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A B S T R A C T   

Down syndrome (DS) or trisomy 21 is the most common genetic cause of intellectual disability 
(ID), but a pathogenic mechanism has not been identified yet. Studying a complex and not 
monogenic condition such as DS, a clear correlation between cause and effect might be difficult to 
find through classical analysis methods, thus different approaches need to be used. The increased 
availability of big data has made the use of artificial intelligence (AI) and in particular machine 
learning (ML) in the medical field possible. 

The purpose of this work is the application of ML techniques to provide an analysis of clinical 
records obtained from subjects with DS and study their association with ID. 

We have applied two tree-based ML models (random forest and gradient boosting machine) to 
the research question: how to identify key features likely associated with ID in DS. We analyzed 
109 features (or variables) in 106 DS subjects. The outcome of the analysis was the age equivalent 
(AE) score as indicator of intellectual functioning, impaired in ID. We applied several methods to 
configure the models: feature selection through Boruta framework to minimize random correla
tion; data augmentation to overcome the issue of a small dataset; age effect mitigation to take into 
account the chronological age of the subjects. 

The results show that ML algorithms can be applied with good accuracy to identify variables 
likely involved in cognitive impairment in DS. In particular, we show how random forest and 
gradient boosting machine produce results with low error (MSE <0.12) and an acceptable R2 

(0.70 and 0.93). Interestingly, the ranking of the variables point to several features of interest 
related to hearing, gastrointestinal alterations, thyroid state, immune system and vitamin B12 
that can be considered with particular attention for improving care pathways for people with DS. 
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In conclusion, ML-based model may assist researchers in identifying key features likely 
correlated with ID in DS, and ultimately, may improve research efforts focused on the identifi
cation of possible therapeutic targets and new care pathways. We believe this study can be the 
basis for further testing/validating of our algorithms with multiple and larger datasets.   

1. Introduction 

Down syndrome (DS) or trisomy 21 [1] is the most common genetic alteration being observed in 1 in 1000–1100 live births around 
the world [2]. It is caused by the presence of an extra full or partial copy of chromosome 21 [3]. The most constant and typical features 
of DS are intellectual disability (ID) and craniofacial dysmorphisms, together with other variable signs and symptoms, such as cardiac 
malformations and growth delay [4–9]. In particular, ID is present to some degree of severity in virtually all individuals with DS [2,10] 
and represents the most relevant clinical symptom for which a pathogenic mechanism has not been identified yet [11]. 

A great effort has been made to investigate the hypothesis of DS as a metabolic disease, firstly proposed by Lejeune [12]. Many 
studies identified specific metabolic alterations in DS plasma [13–15] reviewed in Ref. [16], also reporting a cognitive development 
influence by homocysteine [17]. However, a recent study failed to confirm a specific association of the DS metabolic profile with 
cognitive aspects [18]. In fact, studying a complex and not monogenic disease such as DS, a clear correlation between cause and effect 
might be difficult to find through classical analysis methods, thus different approaches need to be used. 

In this context, the increasing availability of big data and of electronic health records has paved the way for Artificial Intelligence 
(AI) in the medical field. Most notably, Machine learning (ML) has been one of the leading approaches to bring new perspectives. The 
reason behind the use of ML-based approaches, instead of more classical methods such as Linear Regressions and Logistic Regressions, 
is that they can capture non-linear correlations in the data. This can lead to uncovering unexpected information that would not be 
observable by human analysts or more canonical statistical approaches. This technique is increasingly employed as it has the potential 
both to offer significant advantages to health professionals, through effective tools for data representation, and to assist medical 
doctors in order to diagnose and accurately predict the risk of disease [19]. 

Accurate analyses through ML techniques can give significant contribution in the medical field and have also been applied in the 
context of DS. In particular, several studies have focused with promising results on computerised diagnosis by analysing facial images, 
taking advantage of craniofacial dysmorphisms typical of DS [20–22]. Among others, Koivu and coll [23]. evaluated the use of ML 
algorithms for improved risk assessment for DS in prenatal screening also considering first trimester biochemical measurements. 
Regarding the cognitive profile, other studies have tried to build intelligent tutoring systems with the aim of assessing the skills of DS 
children and helping to improve their progress and learning skills [24–26]. Finally, several works focused on DS using the great 
quantity of data available from mouse models, predicting locomotor activity and identifying critical proteins from protein profiles 
generated from mice cortex through different AI approaches [27–29]. Although the results obtained were accurate and promising, the 
lack of homology of relevant chromosome 21 sequences and the impossibility to measure human superior cognitive functions in mice 
needs to be taken into account in the investigation of a pathogenic mechanism of ID in DS. 

