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Abstract: Calcineurin inhibitors are highly efficacious immunosuppressive agents used in pediatric
kidney transplantation. However, calcineurin inhibitor nephrotoxicity (CNIT) has been associated
with the development of chronic renal allograft dysfunction and decreased graft survival. This study
evaluated 37 formalin-fixed paraffin-embedded biopsies from pediatric kidney transplant recipients
using gene expression profiling. Normal allograft samples (n = 12) served as negative controls and
were compared to biopsies exhibiting CNIT (n = 11). The remaining samples served as positive
controls to validate CNIT marker specificity and were characterized by other common causes of
graft failure such as acute rejection (n = 7) and interstitial fibrosis/tubular atrophy (n = 7). MiRNA
profiles served as the platform for data integration. Oxidative phosphorylation and mitochondrial
dysfunction were the top molecular pathways associated with overexpressed genes in CNIT samples.
Decreased ATP synthesis was identified as a significant biological function in CNIT, while key
toxicology pathways included NRF2-mediated oxidative stress response and increased permeability
transition of mitochondria. An integrative analysis demonstrated a panel of 13 significant miRNAs
and their 33 CNIT-specific gene targets involved with mitochondrial activity and function. We also
identified a candidate panel of miRNAs/genes, which may serve as future molecular markers for
CNIT diagnosis as well as potential therapeutic targets.

Keywords: pediatrics; kidney transplantation; calcineurin inhibitor nephrotoxicity

1. Introduction

Kidney transplantation (KT) remains the preferred therapy for children with end-stage
renal disease [1–4]. Yet despite significant advancements in short-term outcomes [5–7],
long-term outcomes remain suboptimal. Currently, patient survival is approximately
90% at 10 years post-transplant, but only 50–60% of allografts survive this long [7–9].
The mismatch between patient and graft longevity presents challenges for both pediatric
patients and transplant centers, since repeat transplant not only increases the likelihood of
morbidity and mortality for the child but also reduces the supply of donor organs available
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to other transplant candidates. Currently, 13.4% of pediatric kidney transplant waitlist
candidates await a second transplant [8].

Therefore, strategies to reduce premature graft loss are of paramount importance.
Late graft failure is most frequently caused by chronic renal allograft dysfunction (CRAD),
which refers to the final common pathway of aggregate immunologic and non-immunologic
insults resulting in the insidious loss of graft function and manifested histologically by
fibrosis [10–13]. Calcineurin inhibitor nephrotoxicity (CNIT) is considered one of the
primary non-immunologic factors contributing to CRAD [13,14]. In 2003, Nankivell et al.
evaluated the natural history of CRAD using longitudinal protocol biopsies and found
nearly universal histologic evidence of CNIT at 10 years post-KT [15]. Despite their
known nephrotoxicity, calcineurin inhibitors (CNI) remain the cornerstone of maintenance
immunosuppressive protocols in both adult and pediatric KT recipients [16,17].

Currently, the diagnosis of CNIT requires a kidney biopsy. However, the histologic
features used to identify CNIT include permanent architectural disruption, limiting the
utility of this tool to modify CNI therapy prior to the onset of irreversible damage [18–21].
Additionally, concerns regarding the specificity of CNIT histology, biopsy sampling error,
and inter-observer agreement among pathologists further tarnish this gold standard and
highlight the need for sensitive molecular makers of CNIT [22–25].

To date, the development of CNIT biomarkers has been hampered by an incomplete
understanding of its underlying molecular mechanisms. Current reliance on late and
insensitive markers such as serum creatinine precludes the identification of CNIT prior to
the onset of irreversible damage. The lack of surrogate markers highlights a knowledge gap
regarding the underlying molecular mechanisms of CNIT. Therefore, we sought to charac-
terize a molecular phenotype of CNIT using an integrative approach. We hypothesized
that the interplay of differentially expressed miRNAs and target mRNAs would provide
the basis for a unique molecular signature for accurate pediatric CNIT diagnosis. MiRNAs,
which are non-coding, endogenous single-stranded RNA that post-transcriptionally repress
gene expression, have emerged as a promising class of biomarkers utilized in molecular
diagnostics and have garnered interest as potential therapeutic tools [26,27]. With the
utilization of miRNA and gene expression tissue profiles, the specific aim of this study is to
identify (1) the critical gene pathways associated with CNIT development in pediatric KT
recipients and (2) key miRNA–mRNA interactions using data integration between these
two molecular layers of regulation.

