, and phosphorus, and there is a 
network of related factors. The overall balance of the material cy-
cles of carbon, nitrogen, and phosphorus will have a significant 
impact on the ecosystem (Fig. 2). Therefore, we will introduce case 
studies in each field on how to rearrange the exhaustive data 
analyzed with the latest technologies to enable an integrated un-
derstanding. Data acquired by various analysis technologies can be 
analyzed by cluster analysis, correlation analysis, machine learning, 
structural equations, and causal inference. They can be viewed as a 
way of seeing ecosystem patterns in computational science. The 
practice patterns are viewed can also provide hints for preserving 
ecosystems, not only from a one-sided view of each ecosystem but 
also from a comprehensive view of the ecosystem as a wholistic 
way of thinking.

2.2. Ecosystem monitoring and measurements

Various instruments and measuring devices have been developed 
for environmental assessment. From semiconductor instruments for 
easy measurement to data from satellites and observation ships, 
there are tools to promote environmental monitoring (Fig. 3). That is, 
real-time environmental monitoring data in terms of physical factors 
can be very useful to elucidate time-dependent changes in homeo-
static plasticity. In addition, there have been remarkable develop-
ments in analytical technologies for laboratory-level instruments 
[42], such as NGS NMR, GC/MS, and LC/MS. However, the work to 
organize and integrate these data has not progressed as much as 
expected. A substance equivalent to the glue that connects these on- 
site data from macro- and micro-perspectives is needed. The ad-
vancement of these efforts will be an urgent task in data science in 
the future to build a sustainable society. These efforts are also ex-
pected to lead to the development of methods that can predict 
changes in environmental factors and technologies that can develop 
countermeasures based on such predictions.

2.3. Database accumulation

To accomplish these objectives, it is necessary to organize and 
integrate databases (Fig. 3). In addition to using the data as raw data, 
it is required to simplify the data that are affected by environmental 
conditions. In other words, it is the preprocessing of data in dry 
analysis. When accumulating environmental data, it is difficult to say 
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for sure whether the data correspond to a Gaussian distribution or a 
non-Gaussian distribution. Based on the data that do exist, we can 
only computationally infer the character of distributions. A linear or 
non-linear perspective is also required when time-series data are 
included. One way to overcome these problems is to view the data 
itself as relative values or by binarizing the data so that they can be 
viewed from a bird's eye view (see elsewhere on how to use mean 
assignment or regression, etc., for data with missing values). Another 
critical point is the data management mechanism. Traditionally, data 
formatting has been based on the extensible markup language (XML) 
[43,44]. However, in recent years, it has become necessary to use the 
Resource Description Framework (RDF) to organize large amounts of 

data [45]. This paper does not discuss RDF in detail. In any case, it is 
essential to organize the accumulated data efficiently.

2.4. Machine learning

Aggregated data are the primary subject of data science for 
classification or regression by machine learning. Machine learning is 
currently used in many scientific fields. Two types of machine 
learning are known: unsupervised learning and supervised learning.

In unsupervised learning, the system learns complex patterns 
more autonomously and identifies them to summarize, explore, and 
discover (Fig. 4). For example, PCA, k-means clustering, hierarchical 

Fig. 2. Relationship between carbon, nitrogen, and phosphorus flow balance and ecosystem homeostasis. The flow balance of carbon, nitrogen, and phosphorus on the left side 
negatively affects ecosystem homeostasis; the flow balance on the right side positively impacts ecosystem homeostasis.

Fig. 1. Various ecosystems where computational science can be applied. It shows that the multiple impacts that human activities can generate affect each ecosystem and the 
integrated ecosystem, and we are now at a crossroads. Carbon (C), nitrogen (N), and phosphorus (P) flows are indicated by gray, blue, and orange arrows, respectively. 
Computational network indicators, which serve as markers of the circulation of carbon, nitrogen, and phosphorus, are connected to various ecosystems.
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clustering, and self-organizing maps. These have a strong relation-
ship with the correlation strength and can also be represented by a 
correlation heatmap [40]. A known analysis method that uses raw 
data is Bayesian network analysis. Association analysis (AA) (market 
basket analysis) [20] and energy landscape analysis (ELA) [46] are 
also known as methods that analyze data after binarizing them as a 
preprocessing step. Although the resolutions of the three analyses do 
not necessarily coincide and depend on the analysis conditions, it 
should be noted that AA and ELA, which use raw data that have been 
binarized by preprocessing, are relatively unaffected by the data 
characteristics of whether the raw data are Gaussian or non-Gaus-
sian distribution.

