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ABSTRACT: For the first time, anisotropic gold nanorods (AuNRs) were embedded
with a photosensitizer dye (crystal violet) in polyurethane (PU) matrix to create the
effective antimicrobial film, capable of killing Gram-negative bacteria on its surface
when exposed to white light. The dye, when activated with white light, interacts with
the AuNRs to generate reactive oxygen species (ROS), which kill bacteria. With a
proper control of the aspect ratio (2.1−2.4) and coating of the AuNRs, the film can be
tuned to reduce the bacteria population of one to four orders of magnitude (1-log to 4-
log) under 11 klux of light, for an exposure to light between 1 to 3 h. Particularly it
could reduce 104 cfu/cm2 to the level of 1−5 cfu/cm2 in 3 h of light exposure. This
was a desired performance for use on hospital surfaces. In addition, the system showed
antimicrobial effect only when exposed to light, which eliminated the concern for a
cumulative toxic effect on subjects exposed to the material for a long period of time
and limited the time given to the bacteria to develop resistance against the system.
Furthermore, this process of sterilization could be carried out by a commercially available white light lamp, which when in use
did not interrupt the normal routine operation of the environment.
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1. INTRODUCTION

With the emerging of antibiotic resistant bacteria, the
development and maintenance of sterile environments is
becoming a necessity for hospitals and food manufactures.
The weight of infections caused by multidrug resistant bacteria,
on the US health system, is of 55 billion USD per year,1 and
projections estimate an impact on the world economy for
trillions USD yearly by the 2050.2 Infections from drug
resistant bacteria are often contracted in environments where
bacteria are exposed to drugs with frequent and incomplete
cycles of disinfections, in hospitals or food processing facilities.
The development of hospital acquired infections (HAI)
involves 5% of the intensive care patients in developed
countries (47.9 cases for 1000 hospital hours) and 15.5% of
the patients of the developing countries,3 while cross-
contamination during the handling of food causes a great
number of diseases every year (9.4 million of illnesses and
2612 casualties in the 2011).4 Conventional sterilization
methods are not effective; they require intensive resources
(e.g., chemicals and sterilizing apparatus) and effort from
skilled operators working in the sterile environment.5,6 A

typical hospital surface has 2−5 colonies forming units (cfu)
per cm2 (with peaks of 40−300 cfu/cm2 on ward surfaces or
hospital kitchens) against a tolerant level of <1 cfu/cm2.7,8 A
food preparation plant can have as much as 1000−100 000
cfu/cm2 especially on the preparation tables and abattoir
surfaces,9 which is far from the tolerant level of 500−5000 cfu/
cm2 for meat preparations before cooking and 50 to 500 cfu/
cm2 for minced meat.10 Sterilization based on wiping with
detergents or chemicals is labor intensive and depends
completely on skilled personnel working in the sterile
environment. Tests performed in hospitals around the world
have shown that chemical based routine cleaning is not
thorough enough to achieve the required sterility standards in
more than 40% of the surfaces in close contact with
patients.11−13 To improve the efficiency of cleaning processes,
noncontact sterilization methods utilizing reactive gas or UV
light have been introduced. However, these methods have a

Received: April 26, 2019
Accepted: May 13, 2019
Published: May 14, 2019

Article

www.acsabm.orgCite This: ACS Appl. Bio Mater. 2019, 2, 3059−3067

© 2019 American Chemical Society 3059 DOI: 10.1021/acsabm.9b00343
ACS Appl. Bio Mater. 2019, 2, 3059−3067

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

www.acsabm.org
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsabm.9b00343
http://dx.doi.org/10.1021/acsabm.9b00343
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