2. Results
2.1. Molecular Profiling Using Microarrays

For the gene expression analysis, 1837 probe sets were differentially expressed be-
tween CNIT and Normal samples (Table S1). This corresponded to 1483 distinct mapped
genes with 714 (48%) upregulated and 769 (52%) downregulated. Two additional compar-
isons for marker specificity were also executed: acute rejection (AR) vs. Normal yielded
678 differentially expressed genes (60% upregulated) and interstitial fibrosis/tubular atro-
phy (IFTA) vs. Normal demonstrated 285 genes (31% upregulated). Figure 1 summarizes
the overall study design and flow.

The miRNA microarray analysis demonstrated 118 miRNAs were differentially ex-
pressed (Table S2) between Normal and CNIT samples, with a majority being upregulated
(72%). A supervised hierarchical clustering was performed using miRNA expression data,
demonstrating the correct grouping of CNIT and Normal cohorts (Figure 2).
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Figure 1. Gene expression microarrays of 37 formalin-fixed paraffin-embedded (FFPE) kidney 
biopsies, including Normal, calcineurin inhibitor nephrotoxicity (CNIT), interstitial fibrosis and 
tubular atrophy (IFTA), and acute rejection (AR), were analyzed. Then, CNIT-specific differen-
tially expressed genes (DEGs) were integrated with 15 miRNA microarray profiles to identify 
miRNA–mRNA interactions. 

The miRNA microarray analysis demonstrated 118 miRNAs were differentially ex-
pressed (Table S2) between Normal and CNIT samples, with a majority being upregulated 
(72%). A supervised hierarchical clustering was performed using miRNA expression data, 
demonstrating the correct grouping of CNIT and Normal cohorts (Figure 2). 

 
Figure 2. Hierarchical clustering analysis showing differentially expressed microRNAs between Normal (WNL) and CNIT 
allografts. MiRNA signatures in tissue samples differentiate between histological conditions. 

  

Figure 1. Gene expression microarrays of 37 formalin-fixed paraffin-embedded (FFPE) kidney
biopsies, including Normal, calcineurin inhibitor nephrotoxicity (CNIT), interstitial fibrosis and
tubular atrophy (IFTA), and acute rejection (AR), were analyzed. Then, CNIT-specific differentially
expressed genes (DEGs) were integrated with 15 miRNA microarray profiles to identify miRNA–
mRNA interactions.
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2.2. Canonical Pathways and Upstream Regulators

The top gene pathways in the comparison between CNIT and Normal samples in-
cluded oxidative phosphorylation (p = 3.52 × 10−34), mitochondrial dysfunction
(p = 2.90 × 10−32), EIF2 signaling (p = 2.8 × 10−16), protein ubiquitin pathway
(p = 2.04 × 10−7), and aryl hydrocarbon receptor signaling (p = 6.71 × 10−7) (Figure S1).
Oxidative phosphorylation was the topmost affected pathway in this dataset, with an
overlap of 54 (49.5%) out of 109 molecules and a predicted inhibition of NAD+, FAD+, and
ATP (Figure S2). The 54 dysregulated genes are listed in Table S3.

Mitochondrial dysfunction was the next most significant canonical pathway. The
genes associated with complexes I-V of the electron transport chain were downregulated,
with predicted inhibition of ATP production (Figure 3). There was predicted activation of
Caspases 3, 8, 9, as well as cytochrome C, in its association with activation of apoptosis.
Predicted directionality of EIF2 signaling indicated strong inhibition in our data (activation
z-score of −3.9).
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Figure 3. Molecule activity predictor (MAP) pathway analysis demonstrating mitochondrial dysfunction (p = 2.90 × 10−32)
as one of the top pathways affected in CNIT samples. Genes associated with complexes I-V of the electron transport chain
(green) were significantly downregulated. Caspases 3, 8, 9, and Cytochrome C (yellow box) are predicted to be activated,
demonstrating the in-silico activation of apoptosis.