There are probability-aware calculation methods, and one of 
their bases is Bayes' Theorem [47]. Similarly, the Markov model, a 
probability-aware concept, and its development, the hidden Markov 
model (HMM) [48] are now indispensable techniques in gene clas-
sification. Along with this method, an important methodology is 
dynamic programming (DP) [49]. It has a long history and is best 
known for DP matching using the DP algorithm, which is used for 
speech recognition [50] and image recognition [51]. It does not rely 
primarily on probability theory but rather calculates the value of 
each state from the data itself and evaluates the value based on the 
Bellman equation (DP equation) under the assumption that the be-
havior is to transition to the state with the highest value.

Supervised learning, on the other hand, involves training in an 
annotated data set and defining outputs. The goal is to determine the 
association between the response and predictor variables (often 

Fig. 3. Concept of environmental prediction based on the accumulated machine learning database. Data accumulation is critical to better prediction performance by machine 
learning computations. To do that, environmental monitoring based on physical parameters is quite valuable for accumulating time-dependent data. Furthermore, occasional 
samplings from environments of interest allow us to elucidate biochemical data measured by NMR, MS, and NGS instruments. Even physical and biochemical data can be 
formatted with RDF; such a multifactored database can be computed by machine learning. In the future, computational devices, such as quantum innovation, might significantly 
reduce computational time, as well as device size. Therefore, “field computation (prediction)” may be possible in the fields of agriculture, fishing, livestock, and forest.

Fig. 4. Analytical step from multivariate and association analysis to machine learning 
and statistical causal inference (From left-top to right-bottom). (a) represents a di-
verse set of data. (b) Association analysis (market basket analysis), (c) Bayesian net-
work analysis (HC: hill climbing), and (d) structural equations are shown, respectively. 
The stair walker is representatively showing how a person performing normal work 
might be able to check by portable computational device for changes in environ-
mental factors at the field and industrial site. The multifactor environmental database 
can be computed and selected as casual importance factors. First, a data-driven ap-
proach can calculate all the accumulated data sets using multivariate and association 
analysis. The second computational step is a selection of essential factors by machine 
learning. Finally, causal relationships can be visualized by SEM, BayesLiNGAM, and 
other methods (see in the text).
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called covariates) and to make accurate predictions. A classification 
method of analysis that compares discrete variables (e.g., control and 
test groups) is discriminant analysis. Linear discriminant analysis 
(LDA) [52] is a well-known method for comparing microbial com-
munities. It should be noted that Latent dirichlet allocation [53], a 
machine learning method for natural language processing, is also 
shortened by the same acronym as LDA used for linear discriminant 
analysis. Latent dirichlet allocation is used to detect genetic dis-
placement in the biological domain.

Both are forms of machine learning. Partial least squares dis-
criminant analysis (PLS-DA) [40] is a known method used for me-
tabolite analysis. In addition, structured support vector machines 
[54] are a method that can be applied to complex linear and non-
linear cases. Conventionally, the support vector machine (SVM) [40]
is an algorithm that increases the dimension of the target data by 
maximizing the kernel function and the margin and can divide and 
interpret non-linear data as linear data. This method further extends 
its properties and can be applied to various data structures. It allows 
one to predict the outputs of new data, suggesting that, in addition 
to SVM, random forest (RF) and artificial neural networks (ANN) may 
apply to the analysis of various environmental factors [40].

2.5. Statistical structure equations and causal inference

Structural equation modeling (SEM) is used with the same 
meaning as covariance structure analysis and refers to an analysis in 
which relationships among various variables are modeled in the 
form of linear combinations (Fig. 4). It can integrate correlation 
analysis, regression analysis, and factor analysis, and it can statisti-
cally assess complex relationships between factors. The foundation 
of structural equations was created by Wright S [55–57]: it is a re-
search method that began as a way to understand genetics, but is 
now used in a variety of fields, including ecology, economics, and 
psychology.

SEM can be used to establish and explore hypotheses, although 
the former is more common. It is a particularly useful analytical 
method when testing the validity of a hypothesis, and there are 
several statistical indices available. For example, SEM is evaluated by 
the chi-square p-value (p  >  0.05, not significant), the comparative fit 
index (cfi/CFI) (> 0.95), the root mean square error of the approx-
imation (rsmea/RSMEA) (< 0.05), and the standardized mean re-
sidual (srmr/SRMR) (< 0.08) [58]. When there are many candidate 
models, the lower the value of the Akaike information criterion 
(AIC), the better, and the model with the smaller difference between 
the goodness of fit index (gfi/GFI) and the adjusted goodness of fit 
index (agfi/AGFI) (> 0.95) is selected. The path diagram of the su-
perior model can be visualized.

