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ABSTRACT

Existing state-of-the-art methods that take a single
RNA sequence and predict the corresponding RNA
secondary structure are thermodynamic methods.
These aim to predict the most stable RNA structure.
There exists by now ample experimental and theor-
etical evidence that the process of structure forma-
tion matters and that sequences in vivo fold while
they are being transcribed. None of the thermo-
dynamic methods, however, consider the process
of structure formation. Here, we present a concep-
tually new method for predicting RNA secondary
structure, called COFOLD, that takes effects of
co-transcriptional folding explicitly into account.
Our method significantly improves the state-of-art
in terms of prediction accuracy, especially for long
sequences of >1000 nt in length.

INTRODUCTION

The primary products of almost all genomes are tran-
scripts, i.e. RNA sequences. The expression of many
genes is regulated by RNA structure, which forms when
the transcript interacts with itself by forming
hydrogen-bonds between pairs of complementary nucleo-
tides (G–C, A–U and G–U). These structures play key
roles in regulating translation, transcription, splicing,
RNA editing and transcript degradation. To study the
potential functional role of a given transcript, it typically
suffices to know its RNA secondary structure, i.e. the
sequence positions that form base pairs. As entire tran-
scriptomes are now routinely sequenced using
high-throughput sequencing techniques, computational
methods that predict an RNA secondary structure for a
given input RNA sequences play a key role in assigning
functional roles to new transcripts. The need for these

methods is emphasized by the fact that the majority of
mammalian genomes is transcribed into transcripts of
yet unknown function (1,2), and that experimental tech-
niques for RNA structure determination, such as X-ray
crystallography and NMR, remain costly and slow.
More than 3 decades of research has been invested into

devising methods that take a single RNA sequence and
predict the corresponding RNA secondary structure.
When homologous sequences from related species are
scarce or not available, non-comparative methods, such
as RNAFOLD (3) and MFOLD (4), provide the state-of-art
in terms of prediction accuracy. They use an optimization
strategy that searches the space of potential secondary
structures for the most stable structure and depends on
hundreds of free-energy parameters that have been ini-
tially experimentally determined (5) and computationally
tweaked (6). Recent attempts at replacing these thermo-
dynamic parameters by probabilistic ones have lead to
similar or slightly improved prediction accuracy (7). All
non-comparative thermodynamic methods, however,
show a marked drop in performance accuracy for
increased sequence lengths.
Thermodynamic methods typically consider only the

overall change in free energy to predict most stable RNA
secondary structure conformation, but do not take into
account the process of RNA structure formation. This im-
plicitly assumes that the RNA sequence will always be able
to reach the most stable RNA configuration in vivo. Key
experiments (8–10) from the early 1980s, however, show
that structure formation happens co-transcriptionally, i.e.
while the RNA is being transcribed. Many experiments
(11–19) have since substantiated this view. From these ex-
periments, we know that RNA molecules are not necessar-
ily in thermodynamic equilibrium during structure
formation in vivo, and that the co-transcriptional folding
process determines the formation of the functional RNA
structure in vivo. In 1996, Morgan and Higgs (20) studied
the discrepancies between the evolutionarily conserved
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RNA secondary structure and the corresponding predicted
minimum free-energy (MFE) structures for long RNA se-
quences and concluded that these differences ‘cannot
simply be put down to errors in the free-energy parameters
used in the model’. They hypothesized that this difference
may be due to effects of kinetic folding. Their results are
complemented by statistical evidence that structured tran-
scripts not only encode information on the functional RNA
structure but also on their co-transcriptional folding
pathway (21). Although there is thus ample evidence that
the process of structure formation matters to the formation
of the functional structure in vivo, it is ignored by the
state-of-the-art methods for RNA secondary structure
prediction.
A number of existing computational methods explicitly

simulate the co-transcriptional folding pathway as a series
of structural changes over time. These methods require a
single sequence as input, and they return a list of predicted
structural configurations. Most kinetic simulation methods
use stochastic simulation and model the reaction kinetics of
helix formation and disruption [e.g. RNAkinetics (22–24),
Kinfold (25) and Kinefold (26–29)]. Conversely, Kinwalker
(30) is a deterministic algorithm that uses free-energy mini-
mization along with a heuristic that disallows transitions
deemed kinetically infeasible. All of the aforementioned
kinetic folding methods are inherently subject to length
limitations (typically a few 100bp); thus, they are not ap-
propriate for the analysis of long RNA molecules. Because
of the lack of experimentally confirmed RNA folding
pathways, these methods have so far been evaluated on a
small number of cases, mostly comprising only the final
structure. Furthermore, these methods need to make a
range of simplifying assumption about the in vivo environ-
ment, such as a constant transcription speed and no inter-
action partners. Kinetic folding pathway prediction
methods are thus useful tools for the analysis of folding
pathways, but suffer from significant limitations as tools
for RNA secondary structure prediction.
Here, we propose a conceptually new method called

COFOLD for non-comparative secondary structure predic-
tion that explicitly takes into account the effects of
co-transcriptional folding. For this, we build on the
state-of-the-art method for RNA secondary structure pre-
diction, RNAFOLD (3), by combining its thermodynamic
energy scores with a scaling function that captures effects
of kinetic folding. COFOLD does not aim to explicitly
simulate the folding pathway, but rather to improve
RNA secondary structure prediction by considering the
implications of kinetic folding. We examine the predictive
power of COFOLD on a large and diverse set of known
RNA secondary structures and show a significant im-
provement in prediction accuracy, in particular for long
RNA sequences (>1000 nt), such as ribosomal RNAs
(rRNA).