destructive effect on the surfaces and instruments, and their
use is limited to terminal or deep cleaning.14−16 An alternative
approach to reduce contamination without direct intervention
could be the introduction of antimicrobial surfaces. Anti-
microbial surfaces can be based on either materials that slowly
release antimicrobial active substances (proteins, antibiotics, or
heavy metal ions as copper and silver) or in being able to
catalyze the formation of reactive oxygen species (ROS) when
interacting with a source of energy (UV, laser, or white
light).16 Surfaces based on the release of antimicrobial
substances have a good activity in a short period. However,
there are concerns about long-term efficiency because the slow
release of antimicrobial substances can trigger the development
of bacterial resistance.16 For light activated antimicrobial films,
especially those involving nanomaterials, one of the advantages
is the use of lower intensity light radiation to activate the
antimicrobial effect compared to the use of light alone. One
example of this kind of surfaces is composed of a silicon matrix
containing TiO2 nanoparticles.17 The presence of nano-
particles reduces the time of exposure required to kill bacteria
but still requires UV light to be activated, which limits the
access to the sterilized area. More recently, hybrid systems
based on metal nanoparticles, particularly small spherical gold
nanoparticles (<5 nm, AuNPs), and a sensitizer dye have been
introduced. This nanoparticle based catalysis of ROS shows a
great antimicrobial activity under the exposure to laser light in
the visible range.18,19 In a normal white light condition, it
requires as long as 6 h to reach to comparable level of activity
as that using laser light. Moreover, this system has certain
toxicity in the dark that may limit its application.20 In the past
decade, anisotropic metal nanoparticles, as gold nanorods
(AuNRs), have attracted interest for medical applications due
to their strong localized electromagnetic field and intense
plasmonic properties;21 however, they were never been used
for antimicrobial surfaces. The antibacterial film proposed in
this work uses AuNRs as an energy collector to increase the
quantity of ROS generated by a photosensitizer dye,
throughout plasmonic coupling. The introduction of rod-
shaped gold nanoparticles of suitable aspect ratio (2.1−2.4)
and UV−visible absorption range, according to the photo-
sensitizer dye’s absorption spectrum, increases/steps up the
activity of the system when exposed to white neon light. The
energy absorbed by the film led to the production of ROS,22

which are able to damage the bacteria attached to the film
surface. In contrast to the traditional methods of sterilization
that rely on the application of chemical substances (70%
ethanol, hydrogen peroxide, peracetic acid, chlorine releasing
agents, acid and basic solutions)23,24 or the use of sterilizing
apparatus (autoclaves, UV chamber, ionizing radiations, high
temperature dry sterilization),25 this system maintains a
continuous antimicrobial effect, and it is powered by merely
exposure to a commercially available white light lamp without
any direct intervention. This attribute makes this film an
innovative way of reducing the risk of developing resistant
bacterial strains due to an incomplete cleaning process,26 while
being nontoxic when not exposed to light, thus limiting the
time given to the bacteria to develop resistance.27

2. MATERIALS AND METHODS
2.1. Reagents. Hexadecyltrimethylamonium bromide (CTAB, ≥

98%) was purchased from Tokyo Chemical Industry. Hydrogen
tetrachloroaurate solution (HAuCl4, 30 wt %), sodium borohydride
(NaBH4, ≥ 98%), silver nitrate (AgNO3, ≥ 99.0%), sodium bromide

(NaBr, ≥ 99,99%), L-ascorbic acid (C6H8O6, ≥ 99%), poly(sodium 4-
styrenesulfonate) (NaPSS, Mw 70 kDa), sodium citrate (citNa, >
99%), thiol-polyethylene glycol-carboxylic acid (thiol-PEG, > 99%),
sodium chloride (≥ 99%), sodium fluorescein (fluorescent tracer
grade), and sodium hydroxide (NaOH, ≥ 97%) were obtained from
Sigma-Aldrich, Singapore. H2O2 solution (30−32 wt %) was acquired
from QüreC (Quality Reagents Chemical, New Zealand), while
hydrochloric acid (HCl, 36−38 wt %, Duskan Pure Chemical) was
acquired from Duskan Reagents, Singapore. Polyurethane (1 mm
thick, Swees Engineering Co., pte, PU) and crystal violet (≥ 99%,
Certistain, CV) were obtained from MERK, Singapore; Nutrient Agar
(NA) CM0003 was obtained from Oxoid).