Basically, the maximum likelihood method is often used, but 
Pearl proposed non-parametric SEM, which now exists as a 
command.

There are the following algorithms for causal inference. 
Statistical causal inference and machine learning are becoming in-
terconnected trends, and here we describe a methodology that falls 
into the category of statistics. One is the causal mediation analysis 
(CMA) [59] as a mediation analysis, which allows a statistical eva-
luation of the direct or indirect causal relationship between three or 
more factors. There are two indices: the estimated average causal 
mediation effect (ACME) and the average direct effect (ADE). Next, 
the causal structure can be estimated assuming that the model is a 
linear non-Gaussian acyclic model (LiNGAM) [60] and independent 
factors. BayesLiNGAM [61] is also a Bayesian score-based approach 
that allows one to estimate the proportion of causal factors within a 
group that forms a causal structure. Furthermore, Granger causality 
[62], LiNGAM model with the classic vector autoregressive models 
(VARLiNGAM) [63], autoregressive integrated moving average 
(ARIMA) model [64], convergent cross mapping (CCM) [65], and 

Learning Interactions from Microbial Time Series (LIMITS) [66], mi-
crobial dynamical systems inference (MDSINE) [67], and EcohNet 
[68] have been proposed for time-series evaluation. EcohNet com-
bines a type of recurrent neural network (RNN), called an echo state 
network (ESN) [68]. The advantages and disadvantages of each 
analysis have been discussed [38,69], but the details are 
omitted here.

These analyses are only computational evaluations based on data. 
Therefore, a view of the accuracy of the data source is essential. It is 
important to understand that this may need to be proven by con-
sistent characterization in other literature or by experimental sci-
ence.　Data calculated from measuring instruments and facilities as 
continuous data have a low rate of internal variation in each data 
itself. Similarly, for data such as omics analysis data, for which a 
series of analyses are conducted simultaneously using next-gen-
eration sequencers, NMR, GC/MS, LC/MS, etc., the rate of variation 
does not need to be taken into account as much as for individual 
analysis data. Therefore, the relationship between other factors 
within the group being measured can be measured as a single pat-
tern with little variability. However, caution is required when the 
variability of the data itself needs to be considered for different 
measurement devices. In such a case, binarization can be a powerful 
tool that can absorb variability. In the case of different measuring 
instruments and different standards of data accuracy, the afore-
mentioned binarization process as a preprocessing of data may lead 
to a suitable analysis in bird's-eye view, as the effect of data errors 
can be drastically reduced by this process. Viewed another way, the 
statistical causality can be viewed as a computational marker that 
combines the influence of environmental conditions, rather than 
necessarily as a definite causal relationship. If the data are used as a 
pattern to evaluate the characteristics of the target group from a 
bird's eye view, they can be used in various ways as a group of 
marker factors for various environmental factors.

One method of expressing the cause-and-effect relationship of a 
group of factors by combining the viewpoint of visualizing the flow 
of material circulation further is the Sankey diagram [20]. It is pos-
sible to visualize what kind of outputs are ultimately affected by a 
group of factors selected based on different criteria; Fig. 5a shows an 
image visualizing the increase or decrease of carbon (C), nitrogen 
(N), and phosphorus (P), or the influence of an arbitrary group of 
factors on biodiversity. This is an effective method for expressing 
relationships to outputs that are essentially influential, rather than a 
complex cascade, based on the selection of factors whose relation-
ships are clear through structural equations and causal inference.

In the following, we will discuss the potential of computational 
science in building a sustainable society by introducing the findings 
of other research groups as well as the analysis data that the authors 
have conducted so far, based on these perspectives.

3. Applications to various ecosystems

3.1. Aquatic ecosystem

Water is essential for the sustainability of life and is also involved 
in various industrial activities and the movement of ecosystems. We 
introduce examples of the application of machine learning to un-
derstanding such water cycles.