Analysis of the mostly highly significant putative upstream regulators was based
upon an activation z-score and statistically significant ‘overlap p-values’ in IPA (p < 0.01).
RICTOR (RPTOR independent companion of MTOR complex 2) was identified to be the
top upstream regulator in the CNIT vs. Normal dataset (p = 4.12 × 10−45), with a pre-
dicted activated state (z-score 9.301). There were 97 downstream target molecules of
RICTOR present in the dataset, of which 48 (49.5%) were members of the mitochondrial
dysfunction/oxidative phosphorylation pathways. Additional upstream regulator analysis
demonstrated a mechanistic network based on downstream gene expression patterns,
which identified a connection between the activation of RICTOR and transcription factor
FOXO1 inhibition. Other activated upstream regulators with the highest scores include
kinases such as MAP4K4 (z-score = 5.298, p = 3.34 × 10−6) and GCK (z-score = 3.162,
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p = 2.94 × 10−6), the transcription regulators KDM5A (z-score = 5.298, p = 2.37 × 10−10)
and PML (z-score = 2.612, p = 1.07 × 10−3), as well as mature miR-124-3p (z-score = 2.220,
p = 1.87 × 10−2). VEGF was also identified as an activated top upstream regulator
(z-score = 3.358, p = 2.85 × 10−2). Top upstream regulators predicted to be inhibited were
comprised mainly of transcription regulators (HNF4A, z-score= −3.573, p = 2.23 × 10−23;
PPARGC1A, z-score= −4.807, p = 5.41 × 10−7; TP53, z-score= −2.783, p = 1.34 × 10−18;
MYCN, z-score= −4.121, p = 2.84 × 10−15).

2.3. Biological Characterization

The top molecular and cellular functions of the CNIT vs. Normal datasets pertained
to cell death and survival (p-value range: 5.72 × 10−4–1.69 × 10−28), cellular growth
and proliferation (p-value range: 5.52 × 10−4–2.66 × 10−22), protein synthesis (p-value
range: 4.16 × 10−4–9.10 × 10−16), and protein degradation (p-value range: 1.41× 10−4–
6.15 × 10−16). Functions pertaining to protein synthesis had negative activation z-scores
(specifically, protein metabolism, translation, synthesis, expression). When filtered by
activation z-score, free radical scavenging (specifically, the production of reactive oxygen
species) was one of the highest functions (z-score = 3.263), along with cell movement
(z-score = 2.593) and the differentiation of cells (z-score = 2.628). Inhibited functions were
highly overexpressed in the CNIT samples related to nucleic acid metabolism and energy
production (synthesis of ATP, z-score = −2.142; metabolism of nucleoside triphosphate,
z-score −2.142, and synthesis of purine ribonucleotide, z-score= −2.0147).

Functional analysis with a particular focus on nephrotoxicity yielded the following
results. Among the most significant renal “tox” functions included renal necrosis/cell death
(p-value range: 5.98 × 10−1–2.23× 10−4, 62 dataset molecules), renal damage (p-value
range: 2.96 × 10−1–4.58× 10−3), and renal tubule injury (p-value range 2.96 × 10−1–
1.12 × 10−2). Specific functions within these categories that were especially activated
included ‘apoptosis of kidney cells’ (z-score = 2.052), involving upregulation of TGFB1,
TLR4, CSF1, and GFPT1 genes, in addition to ‘fibrosis of kidney’ (z-score = 2.178), with
associated upregulation of TGFB1, SMAD4, TLR4, and IL2RA genes.

2.4. Marker Specificity, Unique Genes Associated with CNIT, and Comparison Analyses

In a comparison of IFTA vs. Normal samples, a majority of the top canonical pathways
were related to metabolism: fatty acid ß-oxidation I (p = 1.5 × 10−7), TCA Cycle II (Eu-
karyotic) (p = 2.05 × 10−4), Tryptophan Degradation III (Eukaryotic) (p = 2.43 × 10−4), and
D-glucuronate Degradation I (p = 5.02 × 10−4), in addition to mitochondrial dysfunction
(p = 8.96 × 10−10). An analysis of AR vs. Normal differentially expressed genes demon-
strated a predominance of immune-related canonical pathways, including Natural Killer
Cell Signaling (p = 1.16 × 10−18), Th1 and Th2 Activation Pathway (p = 1.6 × 10−18), and
T Cell Receptor Signaling (p = 2.82 × 10−11).

Then, a comparison analysis evaluating CNIT vs. Normal, IFTA vs. Normal, and AR
vs. Normal was assessed, with a particular emphasis on canonical pathways among these
three comparisons in an effort to identify distinguishing expression patterns. When classi-
fied by statistical significance, we found mitochondrial dysfunction, fatty acid ß-oxidation
I, and oxidative phosphorylation to be the top pathways. Mitochondrial dysfunction and
oxidative phosphorylation were the most highly enriched among CNIT vs. Normal sam-
ples (p = 2.92 × 10−32 and p = 3.52 × 10−43, respectively), while the fatty acid B-oxidation I
pathway (p = 1.5× 10−7) was predominantly expressed among IFTA samples. By activation
z-score, Fc receptor-mediated phagocytosis in macrophages and monocytes, phospholipase
C signaling, integrin signaling, and EIF2 signaling were all canonical pathways that were
distinctly inhibited in the CNIT vs. Normal comparison.