The purpose of this work is the application of ML techniques in order to find a model to analyze clinical data of DS subjects and 
study their association with ID. In particular, our goal is to identify features that are highly (and possibly non-linearly) correlated with 
ID scores. By doing so, we may assist researchers in identifying key features likely associated with ID in DS, and ultimately, may 
improve research efforts focused on the identification of possible therapeutic targets and new care pathways. 

In particular, we have applied two tree-based ML models (Random Forest and XGBoost) to the research question: how to identify 
key features likely associated with ID in DS. We analyzed 109 features (or variables) in 106 DS subjects. The outcome of the analysis 
was the age equivalent (AE) score as indicator of intellectual functioning, impaired in ID. We applied several methods to configure the 
models: feature selection through Boruta framework to minimize random correlation; data augmentation to overcome the issue of a 
small dataset; age effect mitigation to take into account the chronological age of the subjects. 

2. Materials and Methods 

2.1. Dataset and preprocessing 

The dataset used in this study was obtained during routine follow up visits provided for DS at the Unit of Neonatology of IRCCS 
University General Hospital Sant’Orsola Polyclinic in Bologna, Italy from February 2014 to July 2019. Inclusion criteria were diagnosis 
of DS with homogeneous or mosaic trisomy 21 and age >2 years (yrs). The Independent Ethics Committee of the IRCCS University 
General Hospital Sant’Orsola Polyclinic of Bologna Italy has granted the ethical approval for this study (number: 39/2013/U/Tess). 
For all participants involved in the present study, written informed consent was obtained from the subjects themselves if over 18 years 
of age or parents and/or legal guardians if under 18 years of age, according to the approved protocol for the collection of urine and 
blood samples and clinical data. All procedures were carried out in accordance with the Ethical Principles for Medical Research 
Involving Human Subjects of the Helsinki Declaration. 

The DS clinical dataset here reported in Supplementary Table 1 is composed of a collection of anonymized personal records 
regarding genetic, diagnostic, clinical, and auxological information. For details regarding the recorded data, we refer to previous works 
where subjects are indicated with the same DS subject code [11,18,30,31]. 
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Table 1 
Dataset variables descriptions, names and types.  

Description Variable Type 

Blood test data Leukocytes (10^3/mmc) Continuous 
Erythrocytes (10^6/mmc) Continuous 
HGB-Hemoglobin (g/dL) Continuous 
Hematocrit (%) Continuous 
MCV-Mean corpuscular volume (fL) Continuous 
MCH-Mean corpuscular hemoglobin (pg) Continuous 
MCHC-Mean corpuscular hemoglobin concentration (g/dL) Continuous 
RDW-Red blood cells distribution width (%) Continuous 
HDW-Hemoglobin distribution width (g/dL) Continuous 
Neutrophils (10^3/mmc) Continuous 
Lymphocytes (10^3/mmc) Continuous 
Monocytes (10^3/mmc) Continuous 
Eosinophils (10^3/mmc) Continuous 
Basophils (10^3/mmc) Continuous 
Platelet count (10^3/microL) Continuous 
MPV-Mean platelet volume (fL) Continuous 
CD3+ (PAN T) (%) Continuous 
CD3+CD4+ (%) Continuous 
CD3+CD4+ (Helper) (mmc) Continuous 
CD3+CD8+ (%) Continuous 
CD4+/CD8+ Continuous 
CD56+CD16+CD3− (NK) (%) Continuous 
CD19+ (PAN B) (%) Continuous 
Glucose (mg/dL) Continuous 
HbA1c glycated hemoglobin (mmol/mol) Continuous 
Fructosamine (micromol/L) Continuous 
Urea (mg/dl) Continuous 
Creatinine (mg/dl) Continuous 
Uric acid (mg/dL) Continuous 
Total cholesterol (mg/dL) Continuous 
Triglycerides (mg/dL) Continuous 
Cholesterol HDL (mg/dl) Continuous 
Sodium (mmol/L) Continuous 
Potassium (mmol/L) Continuous 
Chloride (mmol/L) Continuous 
Zinc (micromol/L) Continuous 
Magnesium (mg/dL) Continuous 
Total protein (g/dL) Continuous 
Albumin Continuous 
Direct bilirubin (mg/dL) Continuous 
Indirect bilirubin (mg/dL) Continuous 
AST-aspartate aminotransferase (GOT-glutamic-oxaloacetic transaminase) (U/L) Continuous 
ALT-alanine Aminotransferase (GPT-glutamic-pyruvic transaminase) (U/L) Continuous 
Iron (microgr/dL) Continuous 
Transferrin (mg/dL) Continuous 
Ferritin (ng/mL) Continuous 
Folic acid (ng/mL) Continuous 
Vitamin B12 (pg/ml) Continuous 
Immunoglobuline G (mg/dl) Continuous 
Immunoglobuline A (mg/dl) Continuous 
Immunoglobuline M (mg/dl) Continuous 
Anti-insulin antibodies Continuous 
Human tissue transglutaminase IgA antibodies (U/mL) Continuous 
Thyrotropin (microIU/ml) Continuous 
Free triiodothyonine (FT3) (pg/mL) Continuous 
Free thyroxine (FT4) (pg/mL) Continuous 
Anti-thyroglobulin Antibody (AbTg) (UI/mL) Continuous 
TPO-Thyroid peroxidase antibodies (UI/mL) Continuous 
Albumin (%) Continuous 
Alpha 1 globulin (%) Continuous 
Alpha 2 globulin (%) Continuous 
Beta 1 globulin (%) Continuous 
Beta 1 globulin (%).1 Continuous 
Gamma globulin (%) Continuous 
A/G albumin/globulin ratio (1) Continuous 
Deaminated gliadin peptide IgG Antibodies (U/mL) Continuous 
Homocysteine (μmol/L) Continuous 

