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Abstract: Palmprint recognition has been widely studied for security applications. However, there is a
lack of in-depth investigations on robust palmprint recognition. Regression analysis being intuitively
interpretable on robustness design inspires us to propose a correntropy-induced discriminative
nonnegative sparse coding method for robust palmprint recognition. Specifically, we combine the
correntropy metric and l1-norm to present a powerful error estimator that gains flexibility and
robustness to various contaminations by cooperatively detecting and correcting errors. Furthermore,
we equip the error estimator with a tailored discriminative nonnegative sparse regularizer to extract
significant nonnegative features. We manage to explore an analytical optimization approach regarding
this unified scheme and figure out a novel efficient method to address the challenging non-negative
constraint. Finally, the proposed coding method is extended for robust multispectral palmprint
recognition. Namely, we develop a constrained particle swarm optimizer to search for the feasible
parameters to fuse the extracted robust features of different spectrums. Extensive experimental results
on both contactless and contact-based multispectral palmprint databases verify the flexibility and
robustness of our methods.

Keywords: robust palmprint recognition; regression analysis; correntropy metric; discriminative
nonnegative regularizer; nonnegative constraint; constrained particle swarm optimizer

1. Introduction

Biometrics, like face, fingerprint, and iris images, have been exhaustively investigated for
identity verification [1]. With lower risk of forgery, richer texture, and more comfortable acquisition
mode, compared with face, fingerprint, and iris images, palmprints have drawn significant attention
gradually [2]. Palmprint recognition methods can be roughly divided into categories [3] such as texture
modeling-based [4–9], subspace learning-based [10–13], and local descriptor-based [14–18]. These three
categories of methods attempt to extract critical features by ideally defined transformations, principal
directions, or descriptors. However, on the one hand, their feature extraction approaches relying on
fine prior knowledge of texture location do not apply to diverse scenarios. On the other hand, some
feeble but valuable wrinkles are abandoned. What’s more, despite a little work that merely considers
palmprint image degeneration due to the objective rotation and illumination variation [15,19], most of
the methods neglect to consider robust palmprint recognition because of the potential occlusion and
corruption in real-world applications.
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1.1. Research Actuality

Recent decades have witnessed the fruitful findings of robust recognition on other biometrics,
among which regression analysis has aroused the most attention for its intuitive interpretability
of robustness design [20]. Compared with the mainstream palmprint recognition methods,
the regression-based methods extract features without relying on the prior knowledge of texture
location, and all the valuable pixels are used in its vector-wise operation. It seems we can draw some
inspirations from the regression-based methods to realize robust palmprint recognition.

The linear regression classifier (LRC) may be one of the foremost methods in regression-based
biometric recognition, which seeks suitable representation coefficients of a query sample and classifies
it by examining which class can lead the minimal reconstruction residual [21]. With the l1-norm
regularization, the sparse representation classifier (SRC) showed impressive performance on biometric
recognition [22]. Zhang et al. claimed that it was the collaboration mechanism of the l1-norm that
rendered SRC resultful and replaced the l1-norm with the l2-norm to put forward a collaborative
representation classifier (CRC) [23]. Huang et al. introduced the l2,1-norm to achieve both flat and
structured sparse coding [24]. Moreover, Xu et al. created a novel regularization to propose a
discriminative SRC (DSRC) [25]. The regularization-based methods utilized the l2-norm or l1-norm
to measure the representation errors under the assumption that the errors follow a Gaussian or
Laplacian distribution [20]. Such a simplified treatment is capable of handling some simple corruptions,
but could be unreasonable when facing more complicated contaminations such as dense corruption
and gross occlusion.

To alleviate the impact caused by contaminations, Wright et al. introduced an augmented
dictionary into SRC to create a robust SRC (RSRC) [22]. By extracting the centroids and variation
of the training samples, Deng et al. proposed a superposed SRC (SSRC) [26]. Although these
ideas improved the representation ability of the dictionaries, they can not overcome the drawback
of the regularization-based methods, which leads to their limited robustness. To characterize the
representation errors, Yang et al. [27,28] proposed the robust sparse coding (RSC) and regularized
robust coding (RRC), respectively. Drawing ideas from the information theory, He et al. measured
the errors by the correntropy-based sparse representation (CESR) [29]. These error detection-based
methods yielded promising results to continuous occlusion, but they can be easily trapped by the
undetected errors when the occlusion is heavy [30]. The nuclear norm-based matrix regression (NMR)
method appealed to model the low-rank structure of the representation errors [30,31]. Whereas,
the low-rank modeling is unrealistic in practice when samples are subjected to disperse corruption.
Recently, the half-quadratic (HQ) method and Laplacian-uniform mixture-driven iterative robust
coding (LUMIRC) method were proposed for error detection and correction [32,33]. However, both of
them neglected the fact that the robustness of the regression-based methods relies not only on the error
estimator but also on the sparsity regularizer.

All the work analyzed above has a common intention of attempting to get rid of the flawed
entries in the contaminated sample and obtain promising recognition performance with the partial
pure entries [19–34]. However, when the features of different classes are similar, partial information is
insufficient to support us to correctly distinguish one class from the others. Fortunately, multimodal
biometrics acquired from multi-views can provide more useful features to address this problem.
Taking multispectral palmprint images for example. Samples acquired under different spectrums
can provide more information against the pixel loss caused by contaminations [35]. Up to now,
much efforts have been made for multimodal biometric recognition by exploiting summation, wavelet
transform, and competitive coding to fuse the features of different modes [36–38]. However, insightful
explanations of why these strategies make effects were missed, and the potential contaminations were
not considered.
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1.2. Motivations and Contributions

In view of the merits and demerits of all the aforementioned studies, either the regularization-based
or error detection-based work can only handle a specific contamination case, i.e., corruption or occlusion.
We expect to obtain a flexible robust scheme against various contaminations in real-world applications.

Correntropy was demonstrated to be particularly robust to non-Gaussian noises and large outliers
was successfully applied for feature selection and signal processing [39,40]. Compared with the
methods in [28,31–33] that detected errors in a heuristic way, correntropy provided a realistic metric
approach that was theoretically promised to have desirable measure properties and approximate
solution by the information theory and HQ optimization theory [40].

As was demonstrated in [22], the sparsest representation prefers to express a query sample with its
homologous samples. If the representation coefficients are not sparse enough, elements corresponding
to the inhomogeneous samples of the query sample will emerge. Then, the coding errors will contain
the difference among diverse classes and could not reflect the real contamination anymore, which
would greatly degenerate the error estimator. Since exploring the discriminability among the training
samples encourages the sparsity of the representation coefficients [25], we argue that discriminative
sparse coding is conductive to precise error estimation (see the verifications in Section 4).

In addition, the conventional sparse representation expresses the query sample with a combination
of the dictionary samples, which involves both additive and subtractive operations. In the sparse
coefficients, the emerging negative elements are not only trivial and meaningless, but also can lead the
extracted features to ‘cancel each other out’. This is contrary to the intuitive notion of combining samples
into a whole and the intention of extracting significant intra-class features for reliable classification [41].
Other arguments for nonnegative coding arise from biological modeling and hyperspectral image
decomposition, where the sparse representation coefficients are required to be nonnegative [42,43].

Inspired by the above analyses, a cooperative error estimator (CEE) composed of a
correntropy-induced error detector and a sparse error corrector is designed. Moreover, we combine CEE
with a tailored discriminative nonnegative sparse regularizer (DNSR) to propose a joint scheme, named
correntropy-induced discriminative nonnegative sparse coding (CDNSC), to cope with corruptions,
occlusions, and the mixture of them. We also explore a feasible feature fusion strategy to extend
CDNSC to robust multispectral palmprint recognition. Figure 1 illustrates the core idea of CDNSC.
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Figure 1. Regression-based CDNSC. The mixedly contaminated query sample can be expressed as a 
linear combination of the weighted discriminative dictionary samples plus the corrected errors. 