Then, differentially expressed genes for each of the three comparisons were analyzed
for overlapping (common) genes. By eliminating overlapping genes, a list of unique genes
was identified for each of the conditions. A total of 66 genes were common among all three
conditions. There were 418 (61.7%) unique AR genes and 107 (37.5%) unique IFTA genes.
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The list of 1245 (84.0%) unique CNIT genes was analyzed separately in IPA and was used
for consequent data integration analyses with miRNA microarrays.

Analysis of CNIT-specific genes demonstrated a preservation of the top canonical
pathways seen previously in the original CNIT vs. Normal data, including mitochondrial
dysfunction, oxidative phosphorylation, and EIF2 signaling pathways. Additional gene
pathways highly expressed among these CNIT genes included regulation of eIF4 and
p70S6K signaling and remodeling of epithelial adherens junctions. RICTOR also remained
the top upstream regulator (p = 1.01 × 10−26), while HNF4A, TP53, MYCN, and MAPT
continued to be among the list of the top ten significant upstream regulators. TGFB1 and
LONP1, a gene that encodes a mitochondrial matrix peptidase, were also among this list.
Evaluation of the top tox lists in IPA identified mitochondrial dysfunction, renal necro-
sis/cell death, NRF-mediated oxidative stress response, and aryl hydrocarbon receptor
signaling as overexpressed gene sets in CNIT samples.

2.5. Integrative Analysis (miRNA–mRNA Interactions)

Data integration was performed using unique CNIT genes and differentially expressed
miRNAs between CNIT and Normal groups. This generated a filtered list (experimentally
observed and with appropriate expression directionality) of 13 miRNAs and their 33 mRNA
targets. An integrated network of each of these 13 miRNAs and their downstream up- and
down-regulated genes are represented in Figure 4.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 15 
 

 

conditions. There were 418 (61.7%) unique AR genes and 107 (37.5%) unique IFTA genes. 
The list of 1245 (84.0%) unique CNIT genes was analyzed separately in IPA and was used 
for consequent data integration analyses with miRNA microarrays. 

Analysis of CNIT-specific genes demonstrated a preservation of the top canonical 
pathways seen previously in the original CNIT vs. Normal data, including mitochondrial 
dysfunction, oxidative phosphorylation, and EIF2 signaling pathways. Additional gene 
pathways highly expressed among these CNIT genes included regulation of eIF4 and 
p70S6K signaling and remodeling of epithelial adherens junctions. RICTOR also remained 
the top upstream regulator (p = 1.01 × 10−26), while HNF4A, TP53, MYCN, and MAPT con-
tinued to be among the list of the top ten significant upstream regulators. TGFB1 and 
LONP1, a gene that encodes a mitochondrial matrix peptidase, were also among this list. 
Evaluation of the top tox lists in IPA identified mitochondrial dysfunction, renal necro-
sis/cell death, NRF-mediated oxidative stress response, and aryl hydrocarbon receptor 
signaling as overexpressed gene sets in CNIT samples. 

2.5. Integrative Analysis (miRNA–mRNA Interactions) 
Data integration was performed using unique CNIT genes and differentially ex-

pressed miRNAs between CNIT and Normal groups. This generated a filtered list (exper-
imentally observed and with appropriate expression directionality) of 13 miRNAs and 
their 33 mRNA targets. An integrated network of each of these 13 miRNAs and their 
downstream up- and down-regulated genes are represented in Figure 4. 

 
Figure 4. (A) List of 13 differentially expressed miRNAs in CNIT samples. (B) Integrated network of 13 miRNAs and their 
downstream up- (red) and down- (green) regulated genes. 