2.2. Gold Nanorods Preparation. Gold nanorods (AuNRs)
were prepared using a modified seed mediated synthesis
approach.28−30 Surfactant micelles (CTAB) were used as template
to grow nanorods from seeds formed in a different solution.31 The
surfactant was then removed, and the resulting AuNRs were stabilized
by either citNa or thiol-PEG. Details procedures are described below.
The seeds solution was prepared by mixing 5 mL of an aqueous
solution of 0.5 mM HAuCl4 with 5 mL of 0.2 M CTAB and reduced
with 0.6 mL of an ice cold 10 mM NaBH4 solution. After the reaction,
the solution was left to incubate for 1 h to allow the Ostwald ripening
to focus the size and shape of the seeds formed.32 The growth
solution was prepared by adding 75 μL of 10 mM AgNO3 to a 5 mL
of a solution 0.2 M of CTAB and later adding 5 mL of 1.4 mM
HAuCl4, followed by 0.25 mL of 1.25 M NaBr. When all the
components were added to the batch, it was left incubating for at least
15 min and then reduced with 105 μL of 79 mM L-ascorbic acid. After
30 s of agitation, 60 μL of seeds solution was added to trigger the
formation of the rods. The solution was left incubating for 12 h at 30
°C to complete the growth process. After the synthesis, the particles
were stabilized by a bilayer of cationic surfactant (CTAB), which was
the main component of the growth solution. This surfactant is
strongly toxic against bacteria and human tissues (liver and heart),
while gold nanorods stabilized with nontoxic capping agents (e.g.,
PEG or sodium citrate) are widely considered biocompatible.33 The
surfactant was removed from the surface of the particles with cycles of
centrifugation (14 000 rpm, 10 min using Mikro 220R Hettich
centrifuge).34 The resulting concentrated suspension of gold nano-
rods was redispersed in microfiltered deionized water, followed by
two cycles of centrifugation (14 000 rpm, 7 min) and finally
redispersed in a solution of poly(sodium 4-styrenesulfonate)
(PSSNa) 0.15% w/w, which acted as a temporary capping agent to
remove the CTAB strongly attached to the surface of the rods.34 After
the last cycle of CTAB removal with PSSNa, the surface of the
particles was modified with sodium citrate, using an extra cycle of
centrifugation a redispersion with a solution of 10 mM citNa,
followed by an overnight incubation. Alternatively, a solution of thiol-
PEG-carboxylic acid (thiol-PEG) 50 μg/mL was used to modify the
surface of the AuNRs to provide stabilization. The absorption spectra
of the particles dispersions were acquired using a Biotek Synergy 2,
plate reader, while the size and aspect ratio of the nanorods in a batch
were determined using ImageJ software35 on a collection of at least 10
TEM image, each containing from 50−300 particles. All the images
were acquired using a Philips CM300 FEG TEM operating at 300 kV.

2.3. Preparation of Antimicrobial Film and Study of CV−
AuNRs Interaction. The preparation of the polyurethane/AuNRs/
crystal violet (PU/AuNRs/CV) film began by embedding the AuNRs
into PU. The AuNRs were loaded on the PU film using the swelling-
encapsulation-shrink method.20 The PU film was exposed to a
solution containing 90% of acetone and 10% of the AuNRs colloidal
solution (optical density 1.5, approximately 0.127 mg/mL) to obtain
an approximated concentration of 0.345 mM of [Au0] absorbed on 30
cm2 of PU film. After overnight incubation, the samples were washed
with deionized water, and the remaining acetone was evaporated from
the film until the polymer was shrunk to the original dimension. The
CV dye was then absorbed on the AuNRs embedded PU film by
diffusion incubating 1 cm2 tiles of the modified polymer in a solution
of 1 mM crystal violet for 48 h (approximated concentration in the
polymer 0.325 mM). The resulting film is denoted as PU/AuNRs/CV
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film. The interaction in solution between CV dye and AuNRs
stabilized with the two different methods was performed by measuring
the UV−vis absorption of 10 μM of CV containing 20% v/v of
AuNRs (≈ 30 μM), after 30 s of vortex agitation.
2.4. Antimicrobial Activity Test and ROS Production