MATERIALS AND METHODS

Compilation of the long and combined data sets

The long data set consists of 16S and 23S rRNAs only.
Bacteria, eukaryote, archaea and chloroplast multiple

sequence alignments of 16S and 23S sequences were
retrieved from the comparative RNA website (CRW)
(31). Because no consensus RNA structure is provided
for each alignment, we projected individual structures
for each sequence onto the alignment. The structure
with the lowest mismatch score was chosen as the consen-
sus RNA structure for each alignment. The mismatch
score is defined as M ¼

P
seq2A ð2 � G1+G2+IÞ=N, where

G1 is the number of one-sided gaps (i.e. base pairs with a
gap in one base position and a non-gap in the other), G2 is
the number of two-sided gaps (i.e. base pairs with gaps on
both sides), I is the number of non-canonical pairs (i.e.
those other than G–C, A–U and G–U) and N is the
number of sequences in the alignment.

Sequences with large in-dels, many ambiguous nucleo-
tides, or a poor fit to the consensus RNA structure were
removed from the alignment. Unpaired regions of the align-
ment were realigned using MUSCLE (32). Individual se-
quences were extracted from each resulting alignment
such that no pair of extracted sequences has a pairwise
per cent sequence identity greater than an
alignment-specific threshold. The exact threshold varies to
ensure no biological class, or evolutionary clade is overrep-
resented in the long data set (max 85%, Supplementary
Table S1). Because no two sequences are similar in terms
of primary sequence conservation, we guarantee that the
long data set is as diverse as possible and without redun-
dancy. The consensus alignment structure was projected
onto each extracted sequence by removing base pairs at
gap positions and any non-canonical base pairs. The result-
ing 61 sequences have a mean sequence length of 2397nt
and constitute the long data set (Table 1, Supplementary
Tables S1 and S2). The long data set thus contains all
annotated sequences >1000nt that meet our quality
criteria for uniqueness and evolutionary support.

The combined data set was constructed primarily for
robustness of parameter training, and it contains RFAM

sequences from a wide variety of biological classes (33).
RFAM alignments were chosen such that the mean
sequence length is >115, co-variation (defined later in
the text) is >0.18, they contain a minimum of 5 sequences,
they contain at least 80% canonical base pairs and
they include diverse biological classes and evolutionary
clades.

Sequences were extracted from the RFAM alignments
using the same protocol as for the CRW alignments
described earlier in the text. Specifically, no pair of se-
quences extracted from the same alignment share a
pairwise per cent sequence identity above an alignment-
specific threshold (max 85%, Supplementary Table S1).
Consensus RNA structures were projected onto individ-
ual sequences by removing base pairs at gap positions and
by removing any non-canonical base pairs. The mean
sequence length of the resulting 187 RFAM sequences is
247 nt, and the combined data set has an average
sequence length of 778 nt (Table 1). See Supplementary
Table S2 for a description of biological class and
sequence extraction details and Supplementary Table S2
for alignment quality metrics.
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For a given multiple-sequence alignment, the co-vari-

ation is defined as: covariation ¼
PM

a¼1, b¼1, a<b

�P
Sij
�

ð�ab
ij Hðaiaj, bibjÞ ��ab

ij Hðaiaj, bibjÞÞ
�
=
�
jSijj

�
M
2

��
, where

Sij is the set of base pairs i and j in the consensus second-
ary structure, M is the number of sequences in the align-
ment. Hðaiaj, bibjÞ is the Hamming distance between the

strings aiaj and bibj. �ab
ij is an indicator function such that

if ai and aj can form a canonical base pair, and bi and bj
can also form a canonical base pair, �ab

ij ¼ 1 (otherwise

�ab
ij ¼ 0). �ab

ij is an indicator function such that if ai and aj

and/or bi and bj cannot for a canonical base pair, �ab
ij ¼ 1

(otherwise �ab
ij ¼ 0).

Definition of performance metrics

Structure prediction accuracy is measured on a base pair
level. True positives (TP) are correctly predicted base
pairs. False positives (FP) are incorrectly predicted base
pairs that are not part of the reference structure. True
negatives (TN) are hypothetical base pairs that are
neither predicted nor part of the reference structure.
False negatives (FN) are reference base pairs missed by
the prediction. We define the following performance
metrics: true positive rate (TPR ¼ 100 � TP=ðTP+FNÞ),
false positive rate (FPR ¼ 100 � FP=ðFP+TNÞ), positive
predictive value (PPV ¼ 100 � TP=ðTP+FPÞ) and
Matthew’s correlation coefficient (MCC)
(MCC ¼ 100 � ðTP � TN�FP � FNÞ=

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞ � ðTP+FNÞ � ðTN+FPÞ � ðTN+FNÞ

p
Þ). We

define change in a performance metric X as
�X ¼ XCoFold� XRNAfold.