(continued on next page) 
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Table 1 (continued ) 

Description Variable Type 

Genetic data MTHFR Genotype Categorical 

Data at birth Mother Age yrs Continuous 
Father Age yrs Continuous 
Gestational Age day Continuous 
Birth Weight kg Continuous 
Birth Length cm Continuous 
Birth OFC cm Continuous 
Apgar Score 1 Discrete 
Sex Categorical 

Development Started Sitting at month Continuous 
Started Babbling at month Continuous 
Started Walking at month Continuous 
Sphincter Control at month Continuous 

Data at examination Age (months) Continuous 
Weight kg Continuous 
Height cm Continuous 
OFC cm Continuous 
BMI Continuous 
Short Stature Categorical 
Flat Occiput [Plagiocephaly] Categorical 
Flat Facial Profile Categorical 
Small Ears Categorical 
Hearing Loss Categorical 
Strabismus Categorical 
Myopia Categorical 
Heart Surgery Categorical 
Separation of the Abdominal Muscle Categorical 
Umbilical Hernia Categorical 
Duodenal Atresia Categorical 
Imperforate Anus Categorical 
Hirschprung Disease Categorical 
Obstructive Sleep Apnea Categorical 
Seizures Categorical 
Hypothyroidism Categorical 
TSH μU per mL Continuous 
Alopecia Categorical 
Celiac Disease Categorical 
Small Genitalia Categorical 
Masticatory Disfunction Categorical 
Constipation Categorical 
Jackson’s Signs (number) Discrete 
Diarrhea Categorical 

Indicator of intellectual disability Age equivalent (AE) score Analysis output  

Fig. 1. Overview of machine learning analysis workflow. We have applied two tree-based machine learning (ML) models (Random Forest and 
XGBoost) to the research question: how to identify key features likely associated with intellectual disability (ID) in Down syndrome (DS). We 
analyzed 109 features (or variables) in 106 DS subjects. The target (or outcome) of the analysis was the age equivalent (AE) score as indicator of 
intellectual functioning, impaired in ID. We applied several methods to configure the models: feature selection thought Boruta framework to 
minimize random correlation; data augmentation to overcome the issue of a small dataset; age effect mitigation to take into account the chrono
logical age of the subjects. 
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To perform a correct analysis of the data sample we preprocessed the data. This phase was composed of the following steps: (i) 
starting from Supplementary Table 1, we removed 72 variables, which were deemed unimportant or not informative due to missing 
values; (ii) we codified categorical attributes introducing a numerical encoding of the values signifying different classes (e.g., YES/NO 
becomes 0/1); (iii) attributes with signs or string not digestible by an ML algorithm (for instance, numerical attribute containing “>” 
symbols) were processed and cast to data type conform to the input values required by the model. After preprocessing steps, the dataset 
has 5 sets of variables on 106 subjects. Table 1 lists all final 109 variables in the dataset, and the associated datatype for each of the 
attributes. In particular, the acquisition of the development skill milestones was recorded with the month at which the subject started 
babbling (“Babbling”), sitting without support (“Sitting”), walking without assistance (“Walking”) and controlling sphincter and 
urination (“Sphincter control”), as reported by parents. 