Quantification. The antimicrobial activity of the AuNRs embedded
PU impregnated with CV (PU/AuNRs/CV) film was tested in a
humid environment, where 1 cm2 of the film was inoculated with 25
μL of bacterial dispersion (E. coli ATC25922, 108 cfu/mL), to have a
starting point of 2.5 × 106 cfu. The source of light used for the tests
was a 28 W Wattmiser GE lamp, a high efficiency neon lamp
commonly diffused in Europeans hospital and commercial buildings.
The samples were tested in triplicate and covered with microscope
coverslip to preserve the samples humidity during the time of light
exposure. After the exposure period, the tiles of polymer and the
coverslips were introduced in a 50 mL centrifuge tube and vortexed
with 2 mL of 0.9% NaCl solution to collect all the surviving bacteria.
The solution obtained was aliquoted on nutrient agar plates and
incubated for an overnight at 37 °C with controlled humidity in a
Binder incubator (Red Line). During the incubation time, every living
bacteria plated on nutrient agar formed visible colonies that were
counted to calculate the efficiency of system.36 The film samples were
tested for activity in different exposure times (1, 1.5, 2, and 3 h) and
per activity at different illumination intensities (8.7, 9.4, and 11.7
klux) at 2 and 3 h time points.
To confirm the mechanism of the antimicrobial effect, the

production of ROS in the system was calculated using a modified
version of the oxygen radical absorbance capability (ORAC) assay37,38

by measuring the variation of fluorescence intensity of a 0.5 μg/mL
fluorescein solution,39 alkalinized with 50 μL of 1 M NaOH, when
exposed for 1 h to 11.7 klux of white light using the same set up used
for the antimicrobial experiments. The photobleaching rate of a
fluorescein solution in alkaline condition was constant and reported in
literature;40,41 thus, the difference of fluorescence between the
solutions exposed to light on the surface of unmodified PU or on
PU/CV and PU/citNa-AuNRs/CV could be used to determine the
amount of ROS produced using the Stern−Volmer39 equation and
confirmed using a calibration with aliquots of 1, 5, 7.5, 10, and 12.5
mM H2O2 on the fluorescein solution exposed to light for 1 h on PU.
All the fluorescence intensity measurements were performed with a

Biotek plate reader with excitation filter 485/20, emission filter 580/
20, gain 70, and mirror position 635 nm. The main emission peak of
fluorescein was located at 515 nm, and the fluorescence intensity was
measured with a filter at 580 ± 20 nm on the tail of the peak to avoid
the interference of the excitation wavelength (calibration curve in the
SI, Figure S1). The importance of the radical production for the
efficiency of the system was confirmed adding 20 mM of L-ascorbic
acid at pH 7 to the solution containing the bacteria (0.9% NaCl in
water). In the experiment, L-ascorbic acid acted as an antioxidant to
scavenge the ROS generated by the system42 and thus reduce the
number of bacteria killed by the film.

3. RESULTS AND DISCUSSION
We have reasoned that the activity of the film derives from the
interaction between the excited state of the crystal violet (CV)
dye and the AuNRs both encapsulated in the PU film. AuNRs
have a broad absorption spectrum and greater absorption
coefficient compared to organic dyes43 and thus higher
capability to concentrate the energy absorbed in a localized
electrical field.29 If the AuNRs are dispersed in a fluid, the fast-
changing electrical field releases the energy absorbed on the
environment under the hyperthermal effect.44 While, when
they are embedded in the polymer matrix, this route of energy
relaxation is not available because the particles are confined. In
this condition, the presence of dye molecules in close
proximity to the particles induced a strong plasmonic coupling
between dye and AuNRs, thanks to the overlapping of their
absorption spectra due to the bespoke short rods, which greatly

increased the amount of energy absorbed by the dye45,46 and
consequently increased the amount of ROS generated and the
antimicrobial effect generated by the film (Figure 1).47

To understand if the antibacterial action of the film has a
component of hyperthermia, the temperature changes of the
polymer exposed to light have been tracked with a
thermocouple. Results show no measurable variation between
the unmodified PU and for the PU/citNa-AuNRs/CV film
(temperature measurements for 2 h experiment in the SI,
Figure S2). To complete our exploration of the system, we
have conducted systematic characterization to the film and a
comprehensive study of the interactions between CV dye and
AuNRs with desired aspect ratio and surface coating before
testing their antibacterial action. Details are given in the
following sections.