True positive rate is a measurement of sensitivity and
indicates the proportion of reference base pairs that were
predicted. False positive rate and positive predictive value
are both measurements of specificity, i.e. the abundance of
false positives. MCC is a measurement of overall predic-
tion quality, taking into account both sensitivity and
specificity.

Incorporating co-transcriptional folding into the prediction
algorithm of COFOLD

The Nussinov algorithm (34) was one of the first attempts
at RNA secondary structure prediction. It is a dynamic
programming method that efficiently calculates the sec-
ondary structure with the largest number of base pairs
in OðL3Þ time, where L denotes the length of the input
sequence. The algorithm solves the problem recursively
by determining the optimal structure for sub-sequences,
and using these solutions to derive optimal structures for
successively larger sub-sequences. The output structure is
the optimal solution for the full sequence. This algorithm,
however, has several shortcomings. First, base pairs vary
in stability, for example, G–C pairs are energetically more
favourable than A–U pairs. The Nussinov algorithm
weights all pairs equally. Second, the stability of a base
pair depends highly on its neighbouring base pairs because
of so-called stacking interactions between adjacent pairs,
and this contextual effect is ignored by the algorithm.
The Zuker–Stiegler algorithm (3) is an advancement of

the Nussinov algorithm. Rather than predicting the struc-
ture with the greatest number of pairs, the Zuker–Stiegler
algorithm predicts the most thermodynamically favour-
able (and pseudo-knot free) RNA structure according to
a set of free-energy parameters. This structure is also
called the MFE structure. The algorithm assigns a
sequence-specific free-energy value to various structural
building blocks, such as stacking interactions between
pairs of adjacent base pairs, unpaired nucleotides and
hairpin loops. The algorithm uses dynamic programming
similarly to the Nussinov algorithm, but it calculates two
energy values for all sub-sequences Si, j of a given input
sequence S, where 1 <¼ i < j <¼ L : Ci, j (the MFE of
sub-sequence Si, j given nucleotides i and j form a base
pair) and FMLi, j (the MFE of sub-sequence Si, j)

Ci, j ¼ min

hairpini, j

mini<p<q<jfCp, q+Stackði, jÞ, ðp, qÞg

mink, l21, 2fFMLi+k, j�l+dangleg

8><
>:

FMLi, j ¼ min

mini<k<jfFMLi, k+FMLk+1, jg

mink, l20, 1fCi+k, j�l+dangleg

FMLi+1, j+Eunpaired

FMLi, j�1+Eunpaired

8>>><
>>>:

Ci, j and FMLi, j are calculated for each sub-sequence Si, j

as the minimum of a well-defined set of rules. The MFE
can be retrieved from the value at FML1,L, where L
denotes the length of the input sequence. The correspond-
ing MFE structure is retrieved by backtracking through
the Ci, j and FMLi, j matrices.
The Zuker–Stiegler algorithm requires a large set of

thermodynamic parameters. In 1999, the Turner group
published one such model, which included a combination
of experimentally measured energies and estimated values
(5). This parameter set (called Turner 1999 parameter set)
is widely used by many state-of-the-art tools, including
RNAFOLD (35) and MFOLD (4). Andronescu et al. (6)
improved estimated values in the Turner 1999 parameter

Table 1. Evolutionary composition and length statistics for the long

and the combined data set

Long data set Combined data set

Clade >1000 nt All �1000 nt
Bacteria 15 69 (54)
Eukaryotes 15 112 (97)
Virus 0 20 (20)
Archea 17 33 (16)
Chloroplast 14 14 (0)

Sum 61 248 (187)
Sequence length (nt)

Average 2397 776 (247)
Minimum 1245 110 (110)
Maximum 3578 3578 (628)

Numbers in brackets specify the respective numbers for the short se-
quences in the combined data set.
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set by applying sophisticated machine-learning techniques
to train 363 free parameter values (referred to as the
Andronescu 2007 model). These parameters were
adjusted using a training set of 3439 reference structures
and 946 thermodynamic measurements by optical melting.
They observed an average performance increase of 7% on
a test set of 1660 sequences containing several biological
classes, including tRNA, RNase P, rRNA and signal
recognition particle (SRP) RNA.
The Zuker–Stiegler algorithm traditionally considers

only the change in free energy for a given RNA secondary
structure conformation in thermodynamic equilibrium,
but it does not consider the process of RNA structure
formation, i.e. how the RNA sequence arrives at the
MFE structure. Rather, the Zuker–Stiegler algorithm im-
plicitly assumes that the input RNA sequence (i) is already
fully synthesized, (ii) is in thermodynamic equilibrium and
(iii) will always be able to reach the RNA structure that
minimizes the overall free energy of the molecule. We
know from a range of experiments, however, that RNA
molecules start to fold while they emerge during transcrip-
tion, that they are not necessarily in thermodynamic equi-
librium during structure formation in vivo and that they
may get trapped during their kinetic folding pathway.
That RNA molecules overall proceed towards the MFE
structure over time is only an approximation of the
complex reality in vivo. As the molecule emerges from
the polymerase, local structures immediately begin to
form. Formation of long-range base pairs may require
disruption of these local structures, and their folding
rate may be prohibitively slow because of high-energy
barriers. That is, the molecule may never reach the MFE
structure because of kinetic considerations. The structure
formation in vivo may be further complicated because of
trans interactions between the RNA sequence and other
molecules in the living cell that we ignore for now.
We propose a new method for RNA secondary struc-