A general overview of our ML analysis workflow is shown in Fig. 1. 
In our analyses the predictive target (or outcome) is a cognitive test score as indicator of ID in DS. Following a procedure broadly 

used in the field [18,30,32] in order to assess cognitive functioning in individuals with DS, tests more appropriate for the expected 
mental age instead of chronological age were used. This allowed us to avoid the floor effect (and the consequent lack of information) 
that is often present when tests appropriate for chronological age are used. In particular, the cognitive score was calculated starting 
from raw scores obtained from the Griffiths-III test [33] for DS subjects between 3 years and 6 years and 11 months and the WPPSI-III 
test [34] for 7-year-old or older DS subjects. Raw scores were transformed into AE scores according to normative data. In order to 
consider comparable test scales between the two groups, for the scope of this analysis we considered only scale A (“foundations of 
learning”) Griffiths-III test (column “A AE G” in Supplementary Table 1) and “total” WPPSI-III test AE scores (column “Tot AE W” in 
Supplementary Table 1). However, to take into account the subject’s chronological age in the prediction of the outcome, the age effect 
mitigation was applied as explained below. 

2.2. Machine learning models and model building 

In the present study, we have applied two decision tree-based ML models (Random Forest and Gradient Boosting Machine) to 
identify key features likely associated with ID in DS. 

Random Forest (RF) is based on training of multiple trees on random subsets of variables. The final prediction is the result of a 
voting system, where each tree returns a predictive outcome for an input instance and the majority output will be the overall returning 
value [35]. 

Gradient Boosting Machine (GBM) is another tree-based method. If RF builds decision trees in parallel, approximating different 
views (or subsamples) of the dataset, GBM builds models sequentially, gradually minimizing the loss function and consequently the 
overall training error. The final output is computed incrementally, i.e., the prediction of each decision tree is summed to obtain the 
overall outcome. Among the most popular GBM models available we choose XGBoost, which in recent years has been widely used to 
solve a variety of problems with a high level of accuracy [36]. 

2.3. Feature importance 

Feature importance was used to quantify how important each input attribute is for reaching a prediction. In our case it was used in 
both RF and XGBoost methods to identify which attribute is more correlated with the ID score, so as to guide future investigations. 
Whenever we create a split while we train a tree model (both RF and GBM), this will be associated to an increase of the performance 
indicator. By keeping track of the cumulative increase, it is possible to estimate their impact on the tree behavior indicating feature 
importance scores. 

Feature importance scores are the key instrument for our analysis. For this reason, it is important to understand that, since most ML 
models (including the ones we use) operate on the basis of correlations in the data, a high feature importance is not an indicator of 
cause-effect relation. In the experimental results, we will display the feature importance as a bar plot, showing the ranking of the first 
ten variables with higher relevance based on their score. 

It is also important to observe that the reliability of feature importance score is limited by the performance of the ML model itself. In 
other words, the importance score extracted from an inaccurate model may be misleading. 

2.4. Data manipulation 

In this section, we will present three methods for tackling different issues relative to the dataset used in our analysis (Fig. 1). Each of 
these methods refers to a specific problem that arose during the analysis. 

2.4.1. Feature selection 
Feature selection allows the model to focus on the most important features or on features whose importance is of statistical sig

nificance. By doing so, we reduce the risk of overfitting, and we obtain more reliable importance scores as a side effect. 
We applied Boruta, a wrapper-based feature selection method to filter out a set of features that are relevant to the target variable 

[37]). It is implemented through the following steps: 1) The features are randomly shuffled and then stitch together with the actual 
feature matrix to form a new feature matrix. 2) The importance of the shuffled and actual features is obtained by inputting the new 
feature matrix into the random forest. 3) The actual features with importance greater than the maximum importance of the shuffled 
features are retained. By iterating the above steps several times, the important features are identified by Boruta. 
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2.4.2. Data augmentation 
To increase the ML models accuracy starting from a small sample size, we used data augmentation techniques. The number of data 

augments quadratically, going from n sample to 
∑

in-i by comparing pairs of input instances, where each new data entry is computed as 
the ratio between the variables pertaining to two subjects. With this step we are changing the question our model is designed to answer: 
rather than asking “given information about subjects what is the estimated AE score?”, we now ask “given information about ratios of 
input attributes for a pair of subjects, what is the ratio of their AE score?”. In scientific terms, the new question is weaker than the 
previous one, in fact given an oracle for the former it is possible to answer the latter while the opposite is not possible. 