Then, these 13 miRNAs and 33 gene targets were further analyzed for biologic sig-
nificance. First, the genes were examined for their role in canonical pathways. SOD2 and 
APP were genes participating in mitochondrial dysfunction, while AGO4, CCND1, and 
MYC were identified as being involved with EIF2 signaling. The SOD2 gene is also in-
cluded in superoxide radical degradation and NRF2-mediated oxidative stress response 
pathways. Then, specific tox lists were evaluated for both miRNA:mRNA pairs, with 
SOD2, APP, CCND1, miR-16-5p, and MYC being associated with the decreased trans-
membrane potential of mitochondria. APP was additionally identified as a gene related 
to increasing the permeability transition of the mitochondrial membrane. With particular 
attention to nephrotoxicity tox lists, APP, GFPT1, GRB10, MYC, SOD2, and TLR4 were 
identified as genes related to renal necrosis/cell death and apoptosis. Based on a functional 

Figure 4. (A) List of 13 differentially expressed miRNAs in CNIT samples. (B) Integrated network of 13 miRNAs and their
downstream up- (red) and down- (green) regulated genes.

Then, these 13 miRNAs and 33 gene targets were further analyzed for biologic sig-
nificance. First, the genes were examined for their role in canonical pathways. SOD2
and APP were genes participating in mitochondrial dysfunction, while AGO4, CCND1,
and MYC were identified as being involved with EIF2 signaling. The SOD2 gene is also
included in superoxide radical degradation and NRF2-mediated oxidative stress response
pathways. Then, specific tox lists were evaluated for both miRNA:mRNA pairs, with SOD2,
APP, CCND1, miR-16-5p, and MYC being associated with the decreased transmembrane
potential of mitochondria. APP was additionally identified as a gene related to increasing
the permeability transition of the mitochondrial membrane. With particular attention to
nephrotoxicity tox lists, APP, GFPT1, GRB10, MYC, SOD2, and TLR4 were identified as
genes related to renal necrosis/cell death and apoptosis. Based on a functional analysis for
nephrotoxicity, the TLR4 gene was associated with ischemia–reperfusion injury and tubular
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injury, while GFPT1, TLR4, GFPT1, and SMAD4 genes were identified to be involved with
glomerular injury. Other functions included renal fibrosis (SMAD4), renal cell proliferation
(PNN), renal cell viability (APP), and hyperplasia (MYC). Using QPCR, we validated the
increase in expression of SOD2 (p = 0.0161), CCND1 (p = 0.0113), GRB10 (p = 0.0653), and
TLR4 (p = 0.0577) in CNIT samples when compared to Normal (Figure 5). GRB10 and TLR4
were not statistically significant, although a trend in significance was observed. This is
likely due to the relatively small sample size and supports the need of larger studies for
further validation of findings.
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3. Discussion

This study presents a novel integrative approach to evaluate the molecular signature
of CNIT in pediatric KT recipients. This study is the first to examine tissue profiles of CNIT
in an exclusively pediatric KT cohort. CNIT is of particular clinical significance given its
contributions to CRAD and associations with graft longevity.

Previously, our group reported the molecular profile of CNIT in adult KT recipi-
ents [28]. There is reason to believe that age-related and developmental differences in host
immune system responses, drug handling (both pharmacokinetics and pharmacodynam-
ics), primary kidney disease, and presence of concurrent cardiovascular co-morbidities may
impact gene expression [29–36]. For instance, KT recipients less than 5–6 years of age often
require higher CNI doses than older patients, which were potentially related to CYP3A
maturation and activity [37–40]. Other reports have demonstrated more intense immune
responsiveness among pediatric recipients, suggesting that the immunological milieu for
the allograft may be affected by age [36,41,42]. Furthermore, children are prioritized to
receive deceased donor kidneys with lower kidney donor profile index (KDPI) scores
(<35%), and thus, the quality of the graft may influence gene expression [8]. Furthermore,
the need for sensitive markers of allograft injury may be greater among children given
that adult-sized grafts may mask damage that is not accompanied by an increase in serum
creatinine [41]. While most biomarker research initially occurs in adult populations and
then is extrapolated to children, this study demonstrates the value of primary pediatric
biomarker discovery in transplantation.