3.1. Gold Nanorods Characterization. To match the
CV’s absorption for efficient energy transfer, AuNRs with an
intense longitudinal LSPR peak at 650 nm, Figure 1, have been
synthesized. The particles after the synthesis were immersed in
a concentrated solution of CTAB; this surfactant was necessary
for the synthesis, but it was positively charged and toxic. The
removal process, explained in the Materials and Methods
section, managed a complete exchange of the CTAB surfactant
with PSSNa, which was negatively charged. PSSNa weakly
absorbs on the surface of the particles and could easily be
replaced by nontoxic stabilizer, that is, sodium citrate (citNa,
negatively charged) or thiol-PEG (weak negative charge). The
exchange of CTAB with citNa or thiol-PEG blue-shifted the
lateral surface plasmon resonance peak of the particles by 10
nm due to the change of the refractive index of the solution
and the density of charges in surrounding medium of the
particles, Figure 2.48

The dimensions of the particles were obtained analyzing
TEM pictures: 20 to 30 nm length (L) and of 7 to 14 nm
diameter (D), resulting in an average aspect ratio of 2.1 ± 0.3
L/D. The TEM images were taken after the elimination of
CTAB because the surfactant forms crystals during the
preparation of the samples, which interfere with the quality
of the pictures. The TEM characterization of the size and
aspect ratio of the gold nanorods has been performed on
particles stabilized by citrate (Figure 3). Citrate stabilization
gives to the AuNRs a shelf life 2 months if stored at 4 °C.

Figure 1. Overview of the photochemical mechanism of ROS
generation for CV and CV/AuNRs films.
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3.2. Study of CV Interaction with AuNRs. To affirm our
hypothesis that the antimicrobial action of the system relied on
the interaction of CV dye with the AuNRs in the polymer
matrix, their interactions (both with the thiol-PEG and citNa
stabilized AuNRs) in solution have been studied by measuring
the UV−vis spectrum of the mixture of AuNRs with CV,
Figure 4.
Thiol-PEG is a very effective steric stabilizer due to its large

molecular weight (3500 Da); when used to stabilize gold
nanoparticles, it formed a thick polymeric coating with a weak
negative charge.49 CitNa instead have a smaller molecular
weight (189.1 Da) and a strong negative charge,50 forming a
thin charged layer on the surface of the particles. This
difference of stabilizer thickness and surface charge influenced
the interactions between AuNRs and dye, as shown from the
changes in the absorption spectra of the two mixed samples.
The CV molecules (positively charged) had a signature peak at
590 nm and a shoulder peak at 580 nm. When mixed with
AuNRs, a significant peak at 520 nm was observed for the
citNa-coated AuNRs, and similar, but less intense, for the thiol-
PEG coated one. These peaks can be seen in the spectra of the
mixed solution and from subtraction of the spectra of 10 μM

CV and 30 μM nanorods solutions in the SI, Figure S3. The
AuNRs shown in Figure 4d were stabilized with citNa; the
particles stabilized in the two methods had similar spectra for
very low concentrations (spectra reported in the Supporting
Information Figure S3). Since the citNa coating was composed
of a thin layer of small molecules (MW of citNa is 189.1 Da),
the strong electrostatic interaction between CV and citNa
allowed CV molecules to come close enough to the AuNRs
surface, which improved the coupling effect between the SPR
of the particles and the dye, which generated an efficient
absorption enhancement of the peak at 520 nm.45,46,51 It is
worth noticing that both spectra of mixed solutions containing
AuNRs either coated with citNa or thiol-PEG show a strong
reduction of the CV peak at 590 nm wavelength, suggesting
the presence of a strong plasmonic and electronic interaction
between the dye and the nanorods. In addition to the
confirmation of CV-AuNRs interactions, especially in the
citNa-AuNRs, the comparison of the spectra between 660 and
700 nm shows that in solution AuNRs aggregate in the
presence of CV molecules. The degree of aggregation
(broadening of the peak at that wavelength range) was more
evident for citNa coated AuNRs than thiol-PEG coated
AuNRs. This could be an additional evidence of CV−nanorods
interaction because CV neutralize the surface charge and thus
removal of electrostatic protection in citNa-coated AuNRs.
This aggregation in solution is however a not a concern for the
efficiency of the antibacterial system because the nanoparticles
and the dye were added to the polymeric matrix with two
different processes, trapping the nanorods inside the PU film
with swelling/shrinking method and later diffusing the dye into
the polymer.