That said, the new question is still highly informative from the point of view of our main goal: if the ratio between (say) vitamin B12 
for two subjects is predictive of the ratio between their AE scores, there is intuitively a chance the feature is involved in ID. 

The question can be further simplified by focusing on the detection of the higher AE score in the pair of subjects. In this case, we ask 
“given information about ratios of input attributes for a pair of subjects, which subject has the higher AE score?”. This method allows 
the formulation of the problem as a classification task, where the target is formulated as a category. More precisely, if we consider two 
subjects qi and qj, and the category associated with their comparison, ck:  

• ck = 1 if qi > qj.  
• ck = 2 if qi ≤ qj. 

2.4.3. Age effect mitigation 
In our analysis the outcome is a cognitive test score as indicator of ID in DS. In particular, we used the AE score of children with DS. 

It is important to note that the chronological age of the subject is highly related to the target of the model and might distort the real 
importance of other features. Moreover, this argument can be made for each variable that is correlated to the chronological age of the 
children. In this situation, features strongly correlated with chronological age would naturally have a higher importance score in our 
model. 

To address this issue we have applied an age effect mitigation: in this way we avoid to overfit about the chronological age using age 
information to compute normalization factors (estimated using ML models, in particular artificial neural networks). The chronological 
age of the subject was used as a predictor of any other variable in our sample. In this case, we might face two scenarios: (i) the age of the 
subject is a good predictor of the variable. Therefore, all its values will be normalized to approximately one, meaning it will not be as 
informative during the training process; (ii) the age of the subject is not a good predictor of the variable, then the values of the variables 
will be re-scaled according to the predicted value. 

2.5. Model evaluation 

In order to have a reliable interpretation of the results, we needed to evaluate the ML models used to approximate the samples, since 
scarce performances would not allow for a trustworthy analysis. To this end, we relied on commonly used performance metrics, such 
as: R2, to measure the goodness of the fit, and Mean Squared Error along with the accuracy score, to measure the error associated to the 
models. 

To avoid incurring in overfitting problems, we relied of a K-fold cross validation approach (K = 10); thus all the results provided 
regarding the metrics are specified as mean and standard deviation among the different validation splits. 

3. Results 

The clinical dataset includes a total of 106 DS subjects (41 females; 65 males) for which cognitive data are available. The mean age 
of cognitive assessment is 8.88 years with a standard deviation (SD) of 3.96 years. Anonymized personal, genetic, diagnostic, clinical, 
and auxological information are available in the Supplementary Table 1. 

In this section, we are presenting the results of the analysis on the complete dataset, except for the features removed during the 
preprocessing phase. All the main findings will be presented outlining advantages and disadvantages of each approach motivating the 
use of the methodologies presented in Materials and Methods section. The investigation was performed using both RF and GBM (i.e. 
XGBoost), whereas the findings are presented using feature importance. Each model will be evaluated providing the metrics introduced 
in the paragraph 2.5 of Materials and Methods section which are summarized in Table 2. 

The computer code has been implemented with Python programming language. 

Table 2 
Evaluation of the models. R2: coefficient of determination; MSE: mean squared error; RF: random forest; FS: feature selection; DA: data augmentation; 
AEM: age effect mitigation; XGB: XGBoost.  

Model Regression Classification 

R2 MSE R2 Accuracy 

RF + FS 0.54 ± 8.19⋅10− 5 154.31 ± 72.93   
RF + FS + DA 0.69 ± 0.00011 0.13 ± 0.047 0.86 ± 4.3⋅10− 5 0.66 ± 0.070 
RF + FS + DA + AEM 0.70 ± 0.00019 0.12 ± 0.043 0.86 ± 0.17⋅10− 5 0.67 ± 0.076 
XGB + FS + DA + AEM 0.93 ± 5.83⋅10− 5 0.11 ± 0.043 0.96 ± 8.61⋅10− 5 0.67 ± 0.094  
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The results shown below are a partial view of the analysis, focused on motivating the methodological process followed during this 
study, a complete report of the analysis is available in the Supplementary Figures. 

3.1. Random forest combined with feature selection 

Due to the scarcity of data samples and the high number of variables, we deployed a feature selection method aimed at reducing the 
number of random correlations in the dataset and removing the unimportant variables with reference to the predictive target (as 
described in paragraph 2.4.1 in Materials and Methods section and shown in Fig. 1). 