Given a query sample with mixed-contaminations, the correntropy metric detects the errors via 
a weighted image, while the l1-norm corrects the undetected ones. Meanwhile, DNSR produces 
discriminative nonnegative sparse coding to stimulate CEE to precisely estimate errors. Thus, we 
obtain significant features (corresponding to the red line in Figure 1) of the query sample. The 
extensive experimental results in Section 5 show that our algorithm outperforms all the selected state-

Figure 1. Regression-based CDNSC. The mixedly contaminated query sample can be expressed as a
linear combination of the weighted discriminative dictionary samples plus the corrected errors.

Given a query sample with mixed-contaminations, the correntropy metric detects the errors via
a weighted image, while the l1-norm corrects the undetected ones. Meanwhile, DNSR produces
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discriminative nonnegative sparse coding to stimulate CEE to precisely estimate errors. Thus, we obtain
significant features (corresponding to the red line in Figure 1) of the query sample. The extensive
experimental results in Section 5 show that our algorithm outperforms all the selected state-of-the-art
methods in all challenging cases, where the variation of illumination and posture, corruptions, and two
types of occlusion are all considered. Our contributions are summarized as follows:

• The correntropy metric and l1-norm are combined to compose an error estimator for cooperative
error detection and correction. We further equip the estimator with a discriminative nonnegative
sparse regularizer to propose CDNSC to address various contaminations, like dense corruption,
gross occlusion, and the mixture of them.

• To obtain the analytical solution of the unified scheme, we propose an efficient method to
address the nonnegative constraint, namely, converting it into a nontrivial equality constraint.
Then, with some self-developed skills, the new nondifferentiable equality constraint problem is
expressed with a continuous formulation. Thus, combined with half-quadratic optimization, a
reweighted alternating direction method of multipliers (ADMM) can be derived to obtain the
closed-form solution of the reformulated problem.

• The proposed CDNSC is extended for robust multispectral palmprint recognition. We develop a
constrained particle swarm optimizer to search for the feasible parameters to fuse the extracted
robust features of different spectrums. This provides a new idea for extending the single-mode
biometric recognition methods to multimodal biometric recognition.

The remainder of this paper is organized as follows: Section 2 reviews the researches on
coding regularization, non-negative sparse representation, and error estimation. Section 3 introduces
CEE, DNSR, the optimization of CDNSC, and its expansion for multispectral palmprint recognition.
Section 4 analyzes the effectiveness of CDNSC. Section 5 carries out experimental verifications. Section 6
concludes this paper.

2. Related Work

In the following content, we will use bold symbols to signify matrix or vector variables and normal
symbols to signify their elements. Given a dictionary A ∈ RD×L containing L vectorized D-dimensional
training samples of diverse classes, the regression-based methods explore appropriate coefficients
x ∈ RL to facilitate the subsequent classification by representing a vectorized query sample y ∈ RD

with a linear reconstruction Ax.

2.1. Coding Regularization

SRC gets sparse coding x over dictionary A by employing the l0-norm. The l0 minimization is
NP-hard and equals to the l1-regularized minimization as long as x is sparse enough [44]. To deal with
the contaminations, the constraint y = Ax is relaxed to:

min‖x‖1 s.t. ‖y−Ax‖22 ≤ e (1)

where ‖x‖1 =
∑L

i=1|xi| is the l1-norm, xi denotes the i-th element of variable x, and e denotes the coding
errors. Problem (1) is the classical Lasso [45] that can be solved by leveraging the least angle regression
(LAR) [46]. To better deal with the contaminations, Wright et al. further introduced an augmented
dictionary into SRC to propose RSRC [22]:

min‖x‖1 s.t. y = Ax (2)
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where A = [A, I], and I is an identity matrix to fit the corruption. With a novel regularizer,
DSRC presented an efficient discriminative sparse coding method [25]:

min
x
‖y−Ax‖22 + γ

L∑
i=1

L∑
j=1

‖A:ixi + A: jx j‖
2
2 (3)

where A:i is the i-th column of dictionary A, and γ is a tunable parameter.
Regularizers in Equations (1)–(3) benefit to defend the robustness by selectively extracting sparse

features. However, when the complicated corruptions occur, the l2-norm is improper to measure the
coding errors anymore.

2.2. Nonnegative Sparse Representation

An essential issue of SRC is to explore an interpretable nonnegative sparse coding x, with which a
query sample is reconstructed by only addition [43]. The nonnegative matrix factorization (NMF) is an
important technique to find such coefficients. Given dictionary A, NMF aims to find two nonnegative
matrixes U = [uik] ∈ RD×R and V = [vik] ∈ RL×R that:

min
U,V
‖A−UVT

‖
2
2 = min

uik,v jk

D∑
i=1

L∑
j=1

ai j −

R∑
k=1

uikv jk


2

(4)

where ai j denotes the element at the i-th row and the j-th column in dictionary A, R denotes the number
of chosen principal components, and V j: denotes the j-th row of matrix V. One can find the details
about NMF in [47]. For the admirable properties of the nonnegativity of NMF, Zhang et al. and Cai et
al. proposed a topology-preserving nonnegative matrix factorization (TPNMF) method and a graph
regularized nonnegative matrix factorization (GNMF) method, respectively [47,48].

Since the solution of NMF is not unique, Liu et al. and Zhang et al. proposed its surrogate,
called nonnegative garrote (NNG), for nonnegative sparse representation [49,50]:

min
x
‖y−Ax‖22 + γ

L∑
i=1

xi s.t. xi ≥ 0 (5)

where Equation (5) can be solved by referring to [51]. Since NNG replaced the l1-norm with a
summation term, so it relaxed the sparsity constraint regarding the coding x.

Ji et al. proposed a genuine nonnegative sparse coding method by directly imposing a nonnegative
constraint on sparse representation [52]. However, they adopted the numerical methods to solve that.
Such a compromised solving approach is inefficient and imprecise.

2.3. Error Estimation

To well measure the coding errors, some novel fidelity terms are proposed to replace the l1- or
l2-norm. CESR measured the similarity between the query sample y and its reconstruction Ax by
utilizing the correntropy-induced metric [29]:

max
x

D∑
i=1

I(yi −Ai:x) − γ
L∑

i=1

xi s.t. xi ≥ 0 (6)

where I(ei) = exp
(
−e2

i /2σ2
)

is a metric function, and σ is a kernel parameter. Meanwhile, ei = yi −Ai:x
is the i-th element of the error e, and Ai: and yi denote the i-th row of dictionary A and the i-th element
of the query sample y, respectively.
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RRC assumed the elements in error e and coding x are i.i.d. with the probability densities functions
(PDF) m(ei) and n(xi), respectively. Let `(ei) = − ln m(ei) and θ(xi) = − ln n(xi). The local quadratic
approximation of `(ei) produces a weighted function wt

i =
.
`
(
et

i

)
/et

i to minimize
∑D

i=1 `(ei) +
∑L

i=1 θ(xi)

in an iteratively reweighted way, where
.
` is the first-order derivation of function `. Empirically,

the Logistic function was selected as the weighted function [28]:

wi = exp
(
−µe2

i + µδ
)
/
(
1 + exp

(
−µe2

i + µδ
))

(7)

where the parameters µ and δ control the decreasing rate and the demarcation point, respectively.
Assuming coding x follows a Gaussian distribution [28], the minimization problem can be finally
reduced to:

min
x
‖

√

W(y−Ax)‖
2
2 + γ‖x‖1 (8)

where W = diag(W) is an error detector, and elements in vector w can be obtained according to
Equation (7).