A study of Spanish rivers used random forest and regression tree 
algorithms to predict biological responses to different concentra-
tions of nutrients in river water and to investigate the influence of 
different regular thresholds on ecological status [70]. It proposes an 
integrated approach for restoring ecosystem conditions. The Japa-
nese study focuses on estuarine sediments and uses abundant se-
diment polypeptide and mineral profiles along with microbial 
structure to demonstrate significant estuarine eutrophication in the 
Kanto region [71]. In particular, such eutrophicated mad sediment 
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can be evaluated by electronic potentials, such as redox home-
ostasis: thus, regulation of redox homeostasis can be one of the 
critical factors for environmental purification [72]. Another report 
describes a strategy for integrating and understanding the data ob-
tained by omics analysis of surface water samples from 681 sites in 
Japan, grouped into three clusters, through machine learning, factor 
mapping, and predictive-error variance decomposition [73]. The 
results have revealed an overarching understanding of the char-
acteristics of certain microalgae, inorganic ions, and organic acids in 
some patterns. Some examples of the importance of machine 
learning include efficient water management, remediation, and 
transport to conserve water resources [74].

Machine learning can effectively identify and characterize specific 
contaminants and has comprehensive applications in predicting 
water quality, mapping groundwater contaminants, classifying water 
resources, tracking contaminant sources, assessing contaminant 
toxicity in natural water systems, modeling treatment technologies, 
supporting characterization analysis, purifying and distributing 
drinking water, collecting and treating sewage water in engineered 
water systems; and collecting and treating sewage water in en-
gineered water systems, among other comprehensive applications.

3.2. Forestry ecosystems

In conserving forest ecosystems, it is crucial to understand the 
symbiotic relationship with insects, which are deeply involved in 
recycling in the ecosystem. Insects are responsible for the forest's 
decomposition chain, and an assessment of the diversity and me-
tabolite characteristics of the symbiotic bacterial community (gut 
symbionts) can lead to an understanding of the regularity of the 
forest ecosystem. Here, we present a case study on the carbon and 
nitrogen cycle for termites and beetle larvae.

Termites skillfully exploit the symbiotic relationship between the 
gut microbial community, certain protists and fungi, and the soil 
microbial community to utilize plant-derived carbohydrates. Plant- 
derived carbohydrates are degraded by the soil microbial commu-
nity and ultimately returned to the soil. To understand these de-
gradation processes, NMR analysis using stable isotope 13C has been 
promoted as a method that is less sensitive to analyte characteristics 
by analytical instruments, such as water solubility and fat solubility, 
and an integrated database has been successfully created [75]. This 
allows for integrated evaluation through machine learning and sta-
tistical inference.

Fig. 5. Impact assessment of technologies that contribute to planetary boundaries. (a) Various conditions and [68] diagrams related to nitrogen, phosphorus, and biodiversity are 
shown. To make these evaluations, it is necessary to implement integrated understanding using computational science. (b) demonstrate the setting of goals for various tech-
nologies and planetary boundaries; Various methodologies are assumed for technologies aimed at environmental conservation and restoration. The current problem is that these 
distributed technologies are not understood in an integrated manner. In order to realistically implement these fusions, various simulations are also necessary.
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As an example of analysis from a bird's-eye viewpoint, a case 
study evaluating humus chains in a forest ecosystem uses computa-
tional science with beetle larvae as a target [20]. In this case, after 
profiling symbiotic bacteria involved in the carbon and nitrogen cy-
cles, we analyzed the relationship between the comprehensive bac-
terial flora and metabolites based on correlation analysis, association 
analysis, and structural equation modeling. As a result, we succeeded 
in predicting the bacterial groups involved in the behavior of carbon 
and nitrogen and their stable isotopes, respectively. Similarly to these 
single bacteria, the bacterial groups were consistent in the literature. 
Furthermore, based on these data, we successfully visualized them by 
means of a material balance flow model (Sankey diagram).

3.3. Fishery ecosystem

A better understanding of the ecosystems of fish and seagrass is 
crucial to the conservation of the aquatic environment and the fish 
industry. Examples of machine learning that focus on these topics 
will also be presented.

An effort has focused on the recent market development of nu-
clear magnetic resonance (NMR) systems, not only conventional 
high-end systems but also popular ones, and have reported the de-
velopment of peak separation methods from these small NMR sys-
tems [76], and classification methods for fish meat quality 
characteristics dependent upon environmental conditions including 
symbiotic bacteria [77–79]. On the other hand, high-end systems can 
be used to more clearly identify differences in the composition of 
substances in muscle due to differences in production areas and 
feeds [77]. Therefore, by introducing advanced machine learning 
calculations such as deep learning and ensemble deep learning to 
NMR analysis, we can extract key factors (NMR peaks: metabolites) 
involved in the identification of the origin of wild fish or essential 
factors involved in fish growth and predictive model selection 
methods [80–82]. These methods can also contribute to important 
issues in the fisheries industry, such as aquaculture environmental 
management, including water temperature and oxygen concentra-
tion, which affect meat quality, and the identification of important 
ingredients in food for growth performance [41,42,83].