ture prediction, COFOLD, that takes into account some
effects of co-transcriptional folding. The key effect that
we aim to model is that during co-transcriptional folding
in vivo, it does matter to a given sequence position whether
a potential pairing partner is available for base pairing. To
capture this, we model the distance along the sequence
between base pairing sequence positions. COFOLD is a
modification to the Zuker–Stiegler algorithm (3), and it
was implemented using the RNAFOLD source code from
the ViennaRNA package (35,36).
COFOLD calculates energies in the same fashion as in

RNAFOLD, but all energy contributions associated with a
base pair are modified by a scaling function according to
the number of nucleotides between the pair (i.e. the
distance d). This scaling function �ðdÞ models the expo-
nential decay in reachability as function of the nucleotide
distance d between the two potential pairing partners and
depends on two parameters � and � (Supplementary
Figure S1). Both parameters have a straightforward inter-
pretation. The value of � specifies the range of the scaling
function (e.g. when � is 0.2, the affected free energies will
range from 80 to 100% of their original values). The value
of � determines the rate of the exponential decay, where

low values of � result in a steep decay function.

�ðdÞ :¼ � � ðe�
d
� � 1Þ+1

The scaling function �ðdÞ is only used in conjunction with
energy values in the Ci, j calculation because these corres-
pond to predicted base pairs. The function is not applied
to the energy of sub-sequences to avoid multiple applica-
tions to the same value. The function is applied both to
elements with positive energy, such as loops and bulges,
and to those with negative energy, such as stacking inter-
actions. This is necessary to preserve the relative magni-
tude of the contributions from structural components. See
C0i, j equation later in the text and Supplementary Figure
S2 for detailed description. The FMLi, j calculation
remains the same as in RNAFOLD.

C0i, j ¼ min
�ðdi, jÞ � hairpini, j
mini<p<q<jfCp, q+�ðdi, jÞ � Stackði, jÞ, ðp, qÞg

mink, l21, 2fFMLi+k, j�l+�ðdi, jÞ � dangleg

8<
:

The output of COFOLD is an RNA secondary structure
that promotes base pairs according to the aforementioned
scaling function. This RNA secondary structure, there-
fore, captures both thermodynamic contributions and
effects because of co-transcriptional structure formation.
Like RNAFOLD, COFOLD allows the user to select a
thermodynamic parameter set. For performance evalu-
ation, we use both the Turner 1999 (COFOLD) and the
Andronescu 2007 (COFOLD-A) parameter sets introduced
earlier in the text.

Parameter training

COFOLD has two free parameters: � and �. Because of the
small number of parameters, they were trained using a
simple brute force scheme. COFOLD was run on all se-
quences of the combined data set, and performance
metrics were calculated for each ð�, �Þ combination in set
P ¼ f0:05, 0:10, . . . , 0:90, 0:95g � f40, 80, . . . , 1160, 1200g.
The Turner 1999 thermodynamic parameter set (5) was

used for ð�, �Þ parameter training. We define MCC
S

�, � as

the mean MCC for a set of sequences S and parameter
combination (�, �) in P. The mean MCC change is likewise

defined as �MCC
S

�, � :¼MCC
S

�, � �MCCRNAfold.

Performance metrics were found to be highly correlated
in � and � [Figure 1 (right) and Supplementary Figure S3].
To demonstrate this, linear regression was performed on

the �MCC matrix [Figure 1 (left)]. We first compiled a set

of triples Q ¼ fð�, �, �MCC�, �Þg, for which �MCC�, � is in
the 97th quantile of the performance matrix. Weighted
linear regression was performed with � and � as dimen-

sions and �MCC as the weight. The regression line fits the
data with an R2 value of 98.4%, indicating that variability
in � highly accounts for the variability in �. Regression
line (solid) and its 95% confidence region (dotted) are
plotted in Figure 1 (left).

Twenty trials of 5-fold cross-validation were performed
to determine robustness of parameter training. In each trial,
the combined data set D was randomly divided into five
partitions Pi. The optimal parameter combination is
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determined for the remaining four partitions by optimizing

�MCC
DnPi

�, � . This results in five sampled ð�, �Þ parameter

combinations for each trial. The cross-validation results
are plotted in Figure 1 (right), where the integer in each
cell indicates the number of trials where that parameter
combination was optimal. The optimal parameter values
highly cluster around the linear regression line shown in
Figure 1 (left).

The default parameter combination for COFOLD is
� ¼ 0:5, � ¼ 640. This parameter set maximizes MCC for
the combined data set. The default parameter combination
is marked with an ‘X’ in Figure 1 (left), which shows that it
lies directly on the linear regression line.

