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Abstract
The antigenic variability of influenza viruses has always made influenza vaccine develop-

ment challenging. The punctuated nature of antigenic drift of influenza virus suggests that a

relatively small number of genetic changes or combinations of genetic changes may drive

changes in antigenic phenotype. The present study aimed to identify antigenicity-associat-

ed sites in the hemagglutinin protein of A/H1N1 seasonal influenza virus using computation-

al approaches. Random Forest Regression (RFR) and Support Vector Regression based

on Recursive Feature Elimination (SVR-RFE) were applied to H1N1 seasonal influenza vi-

ruses and used to analyze the associations between amino acid changes in the HA1 poly-

peptide and antigenic variation based on hemagglutination-inhibition (HI) assay data.

Twenty-three and twenty antigenicity-associated sites were identified by RFR and SVR-

RFE, respectively, by considering the joint effects of amino acid residues on antigenic drift.

Our proposed approaches were further validated with the H3N2 dataset. The prediction

models developed in this study can quantitatively predict antigenic differences with high

prediction accuracy based only on HA1 sequences. Application of the study results can in-

crease understanding of H1N1 seasonal influenza virus antigenic evolution and accelerate

the selection of vaccine strains.

Introduction
Influenza is an infectious disease caused by the influenza virus. Seasonal influenza causes ap-
proximately 250,000 to 500,000 deaths per year worldwide [1]. Influenza A/H1N1, A/H3N2,
and B viruses are currently the main circulating subtypes of seasonal influenza that are includ-
ed in each year’s influenza vaccine. After the 1918 Spanish influenza pandemic, the A/H1N1
influenza virus caused a number of outbreaks and epidemics until its disappearance from the
human population in 1957 [2]. The H1N1 virus reappeared in the 1977 Russian influenza epi-
demic and began to exhibit seasonal circulation worldwide among the human population [3].
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Vaccination is the most effective way to prevent influenza infection. The primary components
of influenza vaccines have to be updated annually due to antigenic drift of influenza viruses.
The influenza virus surface glycoprotein hemagglutinin (HA) is the primary target of neutraliz-
ing antibodies. The HA protein consists of two polypeptides, HA1 and HA2. The HA1 poly-
peptide plays a much more important role than HA2 in natural selection [4]. The gradual
accumulation of amino acid substitutions in HA1 results in antigenic drift as antigenic proper-
ties change with time [5]. The seasonal influenza vaccine cannot offer effective protection
against antigenically mismatched circulating strains. Antigenic differences between influenza
strains are routinely measured by hemagglutination-inhibition (HI) assays that assess the abili-
ty of reference antiserum to prevent agglutination of red blood cells by influenza
virus particles.

Smith et al. created an antigenic evolution map of influenza A/H3N2 virus using HI assay
data and showed that antigenic evolution was more punctuated than genetic evolution, with a
single amino acid change sometimes having a disproportionately large antigenic effect [6]. Li
et al. also demonstrated that single HA mutations that alter both antigenicity and receptor
binding avidity influenced influenza virus antigenic clustering [7]. Therefore, there are compel-
ling reasons to identify antigenicity-associated sites in HA1. In turn, identification of these
sites may offer insight into the antigenic drift of influenza viruses and accelerate the selection
of vaccine strains. Sun et al. suggested that antigenicity-associated sites were not necessarily the
same among subtypes of influenza A viruses because of different antibody binding sites [8].
For H3N2 seasonal influenza viruses, various studies have used statistical models to identify
critical antigenic amino acid positions based on HI assays and HA1 sequences [9–12]. Howev-
er, only a few studies have explored amino acid sites that drive the antigenic drift of H1N1 sea-
sonal influenza virus using HI assay data. Recently, Huang et al. identified 41 H1N1 HA
natural epitope residues based on 1572 HA sequences and 197 pairs of HA sequences with HI
assays. Likelihood ratios used to correlate a single mutation at the amino acid position with an
antigenic variant were utilized to establish the antigenic variant score [13]. However, recent
studies have revealed that amino acid interactions play a key role in the process that antigenic
site mutations modulate receptor-binding site (RBS) properties; hence, it is necessary to con-
sider the joint effects of amino acid residues on antigenic drift when inferring the relationships
between antigenic variants and amino acid changes [14].