LUMIRC carried out a Laplacian-uniform mixture function `(ei) = α(exp(−|ei|/b) + c) to fit the
empirical errors [31]. The corresponding weighted function is obtained by:

wi =
.
`
(
et

i

)
= exp(−|ei|/b)/(exp(−|ei|/b) + c) (9)

where b controls the decreasing rate, and c is a constant. Thus, LUMIRC can be reformulated by:

min
x
‖

√

We‖1 + γ‖x‖1 s.t. e = y−Ax (10)

where w = diag(w), and elements in vector w can be obtained according to Equation (9).
It can be found that both RRC and LUMIRC chose the weighted function in a heuristic or empirical

way, so their underlying ideas deserve in-depth analysis. The correntropy metric showing admirable
properties on measuring coding errors was proved to be robust to the non-Gaussian noises and large
outliers [40]. It also has the flexibility of adaptively adjusting fewer parameters compared with RRC
and LUMIRC (see Equations (7), (9), and (21)). Due to these advantages, Lu et al. and Zhou et al.
utilized the correntropy metric for robust subspace clustering and feature selection [35,48]. Wang et al.
introduced it into the matching pursuit algorithm to propose a correntropy matching pursuit (CMP)
method [34]. Unlike these work that achieved their goals with a simple introduction of correntropy
metric, we equip the correntropy metric with a tailored regularizer to pursue stronger robustness.

3. Correntropy-Induced Discriminative Nonnegative Sparse Coding

In the coding process, CEE removes the contaminated pixels in the query sample, while DNSR
extracts significant correct features for the subsequent classification. Accordingly, the framework of
CDNSC is defined as follows:

min
x

D∑
i=1

ν(ei) +
L∑

i=1

υ(xi) (11)

where ν(ei) refers to CEE, and υ(xi) refers to DNSR. We can obtain the specific formulation (Formula
(27)) of CDNSC by substituting the formulized CEE (Formula (19)) and DNSR (Formula (26)) discussed
in the subsequent Subsections into (11). For the specific implementation of CDNSC, one can refer to
the operating steps listed in Algorithm 1, where the detailed calculations of all the involved variables
are also given.

For this purpose, we introduce CDNSC from the following aspects: cooperative error estimator,
discriminative nonnegative sparse regularizer, the optimization of CDNSC, and the extended CDNSC.
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3.1. Cooperative Error Estimator

From the perspective of information learning [40], Liu et al. defined the correntropy between the
query sample y and its reconstruction duplicate y′ as:

Vσ(y, y′) =
x

Iσ(y− y′)pyy′(y, y′)dydy′ (12)

where the joint PDF pyy′(y, y′) between y and y′ is unknown in practice, which leads to a reduced
estimator for the correntropy:

V̂σ(y, y′) =
1
D

D∑
i=1

Iσ
(
yi − y′i

)
. (13)

Based on (13), the correntropy was extended into a general similarity metric between two arbitrary
variables y and y′, which is called the correntropy-induced metric (CIM):

CIMσ(y, y′) =

Iσ(0) −
1
D

D∑
i=1

Iσ(ei)


1
2

(14)

where ei is the i-th element of the variable e, and e = y − y′. Formula (14) has been verified to be a
well-defined metric for satisfying the properties of nonnegativity, symmetry, etc. [53].

Figure 2 shows the comparison among the absolute error metric, mean squared error (MSE) metric,
and CIM. It is clear that the absolute error metric is a real expression of errors, while the squared error
matric quadratically expresses errors. As global metrics, both of them are sensitive to large errors.
Interestingly, the CIM is close to the absolute error metric and MSE metric when errors are small, and it
tends to 1 when errors get larger. Note that large errors are usually caused by non-Gaussian corruption
and continuous occlusion [54]. Hence, CIM is robust to them.
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In the regression-based palmprint recognition procedures, we naturally hope that the representation
of the query sample y can be unaffected by the contaminations, and y can be well reflected by the extracted
features. Fortunately, the CIM can support us to find such a kind of representation by:

min
x

CIMσ(y, Ax) = min
x

1
D

D∑
i=1

(1− Iσ(ei)) s.t. y−Ax = e. (15)
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Although the gradient descent algorithm can be utilized to solve (15), we prefer to leverage the
HQ method as it’s more effective and can provide an adaptive weighted variable for error detection.
To well solve problem (15), Proposition 1 is introduced as follows (the proof of proposition 1 is provided
in Appendix A).

Proposition 1. For (15), there exists a dual function ψ such that:

1− Iσ(ei) = inf
wi∈R

{1
2

wie2
i +ψ(wi)

}
, (16)

and its minimum is reached at:
wi =

1
σ2 exp

(
−e2

i /2σ2
)
. (17)

Equation (17) indicates that the CIM can adaptively learn small weights to suppress the large errors
and assign significant weights to the relatively pure pixels to manifest their importance. Compared
with RRC and LUMIRC, it’s easier to perform CIM towards various contaminations by adaptively
adjusting the parameter σ:

σ2 =
1

2D
‖y−Ax‖22. (18)

Assuming the undetected contaminations are sparse, based on (15) and Proposition 1, CEE can be
formulized as:

D∑
i=1

ν(ei) = ‖
√

We‖1 s.t. y−Ax = e (19)

where W = diag(w) is an error detector, and elements in vector w can be obtained according to (17).
Meanwhile, the l1-norm is an error corrector.

3.2. Discriminative Nonnegative Sparse Regularizer

As an important part of DNSR, the discriminative constraint term is designed as:

L∑
i=1

υ1(xi) =
L∑

i=1

L∑
j=1

(A:ixi)
TW

(
A: jx j

)
(20)

where the superscript T denotes the matrix transpose. The minimization of (20) means the representation
of the i-th and the j-th classes has the lowest correlation, which enables the representation of diverse
classes to be discriminative. Thus, the method prefers to select the most relevant samples to represent
the query sample. This encourages the coefficients to be intrinsically sparse. Note matrix W is obtained
by (17), which suppresses errors from affecting the discriminative coding. Hence, minimizing (20)
encourages x to be robustly sparse.

In light of the drawbacks of NMF and NNG, we directly impose a nonnegative constraint on the
sparse representation:

L∑
i=1

υ2(xi) =
L∑

i=1

|xi| s.t. xi ≥ 0. (21)

Different from [50], we aim to develop an efficient solving method to explore the analytical solution
of (21). To the best of our knowledge, there has no method can be directly exploited. Fortunately, we
can refer to the Lagrange multiplier theorem to convert the inequality constraint problem (ICP) (21)
into an equality constraint problem (ECP). Now, we consider a general ICP:

min
t

f (t) s.t. g(t) ≥ 0 (22)
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where t ∈ R1. Then, the corresponding ECP of (22) reads:

min
t

f (t) s.t. h(t, z) = g(t) − z2 = 0 (23)

where z is an auxiliary variable to describe the nonnegativity of the value of function g(t). We manage
to prove that (23) has the same Karush-Kuhn-Tucker (KKT) conditions as (22), which promises that (23)
is an equivalent transformation of (22) under the Lagrange multiplier theorem-based optimization
method. Consequently, Lemma 1 is introduced as follows (the proof of lemma 1 is provided in
Appendix B).

Lemma 1. 1. Assuming t∗ is a local minimum of (22), and f (t) and g(t) are continuously differentiable, there
exists a unique ϕ∗ for (23) such that:{

∇tL(t∗, z∗,ϕ∗) = ∇t f (t∗) + ϕ∗∇th(t∗, z∗) = 0
ϕ∗ ≤ 0.

(24)

where ∇ denotes the first-order differential operator.

Because (23) and (22) have the same KKT conditions (refer to proposition 3.3.1 in [55] to find the
KKT conditions of (22)), we conclude that solving (23) is equivalent to solve (22) under the Lagrange
multiplier method. So, (21) can be rewritten as:

L∑
i=1

υ2(xi) =
L∑

i=1

|xi| s.t. xi = z2
i . (25)

Combining (20) and (25), DNSR can be formulized as:

L∑
i=1

υ(xi) =
L∑

i=1

L∑
j=1

(A:ixi)
TW

(
A: jx j

)
+

L∑
i=1

|xi| s.t. xi = z2
i . (26)

3.3. Optimization of CDNSC

We obtain the unified CDNSC by substituting (21) and (26) into (11):

J(W, e, x, z) = min
W,e,x,z

‖
√

We‖1 + α
L∑

i=1

L∑
j=1

(A:ixi)
TW

(
A: jx j

)
+ β‖x‖1

s.t. y−Ax = e, x = z2
(27)

where α and β are two tunable parameters, and the vector z2 is composed of the element z2
i , i = 1, · · · , L.