Calculation of free-energy differences

We define ��G as the difference between the free energy
(�G) of a given prediction and the corresponding
RNAFOLD prediction. We calculate these values for
RNAFOLD-A, COFOLD and COFOLD-A. Because the
Andronescu 2007 parameters use modified free-energy
values, we use RNAeval from the ViennaRNA package
(35,36) to calculate the free energy of each predicted struc-
ture on equal footing. Unlike RNAFOLD, which predicts
an MFE structure from a sequence, RNAeval calculates
the free energy for an input RNA structure according to
the provided thermodynamic parameters. For consistency,
we use the Turner 1999 thermodynamic model (5) for
all ��G calculations. For a prediction program X,
which corresponds to RNAFOLD-A, COFOLD or
COFOLD-A, we define absolute free-energy difference as
��GX ¼ �GX ��GRNAfold and the relative free-energy dif-
ference as %��GX ¼ 100 � ð�GX ��GRNAfoldÞ= j�GRNAfoldj.

RESULTS

Folding long RNA sequences

We evaluate the prediction accuracy of COFOLD by
comparing the secondary structure predicted by COFOLD

with the known reference secondary structures for a test
set of 61 sequences that consists of 16S rRNA and 23S
rRNA sequences from archaea, bacteria, eukaryotes and
chloroplasts. The sequences of this long data set have an
average length of 2397 nt (min 1245 nt, max 3578 nt). Our
goals in compiling this data set were to identify sequences
that are long (>1000 nt), correspond to biological se-
quences and have reference structures that are supported
by phylogenetic evidence (Table 1 and Supplementary
Tables S1 and S2).
Compared with RNAFOLD, which is the state-of-the-art

thermodynamic RNA structure prediction method,
COFOLD predicts 7% more known base pairs at 6%
higher specificity than RNAFOLD, thereby increasing the
MCC by 6% [MCC (RNAFOLD)=42.81%, MCC
(COFOLD)=49.10%] (Table 2). This improvement in
overall performance accuracy can be attributed to a sim-
ultaneous increase of the positive predictive value (PPV)
and the true positive rate (TPR) for almost all individual
sequences (Figure 2 left) and a simultaneous slight
decrease of the false positive rate (FPR) (Figure 2 right).
Both RNAFOLD and COFOLD use the default Turner 1999
free-energy parameters (5). Combining COFOLD with the
Andronescu 2007 free-energy parameters (6) (COFOLD-A)
increases the sensitivity and specificity by a further 4%
[MCC (COFOLD-A)=53.70%]. Doing the same with
RNAFOLD (RNAFOLD-A) also increases the sensitivity
and specificity with respect to RNAFOLD, but it results

Figure 1. Training of parameters in COFOLD: linear fit and robustness. Left figure, heat-map showing the average MCC differences w.r.t. RNAFOLD

as function of the � (x-axis) and � (y-axis) parameters values. The average MCC differences are indicated via the colours from high (bright yellow) to
low (dark red), see Supplementary Figure S3 for details. The solid line corresponds to the linear regression line (� ¼ a � �+b with a slope of
a ¼ 6:1 � 10�4 � 2 � 10�5 and an intercept of b ¼ 0:105� 0:016). The two dotted lines delineate the 95% confidence region. The asterisk shows
parameter pair with highest average MCC (� ¼ 0:50 and � ¼ 640), which is the parameter combination used in COFOLD and COFOLD-A. Right
figure, same heat-map as in left figure, but this time showing the count of trials in 20 trials of 5-fold cross-validation where that the corresponding
pair of parameter values has the highest average MCC for the set of training sequences.
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in a smaller performance increase than for COFOLD [MCC
(RNAFOLD-A)=48.17%, MCC (COFOLD)=49.10%].
Although COFOLD only depends on two free parameters,
the Andronescu 2007 free-energy model (6) comprises 363
free parameters that were trained using machine-learning
techniques.

Capturing effects of co-transcriptional folding

To capture effects of co-transcriptional folding in COFOLD,
we introduce a scaling function �ðdÞ. This function scales
the nominal energy contribution of any base pair-like inter-
action depending on the distance d of the interaction
partners along the sequence (Supplementary Figure S1).
It thereby captures that during co-transcriptional folding,
potential pairing partners in close proximity are easier to
identify than more distant ones. This scaling amounts to a

re-weighing of the structure search space that the structure
prediction algorithm explores. Rather than guiding the
structure prediction solely based on thermodynamic consid-
erations as the state-of-the-art methods RNAFOLD and
MFOLD (4) do, COFOLD thus combines kinetic and thermo-
dynamic considerations.

The scaling function of COFOLD depends on two free
parameters, � and �, which have a straightforward inter-
pretation (Supplementary Figure S1). Our goal in training
the two parameters was to ensure that COFOLD can be
applied across a wide range of sequence lengths and to
confirm that parameter training is robust.