In the present study, two widely used multivariate feature selection methods, Random For-
est Regression (RFR) and Support Vector Regression based on Recursive Feature Elimination
(SVR-RFE), were used to analyze the associations between amino acid changes in the HA1
polypeptide and antigenic variation based on HI assay data and HA1 sequences. These models
identified the best combinations of amino acid sites that could quantitatively predict antigenic
differences between different strains of H1N1 seasonal influenza with high prediction accuracy
using HA1 sequences. Antigenic cartography methods were used to quantify and visualize the
antigenic evolution of H1N1 seasonal influenza viruses from 1977 to 2008, and antigenic clus-
ter transitions were found to be associated with important amino acid substitutions in the HA1
domain of HA. Finally, our computational approaches were validated with the H3N2 dataset
to assess the performance when applied to H3N2 influenza viruses. We believe that the identifi-
cation of antigenicity-associated sites will be helpful in better understanding the antigenic evo-
lution of H1N1 seasonal influenza virus and facilitating influenza vaccine strain selection.

Antigenicity Associated Sites in Seasonal A/H1N1 Influenza
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Materials and Methods

HI assay data
The HI assay data on the H1N1 seasonal influenza viruses used in this study were collected
from related articles and documents published by the US Centers for Disease Control and Pre-
vention and other collaborating centers of the World Health Organization (WHO) [15–22].
Under the premise of without changing the ratios between homologous and heterologous anti-
body titers, which were used to calculate antigenic distances, homologous antibody titers were
standardized to equal 1280. The combined HI table was shown in S1 Table. The HI assay data-
set contained 154 pairwise comparisons of 37 H1N1 viruses isolated from 1977 to 2008. The
antigenic difference between two viruses was measured using the Archetti-Horsfall antigenic
distance metric, which could control for receptor binding avidity variation between viral strains
[7, 23]. The antigenic distance metric between strains A and B was defined using the following
formula:

dðA;BÞ ¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HAAHBB

HBAHAB

r !
ð1Þ

HXY = HI titer of virus strain X (antigen) relative to antiserum raised against virus strain Y.
HAA and HBB = homologous titers of two strains. HBA and HAB = heterologous titers against
each other.

Antigenic distances greater than 2 were usually treated as antigenic variants [9].

HA sequence data
Thirty-seven HA1 amino acid sequences of H1N1 seasonal influenza viruses isolated from
1977 to 2008 were downloaded from the National Center for Biotechnology Information Influ-
enza Virus Resource (Table 1) (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) [24].
All HA1 sequences were aligned with ClustalW and trimmed to the same length (327 amino
acid residues) [25]. Each pairwise amino acid sequence alignment was converted to a 1 x 327
vector. For a specific HA1 sequence position, the value was denoted as 1 if the residue types of
the two HA1 sequences were different (mutation); otherwise, its value was denoted as 0 (no
mutation). One hundred and fifty-four pairwise amino acid sequence alignments were linked
with pairwise antigenic distances for further analysis.

Validation data
The previously published A/H3N2 dataset by Smith et al. was used to validate the biological
relevance of the results of our approaches [6]. The validation dataset consisted of 271 pairwise
antigenic distances among 52 viruses isolated between 1968 and 2003. The HI table was shown
in S2 Table.

Random forest regression
Random forests is a widely used machine learning algorithm that has been applied to classifica-
tion and regression problems. It was introduced by Breiman in 2001 [26]. RFR is an ensemble of
regression trees in which each tree is constructed on a bootstrap sample that is a subset of the
original sample. At each splitting node of a tree, the candidate set of variables is a random subset
of the explanatory variables. To reduce bias, no pruning step is performed; hence, all trees of the
forest are maximal trees. The overall prediction of the forest is the average of predictions from all
individual trees. For each tree, approximately one third of the data that are not included in the

Antigenicity Associated Sites in Seasonal A/H1N1 Influenza

PLOS ONE | DOI:10.1371/journal.pone.0126742 May 15, 2015 3 / 15

http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html


bootstrap sample are termed the “out-of-bag” (OOB) sample. The OOB sample is used as a
testing set for that tree to estimate the prediction performance and then to evaluate variable im-
portance. There are three parameters that need to be determined for RFR: ntree—the number
of trees in the forest; nodesize—the minimum size of the terminal nodes; andmtry—the num-
ber of variables randomly sampled as candidates at each split. In this study, the parameters
ntree and nodesize were set to their default values (ntree = 500 and nodesize = 5 for regression).
The most important parameter (mtry) was tuned to achieve optimal predictive performance
and increase the statistical power of the algorithm to detect true antigenicity-associated sites.