In general, seaweeds have been suggested to play a significant 
role in terms of blue carbon. Therefore, to understand the relation-
ship between seaweeds characteristics and environmental factors, 
there is a rare case in which spectral data from various analytical 
instruments were integrated and used for seaweed classification, 
providing an example of analysis using various analytical tools at a 
different angle than previously considered [36]. The paper reveals a 
close relationship between environmental factors, namely heavy 
metal elements, and the characteristic components of algae [36]. 
Next, as an example of an analysis that assess seasonal variations, 
observations that utilize organic and inorganic chemical data on 
seaweed components and consider seasonal variations in seaweed 
composition have been reported [84]. To analyze different target 
materials with the same criteria, we used the least-squares method 
to eliminate noise, performed correlation network analysis, and 
successfully constructed a structural equation model. The concept of 
these studies is partly being applied to our ongoing bottom sediment 
characterization study [85] on seagrass growth to evaluate of the 
symbiotic environment for the seagrass meadow.

The need for machine learning and other network evaluations[4]
is being touted in various studies that capture the entire water en-
vironment.

3.4. Agriculture ecosystem

A better understanding of soils, crops, and agriculture itself is 
critical for the conservation of soil and water environments. Case 
studies focusing on these topics will also be presented.

A case study developed a method to profile tomatoes using in-
ductively coupled plasma atomic emission spectrometry and nuclear 
magnetic resonance spectrometry to find indicators to assess the 
effects of pesticides, organic fertilizers, and chemical fertilizers [86]. 
This profiling has revealed that the use of pesticide affects the cor-
relation between mineral nutrients and metabolite correlations.

In another case study on leafy greens, organic nitrogen increased 
crop yield [16]. This study utilized multi-omics analysis data on soil 
metabolites, minerals, and microorganisms to successfully detect 
changes in plant traits as a collection of multiple network modules.

In addition, there are cases that have used structural equations to 
typify plant-soil-soil microbial relationships and recommended the 
evaluation of complex soil ecosystems [87]; evaluated the relation-
ship between microbial networks, including filamentous fungi, and 
changes in soil properties (total N, C/N, and soil health index) [88]; 
and evaluated the relationship between soil heavy metals and soil 
microorganisms that assessed the relationship between soil heavy 
metals and soil microorganisms [89].

Thus, various attempts are underway to comprehensively eval-
uate microorganisms (fungi and bacteria), soil metabolites, and plant 
metabolites in the soil and to find their regularities. Although the 
observations of each of these studies are essential, what is needed in 
the future is the integration of these fragmented studies. One of the 
goals is to understand ecological homeostasis. Along these under-
standings, each of these case studies needs to be further reintegrated 
and used for various environmental protection purposes.

3.5. Livestock ecosystem

A better understanding of the livestock industry is also critical to 
the conservation of agricultural land after application of fecal com-
post, resulting in effects on crop quality and water environments. 
Case studies focusing on these issues will also be presented. In 
particular, the intestinal environment is important to maintain 
health, and the quality of manure compost is also extremely es-
sential.

First, for broiler health care, we present a case study of a tradi-
tional intestinal regulator [37]. The effect of a heat-stable lactic acid 
bacterium, Weizmannia coagulans, on the intestinal metabolism of 
broilers was evaluated by correlation network analysis, and parti-
cularly the effect of the said lactic acid bacterium on the adminis-
tration of the bacterium was shown to alter the diversity of 
metabolites. In a paper showing that the administration of probiotic 
lactic acid bacteria to sows can reduce the disturbance of the gut 
microbiota of piglets, the disturbance as a bacterial flora pattern 
were identified using DP matching technology [90]. Aerobic com-
posting is also commonly used to dispose of livestock manure and is 
considered one of the most efficient ways to reduce antibiotic re-
sistance genes (ARGs). The process has been estimated using SEM 
[91]. In addition, other examples are the use of probiotics [92] or 
antibiotics [93] to manage the intestinal microflora of cattle, which 
are a source of concern as a source of greenhouse gases. A man-
agement method has been suggested to reduce the number of me-
thane-producing bacteria in the stage of calves that have not yet 
developed a rumen. The results of the correlation analysis of in-
testinal metabolites and bacterial flora at this stage clearly showed 
an inverse relationship between the suppression of methane-pro-
ducing bacteria and growth, depending on the management method. 
It is hoped that computational evaluation of the calf stage based on 
such a database will lead to the development of environmentally 
friendly livestock production technology.