To this end, we compiled an extended data set of 248
sequences that comprises the 61 long sequences of the long
data set and, in addition, 187 short sequences (� 1000 nt
in length) that also correspond to biological sequences
whose reference structures are supported by phylogenetic
evidence (Table 1 and Supplementary Tables S1 and S2).
The sequences in this combined data set have an average
length of 776 nt (min 110 nt, max 3578 nt). Using 20 trials
of 5-fold cross-validation for parameter training, we find
that the optimal prediction accuracy in terms of average
MCC is obtained by a combination of � and � values
whose strong correlation can be described by a linear
function � ¼ a � �+b, where a ¼ 6:1 � 10�4 � 2 � 10�5 is
the slope and b ¼ 0:105� 0:016 the intercept
(R2 ¼ 98:4%) [Figure 1 (left)]. Our cross-validation ex-
periments yield optimal parameter combinations that fall
within or near the 95% confidence interval around the
linear fit, thus confirming the robustness of parameter
training [Figure 1 (right)]. We use � ¼ 0:50 and � ¼ 640

Table 2. Prediction accuracy of COFOLD for base pairs

Method TPR (%) FPR (%) PPV (%) MCC (%)

RNAFOLD 46.30 0.0176 39.74 42.81
RNAFOLD-A 52.02 0.0160 44.76 48.17
COFOLD 52.83 0.0159 45.79 49.10
COFOLD-A 57.80 0.0145 50.06 53.70

The performance accuracy of COFOLD, COFOLD-A, RNAFOLD and
RNAFOLD-A for the long data set in terms of true positive rate
(TPR ¼ 100 � TP=ðTP+FNÞ), false positive rate (FPR ¼ 100�
FP=ðFP+TNÞ), PPV (PPV ¼ 100 � TP=ðTP+FPÞ) and MCC (MCC ¼
100 � ðTP � TN� FP � FNÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞ � ðTP+FNÞ � ðTN+FPÞ � ðTN+FNÞ

p
),

where TP denotes the numbers of true positives, TN the true negatives,
FP the false positives and FN the false negatives.

Figure 2. Changes in prediction accuracy for the structures predicted by COFOLD for individual sequences. We report the prediction accuracy for
base pairs of the long data set in terms of absolute changes by comparing the prediction accuracy of the structures predicted by COFOLD with those
predicted by RNAFOLD. The left plot shows change of the true positive rate (TPR ¼ 100 � TP=ðTP+FNÞ) and PPV (PPV ¼ 100 � TP=ðTP+FPÞ). The
right plot shows changes in true positive rate (TPR ¼ 100 � TP=ðTP+FNÞ) and false positive rate (FPR ¼ 100 � FP=ðFP+TNÞ). TP denotes the
numbers of true positives, TN the true negatives, FP the false positives and FN the false negatives.
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in COFOLD and COFOLD-A for all of the following
(Supplementary Figure S1).

COFOLD and COFOLD-A outperform RNAFOLD and
RNAFOLD-A also for short sequences (� 1000 nt),
although the improvement in terms of MCC is less
pronounced than for long sequences (Supplementary
Table S3). RNAFOLD shows a slight decrease in prediction
accuracy when used with the Andronescu 2007 param-
eters. The behaviour of COFOLD is in line with our expect-
ation that the beneficial impact of modelling
co-transcriptional folding decreases for short sequences.

We conclude that COFOLD effectively depends only on
one free parameter, and that COFOLD and COFOLD-A
increase the prediction accuracy for all sequence lengths,
in particular for long sequences (> 1000 nt).

To investigate whether the scaling function

�ðdÞ ¼ � � ðe�
d
� � 1Þ+1 models the reachability of potential

pairing partners during co-transcriptional folding rather
than in thermodynamic equilibrium, we studied it for the
sub-set of 25 viral sequences only which are known to be
transcribed at higher speed than the other sequences of
the combined data set. These 25 viral sequences derive
from Rfam families RF00209 (5 sequences), RF00171
(5 sequences), RF00210 (4 sequences), RF00458 (6 seq-
uences.) and RF01084 (5 sequences) and are all shorter
than 1000 nt (Supplementary Table S1). Considering the
same combinations for � and � and applying the same
linear fit procedure as before to this sub-set of viral se-
quences (index v) yields the linear regression line
�vð�Þ ¼ av � �+bv with av ¼ 5:6 � 10�4 � 3 � 10�4 and
bv ¼ 0:746� 0:056 compared with �ð�Þ ¼ a � �+b with
a ¼ 6:1 � 10�4 � 2 � 10�5 and b ¼ 0:105� 0:016 for the
entire combined data set. Setting �ð�vÞ ¼ �ð�Þ allows us
to express �v as function of �. We thereby obtain
�v ¼ 696:50 for � ¼ 640, which is the optimal value for
the combined data set. The �ðdÞ function for the viral
sub-sequences thus has a stronger decrease of reachability
with increasing distance d of the pairing partners. This is
in line with the increased transcription speed for the viral
sequences, which gives emerging nucleotides less time to
identify potential pairing partners.

We conclude that the scaling function captures informa-
tion on the co-transcriptional folding kinetics, but that it
would require a larger data set to investigate the depend-
ency on the transcription speed in greater detail.

In all of the following, we use � ¼ 0:50 and � ¼ 640
in COFOLD and COFOLD-A, i.e. the optimal parameter
combination for the combined data set (Supplementary
Figure S1).