Note (27) can be rewritten as:

J (̃e, u, x, z) = min
ẽ,u,x,z

‖̃e‖1 + α
L∑

i=1

L∑
j=1

(
Ã:ixi

)T(
Ã: jx j

)
+ β‖u‖1

s.t. ỹ− Ãx = ẽ, x = z
2
, x = u

(28)
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where ẽ =
√

We, ỹ =
√

Wy, and Ã =
√

WA. Let φ1, φ2, and φ3 be three vectors of the Lagrange
multipliers, and ρ be the penalty parameter, the augmented Lagrange function of (28) reads:

L(̃e, u, x, z,φ1,φ2,φ3,ρ) = ‖̃e‖1 + α
L∑

i=1

L∑
j=1

(
Ã:ixi

)T(
Ã: jx j

)
+β‖u‖1 +φT

1

(̃
y− Ãx− ẽ

)
+φT

2

(
x− z2

)
+φT

3 (x− u)+
ρ
2

(
‖̃y− Ãx− ẽ‖

2
2 + ‖x− z2

‖
2
2 + ‖x− u‖22

)
.

(29)

Before solving (29), the introduced auxiliary variable z should be eliminated. Let
∂L(̃e, u, x, z,φ1,φ2,φ3,ρ)/∂zi = 0, we have:

xi − z2
i =

{
−φ2,i/ρ, ρxi +φ2,i > 0

xi, ρxi +φ2,i ≤ 0
(30)

where φ2,i is the i-th element of the Lagrange multiplier φ2. Note the selection function (30) renders
(29) nondifferentiable. To obtain the analytical solution of (29), we skillfully rewrite (30) by:

φ2,i + ρ
(
xi − z2

i

)
=

√
bi(ρxi +φ2,i) (31)

where the element bi is determined by:

bi =

{
0, ρxi +φ2,i > 0
1, ρxi +φ2,i ≤ 0.

(32)

Accordingly, problem (29) can be further rewritten as:

L(̃e, B, u, x,φ1,φ2,φ3,ρ) = ‖̃e‖1 + α
L∑

i=1

L∑
j=1

(
Ã:ixi

)T(
Ã: jx j

)
+ β‖u‖1

ρ
2 ‖̃e−

(̃
y− Ãx + φ1

ρ

)
‖

2

2
+ 1

2ρ‖
√

B(ρx +φ2)‖
2
2 +

ρ
2 ‖u−

(
x + φ3

ρ

)
‖

2

2

(33)

where B = diag(b), and the element bi in vector b is determined by (32).
In the l-th iteration, once matrix Wl+1 is updated by (17) and fixed, the variables ỹ and Ã are also

fixed. ADMM [56] respectively updates each undetermined variable in (33) as follows:

ẽl+1 = argmin
ẽ
L

(̃
e, xl,φl

1,ρ
)

(34)

Bl+1 = argmin
B
L

(
xl,φl

2,ρ
)

(35)

ul+1 = argmin
u
L

(
u, xl,φl

3,ρ
)

(36)

xl+1 = argmin
x
L

(̃
el+1, Bl+1, ul+1, x,φl

1,φl
2,φl

3,ρ
)

(37)

φl+1
1 = φl

1 + ρl
(̃
y− Ãxl+1

− ẽl+1
)

(38)

φl+1
2 =

√
Bl+1

(
ρlxl+1 +φl

2

)
(39)

φl+1
3 = φl

3 + ρl
(
xl+1
− ul+1

)
(40)

ρl+1 = min
(
µρl,ρmax

)
(41)
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where the parameter µ > 1, and (39) is obtained by substituting (31) into the formula

φl+1
2 = φl

2 + ρl
(
xl+1
−

(
zl+1

)2
)
. Note (39) reveals that the Lagrange multiplier φl+1

2 ≤ 0 always holds,

which is consistent with the Lemma 1. For (34), we have:

ẽl+1 = argmin
ẽ
‖̃e‖1 +

ρl

2
‖̃e− dl

1‖
2
2 (42)

where the variable dl
1 = ỹ − Ãxl +φ1

l/ρl. The subproblem (42) can be explicitly solved by the soft
thresholding function:

ẽl+1 = sign
(
dl

1

)
max

{∣∣∣dl
1

∣∣∣− 1/ρl, 0
}
. (43)

The variable Bl+1 in the subproblem (35) is updated by formula (32), and the subproblem (36) can
be expressed as:

ul+1 = argmin
u
‖u‖1 +

ρl

2
‖u− dl

2‖
2
2 (44)

where the variable dl
2 = xl +φ3

l/ρl. Similar to (42), (44) is solved by:

ul+1 = sign
(
dl

2

)
max

{∣∣∣dl
2

∣∣∣− β/ρl, 0
}
. (45)

For the subproblem (45), we have:

xl+1 = argmin
x

α
L∑

i=1

L∑
j=1

(
Ã:ixi

)T(
Ã: jx j

)
+

ρl

2 ‖̃e
l
−

(̃
y− Ãx +

φl
1
ρl

)
‖

2

2

+ 1
2ρl ‖

√
Bl

(
ρlx +φl

2

)
‖

2

2
+

ρl

2 ‖u
l
−

(
x +

φl
3
ρl

)
‖

2

2
.

(46)

Before solving problem (46), we specifically consider the derivative of the discriminative term
over the variable xn:

∂
∂xn

 L∑
i=1

L∑
j=1

(
Ã:ixi

)T(
Ã: jx j

)
= ∂

∂xn


L∑

i = 1
i , n

(
Ã:ixi

)T(
Ã: jx j

)
+

L∑
j = 1
j , n

(
Ã:ixi

)T(
Ã: jx j

)

+
L∑

i = 1
i , n

L∑
j = 1
j , n

(
Ã:ixi

)T(
Ã: jx j

)
+

(
Ã:ixi

)T(
Ã: jx j

)


= 2


L∑

i = 1
i , n

Ã
T
:n

(
Ã:ixi

)
+ Ã

T
:n

(
Ã:ixi

)


= 2Ã
T
:nÃx.

(47)
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Accordingly, we have ∂

 L∑
i=1

L∑
j=1

(
Ã:ixi

)T(
Ã: jx j

)/∂x = 2Ã
T

Ãx. Hence, a closed-form solution of (46)

is obtained:

xl+1 =
(
2αÃ

T
Ã + ρlÃ

T
Ã + ρlBl+1 + ρl

)−1(
ρlul+1

−φl
3 −Bl+1φl

2 − ρ
lÃ

T(̃
el+1
− ỹ−φl

1/ρl
))

.
(48)

The total optimization procedures of CDNSC are summarized in Algorithm 1. A termination
criterion is enforced to verify whether Algorithm 1 converges

‖xl+1
− xl
‖2/‖xl

‖2 < ε (49)

where ε > 0 is a small stopping value.

Algorithm 1. Optimization of CDNSC via ADMM

Input: A, y,α, β,µ,ρmax, kmax, and ε.
Output: The optimal ỹ∗, Ã

∗
, ẽ∗, and x∗.

Initialization: k = 0, xk = 1/L.
Repeat
1: k = k + 1;
2: Estimate weight matrix Wk by (17) and (20);

Update: Ã =
√

WkA and ỹ =
√

Wky.
Initialization: l = 0, xl = xk, φl

1, φl
2, φl

3, and ρl.
Repeat
3: l = l + 1;
4: Estimate ẽl by (43);
5: Update Bl by (32);
6: Estimate ul by (45);
7: Estimate x̃l by (48);
8: Update φl

1, φl
2, φl

3, and ρl by (38), (39), (40), and (41);
9: Check the termination criterion by (49);
Until convergence

11: xk = xl

Until k > kmax

We classify y by finding the least reconstruction error holder among all classes. Therefore, the
CDNSC-driven classifier is formulized as follows:

ID = argmin
c
‖̃y∗ − Ã

∗

δc(x∗) − ẽ∗‖2 (50)

where the superscript ∗ indicates the convergence values, and the function δc selects the entries affiliated
to the c-th class.