The application of the feature selection algorithm reduced the set of variables to a few candidates, where the predictor with higher 
importance is the chronological age of the subject (Supplementary Fig. 1). 

However, as reported in Table 2, the metrics reveal a bad performance of the model. 

3.2. Random forest combined with feature selection and data augmentation 

To counteract the absence of data points, we resorted to a form of data augmentation, as described in paragraph 2.4.2 of Materials 
and Methods section and shown in Fig. 1. We are basically changing the feature space to obtain more samples and produce more 
accurate models. 

This approach allows us to formulate the original learning problem in two forms: a regression task and a classification task. In the 
regression task, the predictive target is a continuous variable representing the AE score of the child. As we can see in Supplementary 
Fig. 2 the predictor with higher importance is APGAR score at 1 min after birth, a measure of the physical condition of a newborn 
infant. The classification model has a discrete outcome, namely, a discrete numerical value obtained by the AE comparison in a pair of 
subjects, as described in paragraph 2.4.2 of Materials and Methods section. As shown in Supplementary Fig. 3 the categorical variables 
(e.g. hearing loss and duodenal atresia) gain higher importance. 

Table 2 shows better performance metrics for the model (RF combined with feature selection and data augmentation) compared to 
the previous one (RF combined with feature selection). Even though we now have more reliable results, the quality of the information 
we retrieved through the analysis is debatable since the chronological age of the subject is highly related to the target of the model (AE) 
and might distort the real importance of other features (Fig. 2). Moreover, this argument can be made for each variable that is known to 
be correlated to the chronological age of the children (e.g., creatinine level, homocysteine level, development milestones, height, 
occipital frontal circumference). To avoid this issue, we can mitigate the effect of age on the predictive model by applying the age effect 
mitigation method as described in paragraph 2.4.3 of Material and Methods section and shown in Fig. 1. 

3.3. Random forest combined with feature selection, data augmentation and age effect mitigation 

In order to obtain an analysis not influenced by the chronological age of the subject, we resorted to the normalization method 
presented in paragraph 2.4.3 of Material and Methods section. The regression task (Fig. 3A) confirms the importance of the APGAR 
score at 1 min after birth and of almost all the other features compared to the previous model without age effect mitigation (Sup
plementary Fig. 2). The classification task (Fig. 3B) highlights another categorical variable related to gastrointestinal alteration 
(Hirschsprung disease). Both classification and regression tasks show the importance of hearing loss, language (the month at which the 
subject started babbling), magnesium, immune system (CD19+ and immunoglobulins M) and vitamin B12. The evaluation score shows 
no significant variations demonstrating the robustness of the model (Table 2). 

Fig. 2. Correlation with chronological age. Chronological age of the subjects is strongly correlated to the outcome of our analysis (age equivalent 
or AE score). Correlation coefficient r = 0.747. The data show that chronological age could be considered as a trivial predictor of the outcome and 
can influence the results related to variables strongly dependent on chronological age. 
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Fig. 3. Random Forest combined with Feature Selection, Data augmentation and Age Effect Mitigation. Feature importance obtained by 
random forest combined with feature selection, data augmentation and age effect mitigation. 3A. Regression task. 3B. Classification task. 

Fig. 4. Gradient boosting machine combined with Feature Selection, Data augmentation and Age Effect Mitigation. Feature importance 
obtained by gradient boosting machine combined with feature selection, data augmentation and age effect mitigation. 4A. Regression task. 4B. 
Classification task. 
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3.4. Gradient boosting machine combined with feature selection, data augmentation and age effect mitigation 

XGBoost combined with Feature Selection and regression and classification tasks of XGBoost combined with Feature Selection and 
Data Augmentation model results are shown in Supplementary Figs 4, 5 and 6, respectively. 

The XGBoost combined with all data manipulation steps confirms most of the results obtained by RF method. As shown in Fig. 4 A 
(regression task) the importance of language (the month at which the subject started babbling and hearing loss), small genitalia, 
thyrotropin, immune system (CD3+CD4+ and CD19+), and APGAR score at 1 min after birth are confirmed with a higher R2 (R2 = 0.93, 
Table 2). Fig. 4B (classification task) shows again categorical variables related to gastrointestinal alterations (duodenal atresia, 
Hirschsprung disease). 

4. Discussion 

The purpose of this study is to use a dataset comprising personal, genetic, diagnostic, clinical, and auxological data of children with 
DS to build a model useful to better understand their association with ID. In particular, models built using ML algorithms may assist 
researchers in identifying key features likely associated with ID in DS, and ultimately, may improve research efforts focused on the 
identification of possible therapeutic targets. 