Capturing co-transcriptional folding yields improved
structures of similar free energies

To examine whether capturing the effects of co-transcrip-
tional folding significantly changes the free energies of the
predicted structures, we calculated the free energies of the
structures predicted by COFOLD, COFOLD-A and
RNAFOLD-A and compared them to the free energies of
the corresponding structures predicted by RNAFOLD. To
ensure consistency, we used the Turner 1999 energy

parameters to calculate the energies of all predicted
RNA structures.
The structures predicted by COFOLD for the long data

set differ on average by 2% from the respective free
energies of the corresponding structures predicted by
RNAFOLD and the distribution of relative energy differ-
ences is comparatively tight (SD=1.0%, min=0.2%,
max=4.4%) (Figure 3, Supplementary Figure S4 and
Supplementary Table S4). Combining COFOLD and
RNAFOLD with the Andronescu 2007 energy parameters
significantly increases the average free-energy difference
[5% (RNAFOLD-A), 7% (COFOLD-A)], broadens the dis-
tributions [SD(RNAFOLD-A)=1.9%, SD(COFOLD-A)=
2.4%] and leads to higher maximum energy differences
[max(RNAFOLD-A)=11.1%, max(COFOLD-A)=13.1%].
For short and viral sequences, these differences are even
more pronounced (Supplementary Table S4).
Most importantly, a large energy difference with respect

to the free energy of the structure predicted by RNAFOLD

does not imply an increased prediction accuracy, neither
for short nor long sequences, and for none of the predic-
tion programs (Supplementary Figure S5 and
Supplementary Table S5).
To summarize, COFOLD significantly increases the pre-

diction accuracy without significantly altering the free
energies of the structures that RNAFOLD would predict
for the same input sequences.

Figure 3. Relative free-energy differences of the predicted structures
w.r.t. the MFE structures predicted by RNAFOLD. Summary of three
distributions for the long data set showing the relative free-energy dif-
ferences of the RNA structures predicted by RNAFOLD-A w.r.t. the
MFE structures predicted by RNAFOLD for the same sequence (left),
of the RNA structures predicted by COFOLD w.r.t. the MFE structures
predicted by RNAFOLD (middle) and of the RNA structures predicted
by COFOLD-A w.r.t the MFE structures predicted by RNAFOLD-A
(right). The free energies of all structures are calculated using the
Turner 1999 energy parameters. For each of the three distributions,
the dark horizontal line indicates the average, the box indicates the
first to the third quartile and the dotted lines indicate minimum and
maximum values. Circles indicate outliers which are not included in the
calculation of the average value.
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Folding rRNAs

The 23S rRNAs are the longest sequences of our data set
with an average length of 3069 nt (min 2882 nt, max
3578 nt) and are thus some of the most challenging
RNA structures to predict. Using COFOLD and
COFOLD-A, we increase their prediction accuracy in
terms of MCC w.r.t. RNAFOLD on average by 8 and
12%, respectively. Figure 4 shows, for the 23S rRNA of

the g-proteobacteria Pseudomonas aeruginosa, how the
RNA structure predicted by COFOLD-A compares with
that predicted by RNAFOLD. The most apparent differ-
ences are that RNAFOLD predicts many incorrect mid-
and long-range base pairs (red arcs spanning >100 nt),
and that almost all of these disappear with COFOLD-A.
In addition, COFOLD-A adds many correct mid- and
long-range base pairs (blue arcs), see in particular those

Figure 4. RNA secondary structures predicted by COFOLD-A and RNAFOLD for the 23S rRNA of the g-proteobacteria P. aeruginosa. The horizontal
line corresponds to the RNA sequence of 2893-nt length. The structure predicted by RNAFOLD is shown above the horizontal line, and the one
predicted by COFOLD-A is shown below. Each arc corresponds to a base pair between the two corresponding positions along the sequence. Blue arcs
correspond to correctly predicted base pairs (true positives), red arcs to incorrectly predicted base pairs (false positives) and black arcs to base pairs
that are part of the reference structure, but missing from the prediction (false negatives). Orange arcs indicate base pairs of the reference structure
that render it pseudo-knotted. Figure made with R-chie (37).
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spanning almost the entire sequence. Overall, COFOLD-A
increases the MCC of RNAFOLD from 43 to 58%. This
15% rise in performance accuracy is due to a significant
increase of the true positive rate (45%! 61%) and an
equally significant increase of the positive predictive
value (41%! 56%). This is in line with is the typical
behaviour seen for COFOLD (Figure 2). The false positive
rate for both prediction methods remains low at 0.01%.

We also investigated the performance for the 16S
rRNAs in greater detail. With an average length of
1550 nt (min 1245 nt, max 1799 nt), these are significantly
shorter than the 23S rRNAs, but still considerably longer
than the average test sequence on which thermodynamic
prediction methods are typically benchmarked. Figure 5
shows the improvements in prediction accuracy for the
16S rRNA of the freshwater algae Cryptomonas sp.