3.4. Extended CDNSC

Before presenting the extended CDNSC (E-CDNSC), we first establish the objective function to
learn the feasible parameters to fuse the features of different spectrums. Let λs be the fusion parameters
corresponding to the features of the s-th spectrum, the E-CDNSC-driven classifier is given by:

ID(λ) = argmin
c

S∑
s=1

λs‖̃y
∗

s − Ã
∗

sδc(x∗s) − ẽ∗s‖
2

(51)

where the variables ỹ∗s,Ã
∗

s, and ẽ∗s are the output of Algorithm 1. Since the parameter λs should be
nonnegative, and its summation should be equal to 1, we impose two constraints to define the feasible
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region of the vector λ and deem the recognition rate as the objective to establish the objective function
regarding λ:

max
λ

R(λ) = max
λ

N∑
i=1

Θi(ID(λ))

N
× 100 s.t.λs ≥ 0,

S∑
s=1

λs = 1 (52)

where the variable N denotes the number of the test samples, and the function Θ(ID(λ)) counts the
correctly recognized samples.

For Equation (52) is nondifferentiable, we propose a modified intelligent optimizer, named
constrained PSO (CPSO), to solve it. Note the first constraint can be addressed by setting a nonnegative
flying region for the particle swarm. Then, inspired by the Lagrange method, the second constraint is
addressed by:

min
λ

R (λ) = min
λ

−R(λ) + η‖
S∑

s=1

λs − 1‖
2

× 100 (53)

where η > 0 is a penalty parameter.
In the optimizing process, CPSO ceaselessly produces the particle swarm Pm

∈ RQ×S to randomly
fly in the defined region, where the variable Pm denotes the particle swarm in the m-th generation,
and the variables Q and S denote the individual number and particle swarm dimension, respectively.
Note each row of Pm signifies a potential solution to minimize (53). Specifically, CPSO finds the best
individual p∗ from P1 to minimize (53) in the first generation, then p∗ reproduces P2 in the second
generation. The above processes repeat until the following termination criterion is met:

‖

S∑
s=1

λm+1
s − 1‖

2

< ξ (54)

where ξ is a small positive value. Referring to 57, we update the penalty parameter in each generation by:

ηm+1 = min(ςηm, ηmax) (55)

where ηmax is a large positive value, and ς is a small positive value. The procedures of optimizing (53)
is outlined in Algorithm 2 (In each generation, CPSO reproduces new particle swarm in the same way
as PSO. For the limited space, we omit that here. The details can be found in [57]).

Algorithm 2. Optimization of (53) via CPSO

Input: ỹ∗s, Ã
∗

s, x∗s, ẽ∗s, η0, ς, ηmax, ξ, Q, and S
Output: The optimal λ∗

Initialization: m = 0, particle swarm Pm

Repeat
1: Calculate the fitness value of each individual in Pm on (53);
2: Find the individual p∗ in Pm with least fitness value;
3: λ = p∗;
4: m = m + 1;
5: Reproduce particle swarm Pm around p∗;
6: Update ηm by (55);
7: Check the termination criterion by (54);

Until convergence

4. Analysis of CDNSC

This section discusses the effectiveness of CDNSC by analyzing its complexity and convergence
and demonstrating the positive effect of DNSR on the performance of CEE.
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4.1. Complexity and Convergence of CDNSC

Although the mathematical derivation of optimizing CDNSC seems to be complicated due to
the nonnegative constraint, the resulted extra computation is only to construct a simple matrix B,
which has a low computation complexity of O(L). The subproblems regarding the parameters ẽ and
ũ can be explicitly solved by the simple soft thresholding method, so the computational complexity
of solving ẽ and u is O(L). When solving the parameter x̃, the most time-consuming process is the
matrix inversion, which has a complexity of O

(
L2

)
. Let k and l signify the iteration index of the outer

loop and inner loop in Algorithm 1, respectively. Ignoring the basic operation like matrix addition
and subtraction, the computational complexity of algorithm 1 is O

(
kl
(
3L + L2

))
. Unlike the Lasso

problem that should be solved iteratively, all the l1 minimization problems in CDNSC have closed-form
solutions, so CDNSC is relatively efficient.

The convergence of CDNSC is illustrated in Proposition 2 (the rough proof of proposition 2 is
provided in Appendix C).

Proposition 2. The sequence L
(
Wk, xk, el, Bl, ul,φ1

l,φ2
l,φ3

l,ρl
)

generated by Algorithm 1 converges.

4.2. Positive Effect of DNSR to CEE

To intuitively illustrate the positive effect of DNSR to CEE, the state-of-the-art methods on error
correction or detection are selected for comparison. The experiments are performed on the blue
spectrum samples in the PolyU palmprint database (all the samples are resized to 80 × 80 pixels and
vectorially normalized). The first three samples of each subject are used for training, and a randomly
selected sample of the first subject is chosen for test. We consider robust palmprint recognition
under the mixed-contaminations and simulate it by imposing a combination of 40% block-wise scar
occlusion and 40% pixel-wise corruption on the query sample. Figure 3 displays the performance of
all the competing methods, where the coefficients and reconstruction residuals corresponding to the
congeneric samples of the query sample are marked in red, while the reconstruction residual closest to
the congeneric reconstruction residual are marked in black (‘N/A’ indicates that the corresponding
method lacks for error corrector or detector).

Without an error detector, RSRC can only correct a portion of corruption, which leads to the
misclassification and a terrible recovery of the query image. By contrast, CESR and RRC lack for the
error corrector. This puts great pressure on their error detectors, so the undetected errors affect the
sparse coding and result in indistinguishable inter-class reconstruction residuals, which can be possible
to mislead the classifier. Since LUMIRC neglects to learn a proper regularizer, it’s representation
coefficients are not sparse enough, and its error estimator appears to be underpowered. Benefitting
from DNSR that encourages the sparsity and nonnegativity of the coefficients, CDNSC presents
sparser coefficients than the other competitors, in which elements corresponding to the real class are
significantly large and physically meaningful. So, CEE presents more precise error estimation results,
and the inter-class reconstruction residuals are more distinguishable for the classification.
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5. Experiments

This section verifies the flexibility and robustness of CDNSC concerning various contaminations.
Meanwhile, to facilitate the intuitive comparison of the recognition accuracy between the
single-spectrum and multispectral palmprint recognition, we choose the two public multispectral
palmprint databases, CASIA database and PolyU database, as the benchmarks.

5.1. Experimental Settings

5.1.1. CASIA Database

This database [58] was built by using a contactless device to capture palmprints. There are no pegs
to restrict hand posture and position, so the variation of illumination and palm posture extensively
exist in samples. Images of 200 palms were collected in two sessions with an interval of more than one
month. In a session, each palm was captured three times, respectively under 460 nm, 630 nm, 700 nm,
850 nm, 940 nm, and white spectrua. There were six images acquired from one palm. The samples are
all uncropped original palm images. We utilize the method in [1] to crop each sample with a size of
180 × 180 to obtain the ROI images. In the experiments, samples of each subject are randomly divided
with the proportion of 3:1:2 to compose a dictionary set, a feature fusion training set, and a test set,
respectively. Figure 4a–f show some typical multispectral samples in the CASIA database.
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(a–f) Samples under the 460 nm, 630 nm, 700 nm, 850 nm, 940 nm, and white spectrums in the CASIA
database, (g–j) Samples under the Blue, Green, NIR, and Red spectrums in the PolyU database.

5.1.2. PolyU Database

Samples in this database were captured by a contact-based device, where pegs are set to restrict hand
posture and position. Hence, the acquired samples are rather regular. Palmprint images of 500 palms
were collected in two sessions with an interval of nine days. In a session, each palm was captured six
times, respectively under red, blue, green, and NIR spectra, so there were 12 images acquired from one
palm. The ROI images were already cropped with a size of 128 × 128 by using the method in [59]. In the
experiments, samples of each subject are randomly divided with the proportion of 1:1:1 to compose a
dictionary set, a feature fusion training set, and a test set, respectively. Figure 4g–j show some typical
multispectral palmprints in the PolyU database.