ML approaches can be useful to deal with two issues related to complex conditions such as DS: first, the collection of complex and 
mixed data types; second, ML methods have the ability to identify non-linear relationships between a variety of data types and can be 
used to generate a model in a hypothesis-free manner in order to identify new pathways involved in cognitive impairment in DS. 

In the present study, we decided to apply RF and GBM approaches to our dataset: these tree-based methods can indicate which 
features are most strongly associated with the output of interest (or target). In particular, we decided to use a cognitive test score as 
target for our analysis, with the purpose of identifying features likely involved in cognitive delay. The application of Boruta framework 
in feature selection helps in removing random correlations from the analysis. Then, feature importance application can summarize the 
impact of individual features (or variables) on response variable (or target) and they are referred to as “variables of importance”. The 
response variable (or target) is a cognitive test score (AE score) as indicator of cognitive performance in children with DS, thus the 
identification of variables of importance leads to the building of models useful for the identification of features likely associated with 
the cognitive development in DS. In the present study, we extract the variables of importance in an effort to demonstrate the feasibility 
of a ML based model to identify possible new altered pathways associated to ID in DS. 

It is important to note that we applied an “age effect mitigation” in order to mitigate the effect of the chronological age of the 
children on the target: the variable “age” and all the other variables highly related to the age might distort the real importance of other 
features in predicting the outcome. Moreover, to address the issue of low number of data, we applied a form of data enrichment (or 
augmentation), considering the comparison between couples of subjects, where each new data entry is computed as the ratio between 
the variables relative to the comparison between two children. This allows us to augment the number of data quadratically; moreover, 
this method allows the formulation of the problem as a classification problem, where the target (i.e., AE score) is formulated as a 
category. 

We described all the main features important for the application of a supervised ML method; in particular, (i) the label for pre
diction (cognitive AE score as an indicator of ID in DS) and (ii) candidate features listed in the dataset and described in Material and 
Methods section and in Table 1.  

(i) As previously described [18,30], the cognitive score was calculated starting from raw scores obtained from the A scale of the 
Griffiths-III test [33] and the total score of the WPPSI-III test [34]: raw scores were transformed into AE scores. In this way we 
have applied tests that were more appropriate for expected mental age rather than chronological age to assess cognitive 
functioning in individuals with DS [32]. Moreover, we applied the age effect mitigation in order to take into account the 
subject’s chronological age in the prediction of the outcome.  

(ii) As regards the candidate features (Table 1), it is important to note that they are diverse, potentially unharmonized data and the 
application of ML methods allows to handle numerical and non-numerical data and to analyze a huge amount of mixed data. In 
particular, we considered both categorical (clinical data) and continuous variables (lab measurements). 

The results show that ML algorithms can be applied with good accuracy to identify variables likely involved in cognitive delay in 
DS. In this context it is very important to take into account the effect of chronological age on the outcome. Considering all the steps 
described above (tree-based models and Boruta framework, feature importance tasks, age effect mitigation, data enrichment) we have 
shown two well performing models (RF and XGBoost both combined with feature selection, data augmentation and age effect miti
gation) with low error (MSE <0.12) and an acceptable R2 (0.70 and 0.93) (Table 2). XGBoost is providing the best performance for both 
the regression (R2 = 0.93, MSE = 0.11) and the classification task (R2 = 0.96, Accuracy = 0.67). 

Interestingly, the variables of importance show several features that can be considered with particular attention during the follow 
up of DS patients. In particular, in the regression tasks, the results show two groups of variables of importance (Figs. 3A and 4A). First, 
different characteristics might be grouped in perinatal and neonatal status and development. The APGAR score at 1 min after birth is a 
measure of the physical condition of a newborn infant that can influence the neonatal development [38]. Hearing loss has been 
demonstrated to affect language and cognitive skills development [39]. This might slow down the achievement of developmental 
milestones, such as babbling (Fig. 3A, B and 4A), that could be predictors of later motor, cognitive skills and language [31]. The ML 
models are consistent with the idea that early developmental milestones can be important variables to consider in planning early 
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phenotype-informed interventions that have the potential to influence positive trajectories in community living and participation 
across an individual’s lifespan. Finally, thyrotropin concentration can be related to thyroid disorders that can affect the nervous system 
and play a role in cognitive delay [40]. 