Table 1. Full names and accession numbers of H1N1 seasonal influenza viruses from 1977 to 2008.

Full name Accession number

A/WUHAN/371/95 CAC86625

A/BAYERN/7/95 CAD29944

A/BEIJING/262/95 ACF41867

A/BRAZIL/11/78 ABO38065

A/BRISBANE/59/07 ACA28844

A/BRISBANE/193/2004 ACD37424

A/CAMBODIA/0371/2007 ACI45444

A/CHILE/1/83 ABO38340

A/FLORIDA/13/07 ACF40117

A/FUKUSHIMA/141/2006 ACM17297

A/HONG_KONG/2652/2006 ACD37439

A/INDIA/6263/80 ABO38362

A/JIANGXI/160/2005 ACF76722

A/JOHANNESBURG/82/96 CAD29943

A/KENTUCKY/1/2005 ABI96135

A/KENTUCKY/02/2006 ABU86800

A/NEW_CALEDONIA/9/2004 ABQ09837

A/NEW_CALEDONIA/20/99 AFO65027

A/PHILIPPINES/673/2006 ACD37433

A/SHENZHEN/227/95 AAP34325

A/SICHUAN/4/88 AAA43231

A/SINGAPORE/6/86 ABO38395

A/SINGAPORE/14/2004 ABQ09838

A/SOLOMON_ISLANDS/03/2006 ABU50586

A/SOUTH_DAKOTA/06/2007 AFM72510

A/TAIWAN/1/86 CAA35097

A/TEXAS/36/91 ABD60955

A/USSR/90/77 AFM73477

A/VICTORIA/500/2006 ABQ09960

A/VIRGINIA/01/2006 ABI96152

A/ENGLAND/333/80 X00031

A/CHILE/4795/00 AFO66147

A/FUJIAN/156/00 AFQ90525

A/HONG KONG/1870/2008 AFM72587

A/MALAYSIA/100/2006 ABQ09959

A/MOSCOW/13/98 AFQ90529

A/NEIMENGGU/52/2002 AFQ90530

doi:10.1371/journal.pone.0126742.t001
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Cases ofmtry equaling p (equivalent to bagging), 2/3p, p/2, p/3, p/4, and sqrt(p) were consid-
ered, where p was the number of variables in the data set. The permutation-based “mean of
squared residuals (MSE) reduction” was used as the random forest importance criterion to give
a ranking of variable importance, and the variables with high ranks were considered as poten-
tially associated with antigenicity. In this study, a variable reduction wrapper algorithm was
employed to find the best putative combinations of amino acid sites [27]. This measure of im-
portance was used to rank the variables from most to least important, and the RFR model’s
performance could be monitored as more and more of the least important variables were itera-
tively removed. A 5-fold cross-validation (CV) procedure was used to evaluate the predictive
performance of the RFR model. In the variable selection process, variable importance was not
recalculated at each step because Svetnik et al. 2004 reported that severe overfitting results
from recalculating variable importance. The CV test set MSE was used to assess the predictive
performance of the RFR model. The smaller the MSE, the better the performance will be. The
final RFR model was chosen by using the corrected Akaike information criterion (AICc) [28]
to prevent overfitting. The RFR algorithm and the nested cross-validation procedure were im-
plemented by the randomForest R package [29].

Support vector regression based on recursive feature elimination
A support vector machine is a supervised data mining method based on statistical learning the-
ory used for classification and regression. The basic idea of support vector regression was for-
mulated by Vapnik et al. in 1995 [30]. Instead of minimizing the observed training error in the
traditional regression procedure, support vector regression attempts to minimize the general-
ized error bound to achieve performance in which the generalization error bound is the combi-
nation of the training error and a regularization term that controls the complexity of the
hypothesis space [31]. SVM-RFE is a popular embedded feature selection method. It was first
proposed by Guyon et al. in 2002 to perform gene selection for binary classification problems
[32]. SVM-RFE uses weight magnitude as the ranking criterion and generates a ranking of fea-
tures using the backward feature elimination procedure, which starts with all the features and
then recursively removes one or more of the least important features at a time. In this study,
the ε-SVR-RFE algorithm was used to select a subset of amino acid sites that could contribute
the most to the antigenic variation of H1N1 seasonal influenza virus as an alternative machine
learning method to the RFR model. The 5-fold cross-validated MSE was adopted to evaluate
the prediction performance of SVR models as more and more of the least important amino
acid sites were recursively removed. The SVR model with the smallest AICc value was consid-
ered as the final selected model. The parameter ε and kernel function in SVR-RFE were set to
0.01 and radial basis function (RBF) kernel, respectively. The cost parameter C and parameter
γ of the RBF kernel were optimized by extensive grid search. The search was conducted in the
following ranges: C − 2–8 to 28 with step size 0.1; γ − 2–5 to 25 with step size 0.1. A 5-fold cross-
validation was used in our experiments to determine optimum parameters. The SVR algorithm
was implemented by the Matlab version of LibSVM provided by Chang and Lin [33]. The pa-
rameter optimization function was implemented using the Matlab toolbox Libsvm-FarutoUlti-
mate3.1 provided by Li [34]. SVR-RFE was written in Matlab.