The focus of this study was to identify molecular pathways associated with CNIT
among pediatric KT recipients. We found mitochondrial dysfunction and oxidative phos-
phorylation to be the two central gene pathways in kidneys with CNIT, even following
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the elimination of commonly differentially expressed genes among IFTA and AR. Specif-
ically, ATP depletion, increased membrane permeability, and the production of reactive
oxygen species emerged as key biological processes enriched in CNIT samples. Based on
in silico modeling, inhibition of genes involved in complexes I–IV of the electron transport
chain predicted the downstream effect of apoptosis activation via caspases 3, 8, and 9 and
cytochrome C. EIF2 signaling was also robustly inhibited in CNIT-specific genes. Among
the functions of the EIF2 pathway is to serve as an mRNA translational checkpoint as part
of an integrated cellular stress response [43]. Upon exposure to environmental stress, the
phosphorylation of EIF2 precludes the formation of the 43S pre-initiation complex required
for translation, which is a homeostatic mechanism to down-regulate protein synthesis
in cellular injury [44]. Here, the inhibited expression pattern of EIF2 suggests a global
reduction in protein synthesis.

Our upstream regulator analysis identified RICTOR as the top activated regulator
among CNIT-specific genes. RICTOR, as a subunit of MTORC2, has been shown to have
a significant role in actin cytoskeleton organization [45–47]. Recently, RICTOR has been
implicated in renal fibrosis development, specifically in association with TGFB1-induced
fibroblast activation and epithelial–mesenchymal transition [48,49]. Previous studies have
highlighted the biologic connection between RICTOR/MTORC2 and mitochondrial activ-
ity [50]. MTORC2 has been localized to both endoplasmic reticulum and mitochondria, but
it has a functional relationship to mitochondria through Akt phosphorylation [50–52]. The
RICTOR/MTORC2 complex phosphorylates Akt, a serine/threonine kinase involved in
cell death and cell cycle progression [52–54]. Both the inhibition and activation of Akt have
been associated with apoptosis and increased vulnerability to oxidative stress [55,56]. Our
results demonstrate that RICTOR may be an important upstream regulator involved in
the cross-talk among these pathways, with roles in both mitochondrial dysfunction and
fibrosis development.

Although it was not our primary objective to characterize the molecular profiles of
AR and IFTA samples, we did observe distinct gene expression patterns within these
groups. Unsurprisingly, the principal gene pathways in AR were related to immunity and
inflammation, including activation of Th1/Th2 alloresponse, iCOS signaling in T Helper
Cells, and NK cell signaling. Predicted significant upstream regulators were cytokines (IL-2,
IL-15, and interferon-gamma). IFTA samples were distinguished by gene pathways and
molecular functions associated with decreased metabolism (specifically, lipid metabolism)
and energy production, which is largely in concordance with previous reports [56–58].

There has been an emerging focus on mitochondria as key arbitrators of both acute
kidney injury and chronic kidney diseases [59–61]. With regard to CNIT, the associa-
tion between mitochondrial dysfunction and CNIs has been previously described by
others [18,62–68]. While it remains unknown whether the observed mitochondrial dysfunc-
tion is secondary to endothelial damage associated with ischemia (i.e., CNI vasculopathy)
or direct tubular toxicity, the findings of our study support the assertion that mitochon-
drial oxidative phosphorylation defects play a role as one of the central mechanisms of
CNIT development. Given that the proximal tubular epithelium is mitochondria-rich and
highly ATP-dependent, these cells may be particularly damaged as a result of CNIT [69–71].
However, oxidative stress has also been linked with endothelial dysfunction in CNIT,
with a recent paper highlighting the role of TLR4 signaling and induction of vascular
inflammation (TLR4 gene up-regulated in our data) [72].

Previous investigations of mitochondria and CNIT have utilized animal or in vitro
models, making this among the first studies to demonstrate mitochondrial dysfunction
in association with CNIT by evaluating gene pathways in human tissue. Our focus on
canonical pathways permits the study of expression patterns of genes of interest within
those pathways. Furthermore, our approach allows for the identification of important
mRNA–miRNA interactions in association with these gene pathways and biological func-
tions, incorporating yet another -omics layer to further delineate the molecular mechanisms
of CNIT. Of the 13 miRNAs identified in the integrative network, several have been cited
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in the literature as being regulators of mitochondrial activity, including miR-16-5p, the
miR-30 family, miR-26, and miR-24 [73–76].

The findings in this study are strengthened by the systems biology holistic approach.
Systems biology is an essential schema for the evaluation of interrelated networks derived
from multi-omic data representing multiple layers of genomic regulation [77,78]. Such a
framework is necessary for understanding the KT model, given the complex and dynamic
interactions between recipient host and donor allograft. This study investigated the in-
teraction between two layers of –omic regulation (miRNAs and their mRNA targets in
the same samples) to further understand the molecular underpinnings of the CNIT tran-
scriptome. Our secondary objective was to identify a panel of candidate miRNA–mRNA
targets among CNIT-specific genes to provide the basis to facilitate diagnostic biomarker
discovery and prospective study. A biomarker panel comprised of miRNAs holds addi-
tional promise as a therapeutic target by utilizing antagomirs as drugs to suppress miRNA
expression [79,80]. Therefore, identifying key miRNAs in CNIT may represent a path
toward drug development in ameliorating its nephrotoxicity.