The second group of variables of importance is related to the immune system (e.g. CD19+ and immunoglobulins M) underlining the 
documented immune dysfunction typical of DS [41]. 

In the classification tasks (Fig. 4A–B), among the top ten variables of importance we find variables related to gastrointestinal al
terations (e.g. Hirschsprung disease and duodenal atresia). Variables related to gastrointestinal disorders can be related to microbiome 
alterations. Since there are increasing evidence that the composition of the resident bacteria within the gastrointestinal tract can 
influence cognitive functions [42], treatments for gastrointestinal disorders and modulation of the microbiota should be deeper 
investigated. Moreover, the presence of congenital gastrointestinal alterations can lead to a surgical operation in the first stages of life, 
and this may influence child’s development in his newborn life. Lastly, results obtained through both RF and XGB models show the 
importance of vitamin B12: a concentration threshold of vitamin B12 has been highlighted to be important in the DS population which 
might have greater vitamin requirements [30]. 

It is known that cognitive delay may be exacerbated by the presence of chronic health conditions [43]. Individuals with DS and 
co-occurring chronic disorders may benefit from early interventions to mitigate their risk for adverse cognitive outcomes: for this 
reason, it is very important to identify important variables that may affect cognitive development and to use these data to improve care 
pathways, in particular perinatal care. 

In conclusion, in the context of the routine follow up provided for DS, the collection of a large quantity of data is possible. Complex 
conditions as DS can be better understood if we integrate different information (genetic, diagnostic, clinical, and auxological data). The 
ML pipeline developed here can be applied to identify important variables likely involved in cognitive development in DS. Further 
studies will be necessary to better understand how these variables affect cognitive delay in DS and their predictive value. This approach 
may improve research efforts focused on the identification of possible therapeutic targets and new care pathways. Moreover, from a 
future perspective, this study can be the basis for further testing/validating of our algorithms with multiple and larger datasets with the 
opportunity to increase the power of the analysis. With this purpose, we deposited the associated computer code in the public domain 
on the GitHub platform (https://github.com/lompabo/down-syndrome-feature-screening.git) in the hopes of contributing to an open- 
source community. 
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Ferro; Frallicciardi Family; Dott. Giulia Gramellini; Leonesio and Tanno Families; Cecilia Martinelli; the Martinz family: Elena, Enrico, 
Alfredo and Concetta; Patrizia Masello and Associazione MPV-CAV, Campodarsego (PD); Massimo Montanari; Marcella Monti; Irene 
Panzavolta; Orlando and Ramirez Pennica; Francesco Pugliarello; Paola Rancati; Elena Rossi and Davide Finelli; Gabriele Rossi; 
Beniamino and Diletta Sincich; Cristina Todaro; Anselmo Zaniboni. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e19444. 

References 

[1] J. Lejeune, M. Gauthier, R. Turpin, [Human chromosomes in tissue cultures], Comptes rendus hebdomadaires des seances de l’Academie des sciences 248 (4) 
(1959) 602–603. 

[2] A.F. Lukowski, H.M. Milojevich, L. Eales, Cognitive functioning in children with down syndrome: current knowledge and future directions, Adv. Child Dev. 
Behav. 56 (2019) 257–289. 

[3] M.C. Pelleri, E. Cicchini, M.B. Petersen, L. Tranebjaerg, T. Mattina, P. Magini, et al., Partial trisomy 21 map: ten cases further supporting the highly restricted 
Down syndrome critical region (HR-DSCR) on human chromosome 21, Mol. Genet. Genomic Med. 7 (2019) e797. 

[4] G. Anneren, K.H. Gustavson, V.R. Sara, T. Tuvemo, Growth retardation in Down syndrome in relation to insulin-like growth factors and growth hormone, Am. J. 
Med. Genet. Suppl. 7 (1990) 59–62. 

[5] K. Gardiner, Y. Herault, I.T. Lott, S.E. Antonarakis, R.H. Reeves, M. Dierssen, Down syndrome: from understanding the neurobiology to therapy, J. Neurosci. 30 
(45) (2010) 14943–14945. 

[6] N.J. Roizen, D. Patterson, Down’s syndrome, Lancet 361 (9365) (2003) 1281–1289. 
[7] P. Strippoli, M.C. Pelleri, M. Caracausi, L. Vitale, A. Piovesan, C. Locatelli, et al., An integrated route to identifying new pathogenesis-based therapeutic 

approaches for trisomy 21 (Down Syndrome) following the thought of Jérôme Lejeune, Science Postprint 1 (1) (2013), e00010. 
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