Antigenic cartography
The quantitative analyses of the antigenic properties of H1N1 seasonal influenza viruses col-
lected from 1977 to 2008 were performed using antigenic cartography methods as described
previously by Smith et al. for human H3N2 viruses [6]. The HI assay data were used to con-
struct two-dimensional (2D) antigenic maps in which the distance between points represents
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the antigenic distance as measured by a HI assay. One unit of antigenic distance on the antigen-
ic map corresponds to a two-fold difference in the serological assay. The web-based software
for Antigenic Cartography is available at http://www.antigenic-cartography.org/.

Results

Data set
Amino acid changes were identified in 77 positions among the 154 pairwise comparisons of
H1N1 HA1 sequences by excluding 250 positions that had no mutations (S3 Table). The
amino acid positions that underwent the same change (correlation coefficient = 1) were noted
as one variable. These 77 positions were classified into 60 variables based on their collinearity.
Among the 154 pairwise comparisons, 83 (54%) had an antigenic distance� 2 (i.e., antigenic
variant), and 71 (46%) had an antigenic distance< 2 (i.e., similar antigenicity). The H3N2 vali-
dation dataset was treated in the same way. Sixty-eight variables that were within positions 109
to 301 of the HA1 region according to Koel et al. were obtained [35].

Antigenicity-associated sites identified using the RFR algorithm
RFR was used to quantitatively correlate amino acid changes in the HA1 region with antigenic
distances and to identify the best combinations of amino acid sites that contributed to antigenic
drift of H1N1 seasonal influenza viruses. The CV test set MSE curve based on the variation of
the number of variables selected was plotted for different choices ofmtry (Fig 1). The plot
showed thatmtry, p/4, performed the best, but the other choices were nearly as robust. The re-
sults suggested that the RFR model with 18 variables (mtry = p/4) achieved the smallest AICc
value of 0.8115. The predictive proportion of variance explained by the final RFR model was
0.8353, suggesting that the model achieved a good predictive performance. In Table 2, the 18
variables ranked in order of importance for the final RFR model were reported. Twenty-three
amino acid positions were identified as responsible for the antigenic variation of H1N1 season-
al influenza viruses.

Antigenicity-associated sites identified using the SVR-RFE
The SVR-RFE algorithm was performed to find the subset of amino acid residues that contrib-
uted the most to antigenic variation of H1N1 seasonal influenza virus. Fig 2 shows the cross-
validation MSE against the number of variables used at each step of removing the least impor-
tant variable. The minimum AICc value of 0.5826 was obtained at the 17-variable level by the
SVR model (RBF kernel with parameters C and γ optimized to 4.5948 and 0.1015, respectively).
The predictive proportion of variance explained rose up to 0.8610, which was 0.0257 higher
than the RFR model. The final variable subset selected by the SVR-RFE algorithm is listed in
Table 3 in order of variable importance. Twenty sites were identified as the best combinations
of amino acid sites that could drive the antigenic drift of H1N1 seasonal influenza viruses.

Antigenic map of human H1N1 seasonal influenza viruses from 1977 to
2008
Antigenic cartography methods were used to map the antigenic evolution of human H1N1 sea-
sonal influenza viruses from 1977 to 2008 (Fig 3). The antigenic evolution of human H1N1 sea-
sonal influenza viruses was significantly slower than the antigenic evolution of human H3N2
viruses when compared with the map published by Smith et al. The antigenic evolution of
H1N1 seasonal influenza viruses appeared to be punctuated rather than gradual. Two large
jumps were observed in the antigenic phenotype from the ‘80–83’ strains to the ‘86–98’ strains

Antigenicity Associated Sites in Seasonal A/H1N1 Influenza
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and from the ‘86–98’ strains to the ‘99–08’ strains, and one small jump was observed from the
‘77–78’ strains to the ‘80–83’ strains. Fig 3 summarizes the cluster-transition amino acid substi-
tutions that are most likely responsible for the antigenic differences between antigenic clusters.