It is important to note that this pilot study does have the additional strength of
inclusion of archival tissue samples. Formalin-fixed paraffin-embedded (FFPE) tissue
samples are readily available, pose no additional risk to patients, and mitigate the challenge
of obtaining adequate fresh tissue specimens for study. Additionally, archived FFPE
tissue blocks represent a vast resource given its existence as part of highly annotated
repositories/tissue banks. The amount of tissue used as RNA input was minimal (two to
three 10-micron sections), preventing the risk of “exhausting” the sample and allowing use
of small biopsy cores. Over the past several years, archived FFPE samples have emerged as
a suitable tissue source for various -omics platforms as a result of advances in RNA and
DNA isolation technology [81–84]. This study demonstrates the successful utilization of
FFPE samples as an RNA source for both gene expression and miRNA microarrays.

The limitations of the study include its small sample size and cross-sectional study
design. Nonetheless, our study is one of the first of its kind to be performed in an exclusively
pediatric KT cohort, with the use of only well-characterized biopsy samples (i.e., only
samples without mixed diagnoses were utilized). The reported findings are based on
a cross-sectional examination of transcriptomic and epigenetic changes associated with
pediatric CNIT, and they are intended to serve as a framework for future studies that will
improve the knowledge of pertinent molecular pathways. An essential next step will be
to validate the identified panel of markers in a large, prospective pediatric cohort with
protocol biopsies and well-defined clinical and demographic characteristics.

4. Materials and Methods
4.1. Study Cohort

Thirty-eight FFPE kidney biopsies from pediatric KT recipients were available for
study, 12 of which represented cases with CNIT. Normal allografts served as negative
controls (n = 12), while 14 samples made up the positive control group, which functioned
to determine marker/pathway specificity, including AR group (n = 7) and IFTA group
(n = 7). The AR group included 5 patients with acute cellular rejection (ACR) and 2 patients
with antibody-mediated rejection (AMR).

Of the 38 biopsy samples utilized for gene expression, 1 CNIT sample did not pass
hybridization quality control with a %P of < 50%. The final dataset for gene expression
was comprised of 37 total samples (11 CNIT; 12 Normal; 7 AR; 7 IFTA). All 15 miRNA
microarrays were utilized for analysis.

No subjects were recruited as part of this study, and only de-identified archival FFPE
tissue blocks were utilized. This study was verified by the Institutional Review Board at
the University of Virginia (IRB-HSR # 18482) to meet the criteria for review exemption.
Inclusion criteria for participation in this study include patients ≤18 years of age with
biopsies taken over 6 months post-transplantation. Normal allograft protocol biopsies were
taken 12 months post-transplantation.
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CNIT was defined by the histological features of isometric vacuolization of the proxi-
mal convoluted tubules, nodular hyalinization of arterioles and small arteries, or striped
interstitial fibrosis—in the absence of rejection, acute tubular necrosis, and/or IFTA [20,85].
ACR, AMR, and IFTA were defined as specified by the Banff criteria [85–87].

4.2. RNA Isolation and Microarray Hybridization

Total RNA was isolated (High Pure RNA Paraffin Kit, Roche, IN, USA) per manufac-
turer instructions. For each sample, three 10-micron sections (de-paraffinized in xylene)
were later pooled in order to increase RNA yield. Assessment of RNA concentration and
purity was performed using spectrophotometry (NanoDrop ® 1000). Only those samples
demonstrating (1) enough quantity of RNA (>200 ng of RNA input) and (2) high-quality
RNA (ratios of absorbance at 260 nm to 280 nm between 1.9 and 2.1) were considered
suitable for downstream reactions. RNA was amplified and labeled (SensationPlus™ Kit;
Affymetrix, Santa Clara, CA, USA), and consequently hybridized to miRNA and gene
expression microarrays (Affymetrix™GeneChip HG-U133A 2.0 microarray, GeneChip
miRNA v4.0 array, Santa Clara, CA, USA). Arrays were scanned with a GeneChip™ Scan-
ner 3000 (GEO accession number GSE174020).