An example of evaluation in relation to disease status is the 
calculation of the relationship between mastitis in dairy cows, which 
provides useful information for genetic improvement and manage-
ment strategies [94]. Another example is the evaluation of the 
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relationship between genetic background and milk quality, meat 
quality, and other factors [95–97].

Like agriculture, these studies are highly specialized and seg-
mented. Still, they represent the impact of livestock production on 
the environment, which is being debated worldwide and needs to be 
evaluated through an efficient fusion of information. In recent years, 
issues such as animal welfare have been recognized, but the impact 
of health and sanitation on the food environment via technology 
that improves the intestinal environment and the soil environment 
through appropriate composting has not been considered. A quan-
titative evaluation would be needed to enable a comprehensive 
discussion that is not one-sided before decisions could be made. For 
this purpose, it is necessary to work on an environmental form of 
estimation that transcends animal species.

3.6. Waste management ecosystems

Wastewater treatment and recycling technologies are essential to 
control eutrophication in rivers, lakes, and coastal environments and 
to efficiently implement resource recycling. Therefore, we will in-
troduce some examples of efforts related to this paper and those that 
will be needed in the future.

For example, in a practical wastewater treatment process, 31P 
NMR methods were applied to model biofilm phosphorus release 
performance at different pH [98]. Moreover, 1H NMR and machine 
learning extreme gradient boosting (XGBoost) has also been used to 
understand the mechanism of membrane fouling (reduction in 
membrane permeability), which is a problem in membrane bior-
eactors (MBRs), an essential part of wastewater treatment opera-
tions [99]. Changes in the nature of membrane fouling material as a 
function of conditions have been investigated using NMR data [100].

Thus, there are examples of analysis based on the need for eva-
luation from the perspective of wastewater treatment, but there are 
few examples of the use of machine learning and other methods 
from the perspective of recycling. It is necessary to discuss the 
qualitative role of recycled fertilizers [35,101,102] and feeds 
[103–112] in a recycling-oriented society. Although still in the pre-
paratory stage [113,114], the environmental impact and its effects on 
plants and animals are also being investigated through machine 
learning, structural equation modeling, and causal inference. The 
results of these studies should provide an essential perspective on 
the significance of material cycles to the ecosystem as a whole, be-
yond animal or plant species, and the need for efficient human ac-
tivities in the context of the ecosystem as a whole.

4. Summary and outlook

The fourth industrial revolution that is underway in this century 
will enable the introduction of digitalization, future forecasting, and 
feedback control in various fields through the advancement of in-
formation technology, especially the IoT (Internet of Things), big 
data, and AI (artificial intelligence) related technologies. AI-related 
technologies are also advancing, so too are the technologies that are 
being used to predict and control the future. However, while AI-re-
lated technologies are advancing, it is challenging to introduce omics 
methods that produce multi-factorial data in the so-called "pre-
dictive science" area because the analysis cost to obtain the training 
data increases when the number of samples is large. Although data 
accumulation is necessary, it is important to adjust these databases 
in a form that is easy to use in various fields. In this review, we 
introduced the flow and examples of data integration and manage-
ment to avoid these problems. By utilizing machine learning, 
structural equation modeling, and causal inference in the right 
places, it may be possible to select and categorize data that are 
important for ecosystem conservation while shifting to less costly 
analytical data (Fig. 5). For example, as shown here, it will lead to an 

understanding of how the selected factors affect the material flow of 
carbon, nitrogen, and phosphorus, or biodiversity, in terms of their 
contribution rate (Fig. 5a). Then, it should be important to select 
factors based on their importance and evaluate their contribution to 
the planetary boundary in order to assess technological develop-
ment (Fig. 5b). In the future, large- and small-scale computational 
devices can be significantly innovated by advancing quantum com-
puting technologies. Therefore, the prediction of multifactored 
phenomena, such as ecosystem changes accompanied by climate 
changes, can be well-computed by such innovative computation 
devices. Then, it will be necessary to integrate research data from 
many fields and utilize computational science to build a sustainable 
society.
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