Fig 1. The cross-validation MSE of RFR against the number of variables selected using differentmtry functions.

doi:10.1371/journal.pone.0126742.g001
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Model Validation with the H3N2 dataset
Our proposed RFR and SVR-RFE approaches identified 12 and 18 antigenicity-associated sites
of H3N2 influenza viruses, respectively. The importance of each variable was assessed. The var-
iables ranked in order of importance for the RFR model and the SVR-RFE model were reported
in Tables 4 and 5, respectively. The amino acid substitutions at seven positions (positions 145,
155, 156, 158, 159, 189, and 193), which were responsible for A/H3N2 antigenic cluster transi-
tions over the 35-year period, had been experimentally validated by Koel et al.[35]. The top ten
ranked variables recognized by the RFR model included the seven experimentally validated
sites, while there were six experimentally validated sites within the top ten ranked variables
identified by the SVR-RFE approach. Only one experimentally validated site, position 156, was
not recognized by the SVR-RFE algorithm. Both of positions 133 and 135 that had been experi-
mentally validated as the accessory substitutions by Koel et al were also respectively identified
by both our approaches. Then the experimentally validated seven positions were used to con-
struct the RFR and SVR model. The predictive proportions of variation explained by the 7-fea-
tures RFR and 7-features SVR model were, respectively, 0.8447 and 0.8496. The high rankings
of experimentally validated positions in both subsets and their significant contribution to ex-
plaining variation confirmed the effectiveness of our proposed approaches in capturing impor-
tant antigenicity-associated sites and predicting antigenic changes.

Discussion
TheWHO annually recommends an influenza vaccine composition for the coming influenza
season. Antigenic characterization based on the HI assay, which is labor-intensive and time-
consuming, is the primary procedure for influenza vaccine strain selection. It is of considerable
importance to detect new antigenic changes occurring in HA protein when updating vaccine
compositions. The punctuated nature of antigenic evolution of influenza virus suggests that a

Table 2. Antigenicity-associated sites of H1N1 identified using the random forest regression
algorithm.

Order of variable importance Amino acid position

1 141

2 130

3 43

4 54 127 193

5 186

6 80 271

7 71

8 36

9 190

10 194

11 163

12 128

13 187

14 189

15 125

16 121 205

17 321

18 133 191

doi:10.1371/journal.pone.0126742.t002
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relatively small number of genetic changes or combinations of genetic changes may drive
changes in antigenic phenotype [35].

Fig 2. The cross-validation MSE of SVR against the number of variables used.

doi:10.1371/journal.pone.0126742.g002

Table 3. Antigenicity-associated sites of H1N1 identified using the support vector regression based
on recursive feature elimination.

Order of variable importance Amino acid position

1 130

2 54 127 193

3 43

4 141

5 190

6 160

7 121 205

8 71

9 273

10 321

11 125

12 96

13 277

14 69

15 187

16 269

17 57

doi:10.1371/journal.pone.0126742.t003
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In this study, RFR and SVR-RFE were used to identify amino acid sites associated with HA
antigenicity of H1N1 seasonal influenza viruses on the basis of HI assay data and HA1 se-
quences. The methods used in the study are different from those of previous studies because
the algorithms consider the joint effects of amino acid residues on antigenic drift when deriving
antigenicity-associated sites. The results showed that CV test set MSE curves decreased sharply
at first and then increased slowly with respect to the number of variables used. This trend
might be attributed to the combined effects of amino acid substitutions [36].

Fig 3. Antigenic map of human H1N1 seasonal influenza viruses from 1977 to 2008. The relative positions of strains (green circles) and antisera
(uncolored squares) are adjusted such that the distances between strains and antisera on the map represent the corresponding HI measurements with the
least error. One unit (grid) corresponds to a two-fold dilution of antiserum in the HI assay. The cluster-transition amino acid substitutions are shown in red.

doi:10.1371/journal.pone.0126742.g003
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The RFR and SVR-RFE algorithms identified 23 and 20 antigenicity-associated sites, respec-
tively. Interestingly, thirteen amino acid residues overlapped between these two amino acid
subsets. The first four ranked variables recognized by these two approaches contained the same
six amino acid positions (43, 54, 127, 130, 141 and 193). With the RFR and SVR-RFE ap-
proaches, 2 and 5 new antigenicity-associated residues were identified, respectively, that were
not covered by the natural epitope residues proposed by Huang et al. (Table 6). From the

Table 4. Antigenicity-associated sites of H3N2 identified using the random forest regression
algorithm.