4.3. Gene Expression/miRNA Microarrays

All 38 biopsies were evaluated using gene expression microarrays. A subset of 15 biop-
sies was used for miRNA evaluation (n = 10 CNIT, n = 5 Normal). In order to further
refine the molecular signature for CNIT, AR and IFTA samples were included for marker
specificity as a “clean-up technique” to identify specific genes and pathways uniquely
associated with CNIT and exclude common genes of allograft injury. The AR group was a
composite of both ACR and AMR as representative of immune-mediated injury. IFTA was
included as an archetype for chronic renal injury.

4.4. Gene Expression/miRNA Microarray Analysis and Quality Control

Raw intensities for each probeset were stored as electronic files (.CEL format). The
robust multiarray average (RMA) method was used for background correction, which
was followed by quantile normalization in the R environment [88–91]. A probeset level
t-test was used to compare conditions. A p-value < 0.001 (<0.005 for miRNA microarrays)
and q-value probeset-specific false discovery rate (FDR) ≤ 5% (Benjamini and Hochberg
method [92,93]) were utilized to identify differentially expressed genes and miRNAs,
respectively. Fold-change (genes ≥ 1.5 fold change and miRNAs ≥ 2) was used for
relative quantification of gene and miRNA expression differences between groups. Only
microarrays that passed quality control using intensity values of RNA spike-in controls
were included.

Given the high likelihood of degraded RNA present in FFPE tissue, stringent hybridiza-
tion quality control measures were applied [94]. The percentage of probesets declared
present (%P) by the detection call algorithm: (cut-off > 50% ± 15%) and 3′:5′ ratios of the
intensity values for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) housekeeping
gene (cut-off: ≤3).

4.5. Interaction Networks, Functional/Pathway Analysis, Upstream Regulators

Ingenuity Pathway Analysis™ (IPA, http://ingenuity.com, accessed 10 May 2021)
software was used to identify experimentally verified and high confidence target gene
interactions to define miRNA:mRNA pairs for input into pathway enrichment analysis.
MiRNA and mRNA datasets were also integrated and subjected to network analyses
by IPA to identify plausible associations and potential regulatory networks relating to
the progression of CNIT. Specifically, gene ontology, disease relevance, and functional
and network analyses were assessed. Predicted upstream regulators with significant
overlap p-value (defined as the p-value associated with the degree of overlap between
observed genes present in the dataset and predicted genes of an upstream regulator)

http://ingenuity.com
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were also identified. Separate analyses were performed for CNIT vs. Normal, IFTA vs.
Normal, and AR vs. Normal. Then, a comparison analysis of the three conditions was
evaluated, where overlapping differentially expressed genes represented common genes,
while non-overlapping genes were considered unique. Statistical significance associated
with networks, pathways, and functions was calculated in IPA using a Fisher’s exact test,
with p-values < 0.05 considered significant. Predictions regarding the activation state of a
function, molecule, or pathway were inferred using the IPA regulation z-score algorithm
(positive and negative z-scores predict activation and inhibition respectively), which is
computed based upon the observed directionality gene expression changes present in
the dataset.

4.6. Data Integration Analysis

A separate analysis was performed using unique genes for CNIT (those remaining
following the elimination of common genes expressed by IFTA and AR vs. Normal
samples). Then, an integration step was carried out between differentially expressed
miRNA (CNIT vs. Normal) and this dataset of unique CNIT genes (IPA microRNA Target
Filter tool, which is based on content from TarBase, TargetScan, miRecords, and published
literature). This analysis generated a signature of differentially expressed miRNAs and
their target mRNAs present in both datasets. The final miRNA:mRNA pairs represented
a filtered list of only those experimentally observed relationships pairing in the proper
directions (upregulated miRNAs and their downregulated gene targets and vice versa).

5. Conclusions

Our results have identified mitochondrial dysfunction and oxidative phosphorylation
defects to be central gene pathways involved in the pathogenesis of CNIT, with renal cell
death/necrosis and energy failure/ATP depletion as salient biological functions. Addi-
tionally, we discovered a panel of miRNAs and their gene targets representing a candidate
molecular signature of CNIT in pediatric KT recipients. Delineation of the molecular
pathways specific for CNIT offers mechanistic insights into a clinically significant problem
and is a necessary first step for the development of minimally invasive biomarkers, which
may allow individualized immunosuppressive therapy and improve graft survival and
quality of life for children.
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between CNIT and Normal samples.
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