5.1.3. Compared Methods

There are few classical methods proposed for robust palmprint recognition. Since CDNSC
derives from concluding the merits and demerits of the robust regression-based methods, the optional
competing methods are all based on robust regression analysis. To present convictive comparisons,
the state-of-the-art methods on coding regularization, nonnegative representation, error correction,
and error detection are all preferred. Specifically, LRC and the regularization-based SRC and CRC
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are selected. For the methods of nonnegative coding, the classical NNG and GNMF [60] are picked.
As dictionary learning-based methods, DSRC and SSRC are chosen. Meanwhile, the state-of-the-art
error correction and detection-based methods, including RSRC, CESR [61], l1-regularized RRC [61],
and LUMIRC [61], are chosen. Finally, as a successful application of the correntropy, CMP is selected.

5.1.4. Parameter Settings and Experimental Platform

Parameters in Algorithm 1 are set as α = β = {0.01, 0.1, 1, 10, 50}, φl
1 = φl

2 = φl
3 = 0.1, ρ0 = 1,

µ = 1.5, ρmax = 1e + 8, kmax = 3, and ε = 1e− 3. On the basis, the other parameters in Algorithm 2 are
set as η0 = 0.01, ς = 1.2, ηmax = 100, and ξ = 1e− 4. All the experiments are performed in MATLAB
R2019a on a laptop with 2.6-GHz CPU and 4-GB RAM.

5.2. Robust Contactless Palmprint Recognition

Experiments in this part are all implemented on the 460 nm spectrum samples in the CASIA
database. Without setting pegs to restrict hand posture and position, variation of illumination and palm
posture exists extensively as shown in Figure 5, which brings some challenges to ROI segmentation
and palmprint recognition. What’s more, in real-world applications, dense corruption and gross
occlusion probably emerge in the query samples. Hence, we verify the robustness of CDNSC from the
following aspects.
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5.2.1. Dimension and Number of Training Samples

As we know, the dimension and number of training samples often affect the performance of the
biometric recognition methods. Here, we first consider the impact of sample dimension by fixing
the training sample number of each subject as 3, where each sample is downsampled to the size of
20 × 20, 40 × 40, 80 × 80, and 120 × 120, respectively. When considering the impact of training sample
number, we fix the sample dimension as 40 × 40 and respectively select the first sample and the first
three samples of each subject in the dictionary set to compose the dictionary A. The recognition rates of
all the methods under the two cases are displayed in Figure 6a,b, respectively.
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From Figure 6a, although both CDNSC and CESR adopt the correntropy metric as the error detector,
CDNSC is more robust than CESR, which owns to the regularizer DNSR. As a strong competitor, RRC is
more sensitive than CDNSC concerning the variation of sample dimension. It can be observed that
CDNSC outperforms all the compared methods in each dimension case. When the sample dimension
increases, the recognition rates of most compared methods present a slight downward trend. This is
because a proper downsampling ratio contributes to getting rid of redundant pixels and extracting
distinct features. Figure 6b indicates that CDNSC achieves better results than the others no matter
with one or three training samples per class. Note we set rigorous parameters to solve all the Lasso
problems to pursue the sparsity of coefficients, so the augmented dictionary in RSRC plays a little role
to enhance the robustness of SRC.

5.2.2. Continuous Scar Occlusion

We consider the possible occlusion caused by palm scar and design an experiment to investigate the
robustness of CDNSC in handling the scar occlusion, a kind of continuous contamination. The sample
dimension is fixed as 40 × 40, and the first three samples of each subject in the dictionary set of the
CASIA database are all recruited to compose the dictionary A. When performing the experiments,
we randomly impose a scar image on the query samples to simulate the real scar. The percentage of
scar occlusion varies from 10% to 40%. The experimental results are shown in Figure 7.
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Figure 7. Recognition rate versus the level of scar occlusion.

It’s evident that CDNSC outperforms other methods except CESR, at different occlusion levels.
However, CDNSC seems to be less sensitive to the variation of occlusion level than CESR. Although
CMP also adopts the correntropy metric, its performance is greatly degraded due to the continuous
occlusion in comparison to its considerable performance on the original database (see Figure 6a).

5.2.3. Dense Corruption and the Mixed-Contaminations

Finally, we consider the residual cases: dense corruption and the mixture of corruption and scar
occlusion. The sample dimension and assembling processes of the dictionary A are similar to the
above experiment. Due to CDNSC is quite robust to corruption, we directly evaluate its robustness
regarding the dense corruption at the level of 50%. Besides, scar occlusion and corruption are combined
to simulate the mixture case (level varies from 10% to 40%). The two kinds of contaminations are
exhibited in Figure 8. Table 1 displays the experimental results of all the methods, where the best
recognition rate of each case is bold.
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Figure 8. Query samples with dense corruption or mixed-contaminations in the test set of the
CASIA database. (a) The original sample, (b) Sample with 50% corruption, (c–f) Samples with
10%–40% mixed-contaminations.

Table 1. Recognition rates (%) of all the methods with respect to the two kinds of contaminations.

Method Corruption
(50%)

Mixture
(10%)

Mixture
(20%)

Mixture
(30%)

Mixture
(40%)

LRC 34.5 79.75 59 27 8.5
CRC 3.5 27 11 4.25 3
SRC 43.75 85.25 67.5 37 12

RSRC 48.25 86 68.75 40.5 19.75
DSRC 43 81.75 65.75 47.25 24
SSRC 53.25 83.25 69.5 52.75 28
NNG 6.25 55.75 22 8.25 3.75

GNMF 18 72.5 43.25 16.75 7.25
CESR 83 92.75 88.75 78.25 55.75
RRC 62.5 74.25 63.25 58 50.75
CMP 38.5 91.75 85.5 76.75 34

LUMIRC 90 92 87.5 80.5 68.5
CDNSC 94.75 94.5 90.5 85 75.25

Table 1 manifests that CDNSC and LUMIRC are particularly robust against dense corruption
due to their appendant error correctors. But CDNSC achieves a higher recognition rate of 94.75%
that is ahead of LUMIRC with 4.75%. Facing the mixed-contaminations, the compared methods
seem to be fragile for the extra added corruption and present a great degeneration when the level
of the mixed-contaminations increases, compared with their performance regarding occlusion (see
Figure 7). Because DNSR makes CEE to be powerful, CDNSC is less sensitive to the increasing
mixed-contaminations. This indicates that the proposed joint scheme is more flexible and robust to
various challenging cases.

5.3. Robust Contact-Based Palmprint Recognition

Experiments in this part are all implemented on the blue spectrum samples in the PolyU database.
Benefited from the well-defined acquisition restriction, samples in the PolyU database are quite regular.
The recognition rate of CDNSC can reach to 100% on that. So we won’t make experiments on the
original database anymore and directly verify the flexibility and robustness of CDNSC from the
following aspects.

5.3.1. Continuous Camera Lens Occlusion

Now, we consider another probable occlusion, continuous camera lens pollution, which often
appears in contact-based acquisition. In this experiment, we fix the sample dimension as 40 × 40,
and the first three samples of each subject in the dictionary set of the PolyU database are all recruited
to compose the dictionary A. The recognition rates of all the methods are displayed in Figure 9.
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Figure 9. Recognition rate versus the level of camera lens occlusion.

Obviously, CDNSC outperforms the other compared methods in all occlusion cases. CESR and
LUMIRC continue to perform considerably. However, when the occlusion level increases, RRC begins
to surpass them. The presence of occlusion misleads CMP from selecting correct dictionary atoms,
which leads to its poor performance. CDNSC showed its robustness to scar occlusion on the irregular
CASIA database. We believe that it is capable to harness the same case on the more regular PolyU
database and will not consider the scar occlusion in this part.