Order of variable importance Amino acid position

1 189

2 133

3 193

4 145

5 155

6 144

7 159

8 216

9 156

10 158

11 163

12 135

Experimentally validated sites were marked as bold. Accessory substitutions were marked as italic.

doi:10.1371/journal.pone.0126742.t004

Table 5. Antigenicity-associated sites of H3N2 identified using the support vector regression based
on recursive feature elimination.

Order of variable importance Amino acid position

1 189

2 133

3 155

4 193

5 158

6 216

7 144

8 285

9 159

10 145

11 137

12 196

13 129 132

14 271

15 131

16 175

17 135

Experimentally validated sites were marked as bold. Accessory substitutions were marked as italic.

doi:10.1371/journal.pone.0126742.t005
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Table 6. Comparison of amino acid positions related to antigenic variation of H1N1 seasonal influenza viruses identified by current and previous
studies.

RFRa SVR-RFEb natural epitope residuesc antigenic cartographyd antigenic epitope regionse

35

36 36

43 43 43 43

47

54 54 54 54

57

69 69

71 71 71 71 Cb

73 Cb

80 80 80

82

94

96

121 121 121 121

125 125 125 125 Sa

127 127 127 127

128 128

130 130 130 130

133 133

141 141 141 Ca2

146

153 Sa

160 160 Sa

163 163 Sa

183

186 186 186 Sb

187 187 Sb

189 189 189 Sb

190 190 190 190 Sb

191 191 Sb

193 193 193 193 Sb

194 194 Sb

205 205 205 205 Ca1

209

216

222 Ca2

224

267

269

271 271 271

273 273

274

277 277 277

295

310

(Continued)
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antigenic map of human H1N1 seasonal influenza viruses from 1977 to 2008, 15 amino acid
positions were found that were likely to contribute to the antigenic difference between clusters.
Surprisingly, the 23 and 20 antigenicity-associated sites cover 93.33% (14/15) and 73% (11/15)
of cluster-differentiating mutations, respectively. The high ratio overlap reveals that the models
used in this study are reliable. However, only 7 of these 15 cluster-difference substitutions over-
lapped with the five antigenic epitope regions (Sa, Sb, Ca1, Ca2, and Cb) previously described
by Brownlee and Fodor [37]. The low consistency reflects the different recognition mecha-
nisms of antigenic epitopes between natural selection at the population level and neutralizing
monoclonal antibodies (MAbs) in the laboratory. There were also limited antigenic differences
between the ‘99–06’ strains and the ‘06–08’ strains, which might be due to a single amino acid
substitution at position 141 [35, 38, 39, 40].

The H3N2 dataset was used to further validate the biological relevance of the results of our
approaches. The RFR approach has been shown to be more effective in identifying the experi-
mentally validated sites than the SVR-RFE algorithm, but the SVR model demonstrated better
predictive performance compared to the RFR model. The final models developed in this study
can perform quantitative prediction of antigenic differences between different strains of H1N1
based only on HA1 sequences and serve as an initial screening tool for antigenic variants before
the labor-intensive and time-consuming HAI assay.

In conclusion, the proposed RFR and SVR-RFE approaches, which consider the joint effects
of amino acid residues on antigenic drift, identified 23 and 20 antigenicity-associated sites of
HA1 of H1N1 seasonal influenza viruses, respectively. The results obtained in this study can
aid in better understanding of the antigenic evolution of H1N1 seasonal influenza viruses and
accelerate the selection of vaccine strains.
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Table 6. (Continued)

RFRa SVR-RFEb natural epitope residuesc antigenic cartographyd antigenic epitope regionse

321 321

aTwenty-three antigenicity-associated sites identified by random forest regression.
bTwenty antigenicity-associated sites identified by support vector regression based on recursive feature elimination.
cForty-one natural epitope residues identified by Huang et al. [13].
dFifteen cluster-difference substitutions revealed by antigenic cartography.
eFive antigenic epitope regions described by Brownlee and Fodor [37].
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