Figure 5. RNA secondary structures predicted by COFOLD-A and RNAFOLD for the 16S rRNA of the freshwater algae Cryptomonas sp. The
horizontal line corresponds to the RNA sequence of 1493-nt length. The structure predicted by RNAFOLD is shown above the horizontal line,
and the one predicted by COFOLD-A is shown below. Each arc corresponds to a base pair between the two corresponding positions along the
sequence. Blue arcs correspond to correctly predicted base pairs (true positives), red arcs to incorrectly predicted base pairs (false positives) and black
arcs to base pairs that are part of the reference structure, but missing from the prediction (false negatives). Orange arcs indicate base pairs of the
reference structure that render it pseudo-knotted. Figure made with R-chie (37).
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(species unknown). This ribosomal sequence is 1493-nt
long. COFOLD-A improves the prediction accuracy of
RNAFOLD from an MCC of 32–73%. This 41% improve-
ment in performance accuracy is achieved by significantly
reducing the number of erroneously predicted mid- to
long-range base pairs (red arcs spanning >100 nt) while
simultaneously increasing the number of correctly pre-
dicted base pairs in wide distance range (blue arcs). This
is reflected by the simultaneous increase of the true
positive rate ð33%! 77%Þ and the positive predictive
value ð30%! 69%Þ, which, in this example, is also
accompanied by a slight reduction of the false positive
rate ð0:03%! 0:01%Þ.
As neither COFOLD nor RNAFOLD are technically

capable of predicting pseudo-knotted features, the
pseudo-knotted reference structures of the 23S rRNA
and the 16S rRNA cannot be predicted with perfect
accuracy (see orange arcs in Figures 4 and 5).

DISCUSSION AND CONCLUSION

Our results show that the state-of-the-art in non-
comparative RNA secondary structure prediction can be
significantly improved by capturing information on the
structure formation process. To this end, we introduce a
conceptually new RNA secondary structure prediction
method called COFOLD, which judges the reachability of
potential pairing partners during co-transcriptional
structure formation via a scaling function. We show
that this scaling function effectively depends on only one
free parameter that has a straightforward interpretation,
as it determines how the reachability declines as function
of the nucleotide distance during co-transcriptional
folding.
By investigating a sub-set of 25 viral sequences, we show

that the scaling function captures information on the
speed of transcription, i.e. the folding kinetics. It would,
however, require a larger data set to investigate this de-
pendency in greater detail.
Without altering the free-energy parameters of the

underlying thermodynamic model, COFOLD, therefore,
guides the structure prediction process by a combination
of thermodynamic and kinetic considerations. It thereby
arrives at significantly more accurate structure predic-
tions, in particular for long sequences (>1000 nt). This
improvement in prediction accuracy is gained without sig-
nificantly shifting the free energies of the predicted RNA
structures. We thereby confirm Morgan and Higgs (20)
who hypothesized in 1996 that discrepancies between the
evolutionarily conserved, functional RNA secondary
structure and the corresponding MFE structures predicted
by thermodynamic methods, such as RNAFOLD, are not
because of errors of the underlying free-energy parameters
but are because of a lack of modelling the effects of kinetic
structure formation.
Using COFOLD, we can improve the prediction accuracy

for rRNAs. As these sequences are known to be bound
and stabilized by proteins early on, e.g. (38), and as
COFOLD does not explicitly model any trans-interactions

with other molecules, we did not necessarily expect this
significant improvement in prediction accuracy.

Many sophisticated experiments paint a dauntingly
complex picture of co-transcriptional structure formation
in vivo, which can depend on a multitude of extrinsic and
intrinsic factors ranging from the speed of transcription
and the variation thereof to a range of carefully
orchestrated trans and cis interactions. Several
sophisticated computational methods have already been
devised that aim to mimic the co-transcriptional structure
formation in vivo (22–28,30). These folding pathway pre-
diction methods need to make a range of simplifying as-
sumptions to approximate the complex in vivo
environment and have so far been evaluated only on a
few select and typically short (�1000 nt) sequences. Yet,
these methods have already allowed us to gain valuable
and detailed insight into co-transcriptional folding
pathways (26,39).

By proposing a conceptually new approach to RNA
secondary structure prediction that combines the benefits
of deterministic, thermodynamic methods with models
that take the structure formation process explicitly into
account, we show that we can significantly increase the
prediction accuracy. Although COFOLD only constitutes
the first attempt at explicitly capturing the effects of
co-transcriptional folding, we hope that our results will
inspire a new generation of RNA secondary structure pre-
diction programs that capture additional effects of
co-transcriptional folding in vivo.

The COFOLD web server is available at http://www.e-
rna.org/cofold where individual queries can be submitted
online, and the source code of COFOLD is available for
download.

One aspect that we hope to capture next is to explicitly
model the influence that transient RNA structure features
may have on the formation of the final RNA structure.
We know from an earlier theoretical study (21) that
structured RNAs not only encode their final functional
RNA structure but also information on transient struc-
tural features of their co-transcriptional folding pathway
in vivo. It should be conceptually possible to capture the
impact of these potential transient features on the forma-
tion on the final RNA structure. This will, however,
require a significant modification of the current prediction
algorithm underlying COFOLD.

Another important aspect of co-transcriptional RNA
structure formation that will probably prove harder to
capture is trans-interactions with other molecules, such
as other RNAs or proteins. To take these into account
in a predictive model, such as COFOLD, one would need
to already know the binding site and timing of these inter-
actions with respect to the transcription of the RNA.
Right now, however, this experimentally derived informa-
tion is only available for a few select RNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5 and Supplementary Figures
1–5.
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