5.3.2. Training Sample Number

Figure 6a reveals that the variation of sample dimension dose little effect on the palmprint
recognition rate. So, we merely pay attention to the impact of the training sample number here.
Different from the experiments performed on the CASIA database, we impose 40% camera lens
occlusion on the query samples when the training sample number varies. By fixing the sample
dimension as 40 × 40, we select the first sample and the first three samples of each subject in the
dictionary set to compose dictionary A, respectively. The results are shown in Figure 10.

The pixel value of the simulated camera lens pollution is quite close to the palmprint pixel value,
which brings extra difficulty to the error detector and corrector in contrast with the scar occlusion (see
Figures 8 and 11). As shown in Figure 10, nearly all the methods lost the good performance they ever
presented with respect to the scar occlusion, and become sensitive to the camera lens occlusion. To our
relief, CDNSC is more robust than the other methods whether with one or three training samples.

5.3.3. Dense Corruption and the Mixed-Contaminations

Finally, we discuss the robustness of CDNSC regarding dense corruption and the mixture of
corruption and camera lens occlusion. The sample dimension and assembling processes of the
dictionary A are the same as that in Section 5.3.1. We directly consider the 50% corruption and simulate
the mixture case by combining the camera lens occlusion and corruption (level varies from 10% to
40%). The two kinds of contaminations are exhibited in Figure 11. Table 2 displays the recognition
rates of all the methods where the best recognition rate of each case is bold.
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Figure 11. Query samples with dense corruption and the mixed-contaminations in the test set of
the PolyU database. (a) The original sample, (b) Sample with 50% corruption, (c–f) Samples with
10%–40% mixed-contaminations.

Table 2. Recognition rates (%) of all the methods with respect to the two kinds of contaminations.

Method Corruption
(50%)

Mixture
(10%)

Mixture
(20%)

Mixture
(30%)

Mixture
(40%)

LRC 27 85.2 55.8 19.6 5.8
CRC 3.8 16.8 6.8 2.6 1.4
SRC 51.8 92.2 79.2 43 13.4

RSRC 56.4 92.8 80.4 46.2 20.2
DSRC 46.4 91.8 77.6 47.6 14.4
SSRC 59.6 93 81.6 56.6 23.8
NNG 5.6 50.6 21.6 6.4 2.8

GNMF 11.8 79.8 39.6 13.4 3.6
CESR 90.2 97.8 93.2 80 52.2
RRC 58.6 73.2 55.6 44.6 37
CMP 43 97 92.8 82 38.6

LUMIRC 94.2 94.2 88.6 76.2 63
CDNSC 97.6 97.8 95.2 86.5 75.4

From Table 2, CESR is considerably robust against dense corruption, while CDNSC and LUMIRC
also show promising performance due to their error correctors. However, CDNSC achieves a higher
recognition rate of 97.6% than CESR and LUMIRC. Since the mixed-contaminations doesn’t follow the
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Laplacian or Gaussian distribution, both SRC and RSRC lost their robustness. Although DSRC and
SSRC can harness slight mixed-contaminations, they have limited capacity to handle more severe cases.
NNG and GNMF are unable to extract robust features, so their performance is rather poor. CESR, RRC,
CMP, and LUMIRC show relatively satisfactory results due to their error detectors. However, they
are sensitive to the gradually deteriorative mixed-contaminations. Benefitting from the cooperation
between CEE and DNSR, CDNSC achieves better results in all contamination levels.

5.4. Comparison of Running Times

Apart from recognition rate, computational consumption is another important indicator to
evaluate the palmprint recognition methods. This subsection is organized to investigate the efficiency
of CDNSC and the other competing methods. For the experiments performed in Sections 5.2 and 5.3,
we specifically consider 40% occlusion and 40% mixed contamination and give the average running
time of recognizing a query sample in the two cases. The experimental settings, including sample
number, sample dimension, and parameters, follow these given in the previous cases. The comparison
among all the competing methods regarding the two cases on the CASIA database and PolyU database
is listed in Table 3.

Table 3. Average running time (Seconds) of all the methods regarding the two contaminations.

Method
CASIA Database PolyU Database

Palm Scar Occlusion (40%) Mixture (40%) Camera Lens Occlusion (40%) Mixture (40%)

LRC 0.0002885 0.0002950 0.001936 0.002198
CRC 0.0001210 0.0001185 0.0007160 0.0007155
SRC 0.0498 0.0702 0.1723 0.1932

RSRC 0.1963 0.1997 0.2881 0.2983
DSRC 0.0005825 0.0005855 0.004967 0.005208
SSRC 0.07915 0.0894 0.2135 0.2192
NNG 0.7897 0.9998 12.9199 16.7413

GNMF 0.02232 0.02551 0.1554 0.1582
CESR 0.1939 0.1953 0.5578 0.4518
RRC 0.5808 1.2743 4.1873 8.1859
CMP 0.9250 0.9514 3.1124 3.2647

LUMIRC 0.6391 0.5990 2.6096 2.6455
CDNSC 0.4452 0.4484 2.3214 2.5753

On the whole, the traditional methods, including LRC, CRC, SRC, RSRC, DSRC, SSRC, NNG,
and GNMF, take less computation time than the state-of-the-art robust methods, including CESR,
RRC, CMP, LUMIRC, and CDNSC. This is because the traditional methods can achieve batch-wise
recognition by matrix-based computation. By contrast, the state-of-the-art robust methods have an
additional stage to respectively learn a tailored weighted image for each query sample, thus they
have to recognize the query samples one by one. Moreover, since the robust methods usually
have more than one variable due to their complicated robust models, their optimization processes
are consequently more time-consuming, based on the iteratively reweighted optimization strategy.
However, the state-of-the-art robust methods present significantly higher accuracy than the traditional
methods. From Table 3, we can conclude that CDNSC and CESR achieve a better tradeoff between
accuracy and efficiency than the other methods, but CDNSC has a higher accuracy than CESR in all
cases (see Figure 7, Figure 9, Tables 1 and 2).

5.5. Multispectral Contactless and Contact-Based Palmprint Recognitions

This subsection is organized to investigate the effectiveness of E-CDNSC. Based on the well-designed
objective function (53), CPSO searches such a group of fusion coefficients that manifest the informative
spectral features and suppress the less useful spectral features. Figure 3 shows that CDNSC is capable
of extracting significant stable features from the seriously contaminated samples. So, it’s reasonable to
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suppose that the fusion coefficients learned on the original samples are appropriate for fusing the robust
features extracted from the multispectral samples.

In the experiments, the sample dimension is fixed as 40 × 40. The first three spectral samples of
each subject in the dictionary set of the CASIA database are used to compose the spectrum-dependent
dictionary A. The spectral samples in the feature fusion training set are employed to extract spectral
features, which are used to train CPSO to obtain the feasible fusion parameters. Given Q = 20
(individual number of the particle swarm) and S = 6 (particle swarm dimension or spectrum number),
the fusion parameter searching processes are shown in Figure 12.

We set the origin of the coordinate system as the initial positions of the fusion parameters and
zero as the initial value of the penalty parameter. Figure 12a indicates that under the punishment of η,
CPSO constantly produces new particle swarm Pm

∈ RQ×S to randomly fly in the defined region until
the termination criterion is reached. Obviously, each row of P is a potential solution to (53). It can be
observed that CPSO converges with only 20 iterations. Note that minimizing the constrained objective
function (53) is equivalent to maximize the recognition rate function (52). To intuitively present the
comparison between multispectral palmprint recognition and single-spectrum palmprint recognition,
we define the best single-spectrum recognition rate 96.25% as the initial value of the function (52) and
its opposite value −96.25% as the initial value of the function (53). Figure 12b reveals that multispectral
palmprint recognition receives more admirable results with a 98.75% recognition rate.