3.3. PU/AuNRs/CV Film Characterization. The embed-
ment of AuNRs in the polyurethane polymer was confirmed by
comparing the UV−visible spectra of the polymer before
(Figure 5A(a)) and after embedding the AuNRs (Figure
5A(b)). By subtracting the two spectra, it was possible to see
that the characteristic peaks of the AuNRs at 520 and 640 nm
(Figure 5A(c)) were maintained, signaling that AuNRs were
not aggregated.
As showed in Figure 5B, CV maintain the characteristic two

peaks structure after the diffusion in the polymer (Figure
5B(d)). When the polymer contained both AuNRs and dye,

Figure 2. UV−visible spectra of AuNRs (a) in the presence of CTAB;
(b) after CTAB removal and substitution with thiol-poly ethylene
glycol-carboxylic acid; or (c) substitution with sodium citrate.

Figure 3. TEM analysis of the cit-AuNRs: (A) TEM picture at
25 000× magnifications; (B) TEM picture at 39 600× magnifications;
(C) distribution of aspect ratios; and (D) size distribution.

Figure 4. UV−visible spectra of (a) CV 10 μM, (b) citNa coated
AuNRs in the presence of 10 μM CV, (c) thiol-PEG-AuNRs in the
presence of 10 μM CV, (d) 20% (≈ 30 μM) citNa coated AuNRs.
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the peak intensity of the dye absorption decreased (Figure
5B(e)) as previously seen for the samples in solution (Figure
4b). AuNRs alone in the polymer showed an increase of the
absorption at shorter wavelength; this effect is also shown in
the full complex (Figure 5B(e)). This variation of the
absorption shows how the optical properties of the dyes and
the AuNRs were influenced by their interactions within the
confined space of the polymeric matrix. This could be that
different energy absorptions became more accessible. The
intensity of the AuNRs peaks detected in the polymer
increased linearly with the increase of concentration used in
the swelling/encapsulation/shrink process, which confirmed
the reproducibility of the embedding process (Figure S4).
For the preparation of the samples used in this work, an

AuNRs dispersion of 1.5 O.D. had been used (final
concentration in the polymer 0.345 mM) because higher
concentrations caused saturation and did not improve the
performance of the film. The subsequent step in the film
preparation was the diffusion of CV in the polymer; to
determine the optimal time needed for the process, the amount
of CV diffused in the PU/AuNRs film over a range of 0−90 h
of incubation time was measured using UV−visible absorption
spectra. It was found that, for the fixed CV concentration of 1
mM, near solubility concentration, the amount of dye diffused
in the polymer increased linearly for the first 8 h and settled to
a slow increase until 30 h, where the progression reached a
plateau (Figure S5, Supporting Information). The ideal
diffusion time for the samples used in the article was set to

48 h, equivalent to an approximated concentration in the
polymer of 0.325 mM; for a ratio dye/nanorods of
approximately 1:1, the penetration of the dye in the polymeric
matrix was visible to naked eyes and uniform for all the
thickness of the film.

3.4. Quantification of ROS Production. Control tests
with identical set up to the antimicrobial testing, Figure 6, were

performed on a solution of fluorescein 0.5 μg/mL alkalinized
with NaOH 5 mM to confirm the hypothesis that the
antimicrobial action was attributable to the generation of
ROS52 and to quantify the effect of the nanorods on their
production.
Fluorescein in alkaline environment produced a strong

fluorescence emission at 520 nm (absorption 480 nm), which
was progressively quenched when exposed to light and more
rapidly reduced after the interaction with oxygen reactive
species.37 The magnitude of the reduction of fluorescence
intensity, for a quenching process driven by the interaction
between fluorescein and a quencher in solution, was modeled
by the Stern−Volmer equation for a bimolecular quenching
driven by diffusion:39

τ= + [ ]
I
I

k Q1 q
0

0

Where I0 was the fluorescence of a fluorescein solution exposed
to light for 1 h on the surface of unmodified polymer, I was the
fluorescence intensity of the solution exposed to light for 1 h
on the surface of a polymer modified with CV or CV and
citNa-AuNRs, τ0 was the fluorescence decay in absence of a
quencher at 25 °C (3.60 ns), kq was the bimolecular quenching
rate constant at 25 °C (7.64 × 109 M−1 s−1), and [Q] was the
concentration of the quencher. The calculation shows a ROS
production of 3.03 ± 0.60 mM per hour for the PU/CV film
and 5.26 ± 0.02 mM for the PU/citNa-AuNRs/CV film. To
confirm the ROS production, experimental results were
obtained from a calibration curve measuring the fluorescence
of the fluorescein solution after exposure to light for 1 h on
unmodified polymer and simulating the production of ROS
with aliquots of H2O2 and incubating in the dark overnight
(Figure S1, Supporting Information). The ROS concentration
measured with the calibration curve showed comparable results

Figure 5. (A) UV−visible spectra of (a) PU, (b) PU/citNa-AuNRs
film. (c) Subtraction curve (b−a); (B) UV−visible spectra of (d) PU/
CV and (e) PU/citNa-AuNRs/CV. All data have been normalized to
compensate the diffraction of the polymeric film.

Figure 6. Scheme of the antibacterial film testing procedure: (A) PU/
AuNRs/CV film samples are supported on a slide over some
bidistilled water to prevent dehydration; (B) after the inoculation with
bacteria cells, the samples are protected with glass coverslips; (C) film
samples and coverslips are washed with NaCl 0.9% to recover the
remaining bacteria if any; (D) bacteria solution is serially diluted and
plated on nutrient agar and (E) the colony formed are counted.
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with the theory, but it introduced some variability due the
increased amount of experimental procedure required to
obtain the results (2.24 ± 1.94 mM for polymer and CV,
5.32 ± 2.65 mM for the sample containing CV and AuNRs).
The agreement between the results obtained theoretically and
from the calibration with hydrogen peroxide suggested that the
main radical species generated by the film is the hydroxyl
radical, which is the most favorite product of the decom-
position of H2O2 in the condition of the experiment.53 The
importance of the production of ROS for the action of the
system has been further confirmed by adding L-ascorbic acid
20 mM buffered at pH 7 to the bacteria dispersion, which,
being an antioxidant, had the ability to quench the amount of
ROS released by the film. With the introduction of 20 mM L-
ascorbic acid to the system, the activity of the film was indeed
reduced by approximately 15-times.
3.5. Antibacterial Tests. As discussed earlier, citNa

stabilized AuNRs can interact with CV effectively through
electrostatic interaction. Thus, the polymeric film embedded
with citNa AuNRs (PU/citNA-AuNRs/CV) was tested against
E. coli (starting concentration 2.5 × 108) for 1 h, 1.5 h, 2 h, and
3 h of 11.7 klux of light exposure and for 2 and 3 h of exposure
to different light intensities. To confirm the activity of the
antimicrobial film, controls of PU alone, PU modified with
AuNRs, and modified with CV alone were tested for the
antibacterial action under same amount of light exposure and
time. Results showed that in the first hour of the exposure, the
bacteria on the PU/citNa-AuNRs/CV polymer sample were
reduced of an order of magnitude (1-log reduction). By
extending the time exposure to 1.5, 2, and 3 h, the population
of bacteria decreased exponentially to 2-log, 3-log, and 3.5−4-
log, respectively (3 h was the longest time tested) (Figure
7d,e).
This rate of antibacterial activity, 4-log in 3 h, is particularly

interesting against gram (−) bacteria, which possess a double
layer bacterial membrane and they are generally resistant to
this kind of sterilization.20 Our results were a significant
improvement compared to the results reported in literature for