Fixing all the above experimental settings, we now conduct multispectral palmprint recognition
based on the learned fusion parameters (see Figure 12a). Four kinds of cases, including illumination
and pose variation, 40% scar occlusion, 50% corruption, and the mixed-contaminations with 40%
corruption and 40% scar occlusion, are all considered. Similarly, we perform the multispectral
palmprint recognition on the PolyU database, where the mixed-contaminations is simulated with
40% corruption plus 40% camera lens occlusion. The results on the two databases are respectively
displayed in Tables 4 and 5, where all the single-spectrum palmprint recognition results are also listed
for intuitive comparison.

Table 4. Recognition rates (%) of multispectral and single-spectrum palmprint recognition on the
CASIA database.

Spectrum Pure Occlusion
(40%)

Corruption
(50%)

Mixture
(40%)

460 95.5 77 94.75 75.25
630 95 73.75 94.5 71.25
700 93.25 68.5 92.25 68.25
850 93.5 71.25 92 70.75
940 96.25 77.25 94.75 74.5

WHT 93.75 75 93.25 72
Multi-spectrum 98.5 89.25 97.75 85.75
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The experimental results in Tables 4 and 5 reveal that E-CDNSC can further improve the recognition
rate based on the robustness of CDNSC. We also conclude that the fusion parameters learned on the
original samples are applicable to fuse the robust features extracted from the contaminated samples.
This owes to the flexibility and robustness of CDNSC.

Table 5. Recognition rates (%) of multispectral and single-spectrum palmprint recognition on the
PolyU database

Spectrum Pure Occlusion
(40%)

Corruption
(50%)

Mixture
(40%)

Blue 99.25 77.4 97.6 75.4
Green 97.8 76 95.8 73.2

Nir 98.8 78.8 96.8 73.8
Red 97.6 75.4 96.2 72.2

Multi-spectrum 99.8 91.2 99.2 87.8
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6. Conclusions

Considering the robust palmprint recognition, the coding errors caused by contaminations
such as gross occlusion, dense corruption, and a mixture of them are insightfully studied in this
paper. We combine a correntropy-induced error detector and a sparse error corrector to propose the
cooperative error estimator CEE. Moreover, DNSR is designed to encourage the nonnegativity and
sparsity of the coefficients. By combining CEE and DNSR, a joint CDNSC is proposed to flexibly handle
various contaminations. On the basis, we propose E-CDNSC for multimodal palmprint recognition by
introducing a novel CPSO. The correntropy metric function is approximated with a weighted least
square formula, while the nonnegative constraint problem is converted into a promising equality
constraint. With some skillful techniques, the reformulated problem is effectively optimized via a
reweighted ADMM. Extensive experimental results on two public benchmarks reflect the flexibility
and robustness of the proposed methods.

Our research reveals the importance of handling the coding errors and the importance of a proper
regularizer on precise error estimation. These factors are all vital to protect the flexibility and robustness
of recognition methods, when facing various complicated scenarios. This paper only focuses on robust
palmprint recognition. However, the active ideas in CDNSC and E-CDNSC can be applied to the other
single-mode biometric recognition or multimodal biometric recognition.
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Acronym Definitions

Acronym Definition Acronym Definition

ADMM Alternating direction method of multipliers KKT Karush-Kuhn-Tucker

CDNSC
Correntropy-induced Discriminative
nonnegative sparse coding

LAR Least angle regression

CEE Cooperative error estimator LRC Linear regression classifier

CESR Correntropy-based sparse representation LUMIRC
Laplacian-uniform mixture driven iterative
robust coding

CIM Correntropy-induced metric MSE Mean squared error
CMP Correntropy matching pursuit NMF Nonnegative matrix factorization
CPSO Constrained PSO NMR Nuclear norm-based matrix regression
CRC Collaborative representation classifier NNG Nonnegative garrote

DNSR
Discriminative nonnegative
sparse regularizer

PDF Probability densities functions

DSRC Discriminative SRC RRC Regularized robust coding
E-CDNSC Extended CDNSC RSC Robust sparse coding
ECP Equality constraint problem RSRC robust SRC

GNMF
Graph regularized nonnegative
matrix factorization

SRC Sparse representation classifier

HQ Half-quadratic SSRC Superposed SRC

ICP Inequality constraint problem TPNMF
Topology-preserving nonnegative matrix
factorization
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Appendix A

Proof of Proposition 1

Proof. It can be easily verified that functionφ(ei) = 1− Iσ(ei) satisfies all the conditions of (2.1) in [54]. According to
(2.3) in [54], there exists a convex dual function ψ(wi) such that:

φ(ei) = inf
wi∈R

{1
2

wie2
i +ψ(wi)

}
(A1)

when ei , 0, the infimum of (16) is reached at:

wi =

.
φσ(ei)

ei
=

Iσ(ei)

σ2 (A2)

where Iσ(ei) = exp
(
−e2

i /2σ2
)
. �

Appendix B

Proof of Lemma 1

Proof. As the value t∗ is a local minimum of (22), then (t∗, z∗) is a local minimum of (23). Apparently, the functions
f (t) and h(t, z) in (23) are also continuously differentiable. Once ∇g(t) is linearly independent, ∇h(t) is linearly
independent, too. For (23), according to the first-order Lagrange necessary condition of the ECP(proposition 3.1.1
in [55]), there exists a unique value ϕ∗ such that:{

∇tL(t∗, z∗,ϕ∗) = ∇t f (t∗) + ϕ∗∇th(t∗, z∗) = 0
∇zL(t∗, z∗,ϕ∗) = −2ϕ∗z∗ = 0. (A3)

If g(t∗) , 0, we can obtain z∗ =
√

g(t∗) , 0. From (A3), we get:

ϕ∗ = 0(g(t∗) , 0) (A4)

For (23), according to the second-order Lagrange necessary conditions of the ECP (3.1.1 in [55]), we have:

[ ω $ ]

[
∇

2
ttL(t

∗, z∗,ϕ∗) 0
0 −2ϕ∗

][
ω
$

]
≥ 0 (A5)

For arbitrary ω and $ ∈ R1, they always satisfy:

[ ∇tL(t∗, z∗,ϕ∗) ∇zL(t∗, z∗,ϕ∗) ]
[
ω
$

]
= ∇tg(t∗)ω− 2z∗$ = 0 (A6)

The Lagrange multiplier theorem of the ECP reveals that ϕ∗ exists uniquely, for which the conclusions drawn
under specific situations reflect the truth. We can obtain desired results by substituting differently defined $ into
(A6) as long as it satisfies (A7). We first define:

$ =

0 g(t∗) = 0
∇t g(t∗)ω

2z∗ g(t∗) , 0
(A7)

With (A4) and (A7), we say that whether g(t∗) = 0 or not, $ϕ∗$ = 0 always holds. For ω satisfying
∇tg(t∗)ω = 0 (g(t∗) = 0), we obtain the second-order necessary condition of (23):

ω∇2
ttL(t

∗, z∗,ϕ∗)ω ≥ 0 (A8)
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By redefining ω = 0,$ , 0(g(t∗) = 0), we obtain −2ϕ∗$2
≥ 0 according to (A6). That is to say

ϕ∗ ≤ 0(g(x∗) = 0)

Finally, we obtain (24) by combining (A3), (A4), and (A9). �

Appendix C

Proof of Proposition 2

Proof. NoteL(̃e, B, u, x,φ1,φ2,φ3,ρ) in (33) can be rewritten asL(W, e, B, u, x,φ1,φ2,φ3,ρ). Since the convergence
properties of ADMM have got in-depth research in [56], when Wk is fixed the updated sequence in Algorithm 1
always satisfies L

(
Wk, xk−1, el, Bl, ul,φ1

l,φ2
l,φ3

l,ρl
)
≥ L

(
Wk, xk, el, Bl, ul,φ1

l,φ2
l,φ3

l,ρl
)
.

When xk is fixed, we have..according to Proposition 1. Hence, the sequenceL
(
Wk, xk, el, Bl, ul,φ1

l,φ2
l,φ3

l,ρl
)

generated by CDNSC is non-increasing. By studying the properties of the correntropy [40] and formula (27), it is
clear that J(W, e, x, z) has a lower bound. In conclusion, CDNSC converges. �
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