spherical Au nanoparticles, which needed much longer of light
exposure (6 h). The control films, which were tested
separately, retained only a limited efficiency, with activity
reduced of orders of magnitude compared with the full
complex. For example, the controls containing only polymer
and citNa-AuNRs (without CV) had barely any effect on the
bacteria population until the 3 h time point (reduced by 1-log
only), while the PU/CV sample maintained a fraction of the
activity, reducing the bacteria population of less of an order of
magnitude after 2 h and 1.25−1.5-log after 3 h. The
importance of the AuNRs-CV interaction (or CV binding to
AuNRs) for an effective antibacterial action was affirmed by
the experiment using thiol-PEG modified AuNRs. The PU/
thiol-PEG-AuNRs/CV film had only a small antibacterial
activity (no reduction of bacterial count after 2 h exposure, and
merely 0.5-log reduction after 3 h light exposure, p < 0.0001).
As discussed earlier, gold nanorods with thiol-PEG coating had
a weak negative charge, which hindered the interaction with
the positively charged CV dye, as shown from the interaction
in solution in Figure 4. To understand the relation between the
intensity of the light and the speed of the bacterial reduction,
the antimicrobial film (PU/citNA-AuNRs/CV) was subse-
quently tested for 2 and 3 h action with reduced intensity of
illumination from 11.7 klux to 9.4 klux and 8.7 klux. The
system was also tested in the absence of light to check the
chemical toxicity of the modified polymeric film (Figure
8B(a)).
Results showed that the same film samples kept in the dark

did not possess any intrinsic toxicity, (Figure 8B(a)), which
confirmed that light−film interaction was pivotal for bacteria
reduction. Furthermore, the degree of bacteria reduction was
dependent on the level of illumination; reducing the light given
to the film to produce ROS slowed down their production and
consequently the bacteria killings. Specifically, the efficiency of
the system increased exponentially with the increase of light
intensity and the time of the exposure (Figure 8B(b−d)). The
light intensity dependency of the film action was consistent for
both the 2 and 3 h exposure time points (Figure 8A). This
means that given a certain amount of time it would be possible
to estimate the bacterial reduction according to the intensity of
the light and the time needed to reach a complete kill of the
bacteria. In a normal working condition, the film will not be
constantly exposed to 8 to 11.7 klux of light intensity but
would be exposed to a more usual lighting intensity of
approximately 1 klux, in which the production of ROS for the
film was not detectable. Higher light intensity would only be
applied during a routine sterilization process or during
operations that need constant sterility as a surgical procedure.
Limiting the activated period of the film to short period greatly
reduced the risk for the bacteria to develop bacteria resistance.
In literature, similar antimicrobial films could resist to a month
of continuous light exposure;20 limiting the exposure of the
film to high intensity light will extend the life of the film to
months of use.
With the optimal design of the polymer film, embedded with

anisotropic AuNRs of appropriate aspect ratio and a proper
surface coating which facilitates interaction with the CV dye,
our film provides efficient antibacterial action under white
light. It did not depend on specialized sources of light, for
example, UV lamps and lasers, and showed no toxic effects
when not activated.

Figure 7. Antibacterial effect against E. coli of 2.5 × 106 at starting
count. Remaining bacteria count with (a) PU polymer alone, (b)
polymer with citNa-AuNRs, (c) polymer with CV, and (d) full
complex PU/citNa-AuNRs/CV film measured at different light
exposure time of 1, 1.5, 2, and 3 h. (e) Fitting for the rate of
bacteria elimination for the PU/citNa-AuNRs/CV film. ∗ p < 0.05, ∗∗
p < 0.01, ∗∗∗ p < 0.001.
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4. CONCLUSION
We reported a novel nanoplasmonic based antibacterial
polymer film. It consisted of anisotropic AuNRs and an
organic dye capable of generating ROS. The principle of action
of this film was based on the plasmonic coupling interaction of
AuNRs and the nearby dye both confined in a polymer film
under normal lighting, which allow for effective generation of
ROS in quantifiable amounts. This antibacterial film offered a
vital alternative for continuous background bacterial reduction
without requiring the active use of chemicals or the use of
energetic radiations and thus allowing the continuation of the
operation in the sterile environment during the sterilization.
The film was able to reduce the number of Gram-negative
bacteria on its surface from a concentration of 104 cfu/cm2 to
the level of 1−5 cfu/cm2, acceptable for a hospital surface after
3 h of light exposure. For the first time, it was demonstrated
that the produced film could kill Gram-negative bacteria, which
are more difficult to eradicate. The low toxicity when not
exposed to light and the practicality of having an antimicrobial
device embedded on a solid-state polymeric film makes it a
promising candidate for future applications and a practical
solution for the problem of maintaining sterility in environ-
ments in contact with the public and to further reduce the
pandemic diffusion of antimicrobial drug resistance.
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