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Cancer precision medicine (CPM) could tailor the best treatment for individual cancer
patients, while imaging techniques play important roles in its application. With the
characteristics of noninvasion, nonionized, radiation-free, multidimensional imaging
function, and real-time monitoring, magnetic resonance imaging (MRI) is an effective way
for early tumor detection, and it has become a tower of strength in CPM imaging techniques.
Due to linkage with nephrogenic systemic fibrosis (NSF), gadolinium (Gd)-based contrast
agent (CA), which was long used in MRI, has been restricted by the Food and Drug
Administration (FDA). In this review, we would like to introduce the manganese (Mn)-based
CAs that could significantly increase the safety of MRI CAs by realizing more superior
performance and functions simultaneously in the diagnosis and treatment of tumors. Also,
recent advances in Mn-based hybrid nanomaterials for CPM are summarized and discussed.
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INTRODUCTION

Cancer precision medicine (CPM), evolved with the development of novel nanoparticles (NPs) for
cancer diagnosis and treatment, could tailor the best treatment for individual cancer patients.
Nowadays, CPM has become popular in clinical and bioscience worldwide, with the conventionally
used cancer therapies (e.g., chemotherapy, radiotherapy, and surgery) suffering from lower
therapeutic efficiency and ineluctable side effects (1–4).

With a large number of nanomaterial-based new cancer therapies being emerged [e.g.,
photothermal therapy (PTT)/photodynamic therapy (PDT), sonodynamic therapy (SDT),
magnetic hyperthermia therapy, etc.], CPM includes an extensive range of cancer management,
such as cancer screening and monitoring, drug selection/prediction, and personalized
immunotherapy (2, 5–8). CPM relies heavily on imaging methods, including computed
tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET),
and optical imaging (OI), to provide distinct and precise pathological features for patients.

Owing to superb soft tissue imaging contrast, high spatial resolution, multidimensional imaging,
and absence of ionizing radiation, MRI becomes increasingly available for early detection of tumors
with gadolinium (Gd)-based contrast agents (CAs) most frequently used (9, 10). Unfortunately, Gd-
based CA is in restricted use by the Food and Drug Administration (FDA) due to possibly Gd-based
CA-linked medical conditions known as nephrogenic systemic fibrosis (NSF), chronic kidney
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disease (CKD), and severe complexities, which led to new
concerns on the safety of Gd as MRI CAs clinically (11–14).

To increase the safety of MRI CAs, manganese (Mn) ion
(Mn2+), a non-lanthanide metal, a necessary element in cell
biology, and the earliest reported CAs used for enhancing T1-
weighted MRI, became an optimal choice due to its paramagnetic
nature, low toxicity, and high biosafety (15).

Various Mn-based nanomaterials, such as MnCl2, Mn
chelates, and MnO nanoparticles, have been utilized for cancer
diagnosis with great biocompatibility (15–18). Multiple Mn-
based nanostructures, such as nanosheets, hollows, nanocages,
and nanobubbles, could act as reservoirs for efficient drug
delivery (19–22). Additionally, Mn-based hybrid nanomaterials
could be adaptable and responsive to both endogenous
compounds in the inner tumor microenvironment (TME) (23)
and external environmental stimuli, such as acidity, glutathione,
temperature, pH, enzyme, light, redox, and chemical signals. Due
to those characteristics, Mn-based hybrid nanomaterials could
realize demanded discharge of cargo molecular for imaging-
guided cancer therapy, thus minifying additional damage in
normal tissues (24, 25).

To sum up, the paramagnetism and Fenton-like property of
Mn2+ have made Mn-based hybrid nanoparticles with multiple
effects, including great performance in MRI, drug delivery,
and imaging-guided therapy theranostic systems to integrate
diagnosis and treatment into a nanoplatform. Mn-based hybrid
nanomaterials have brought a new dawn to the treatment of
tumors (26).

In this review, we aimed to provide an overview of recent
advances in a possible workflow of Mn-based hybrid
nanomaterials used for CPM by reviewing recent emerging
techniques and treatments that have been used or will be
potentially used. The Mn-based hybrid nanomaterials as imaging
agents, carriers for drug delivery, and theranostic agents are
summarized in sections Manganese-Based Hybrid Nanomaterials
as Imaging Agents, Manganese-Based Hybrid Nanomaterials as
Carriers for Drug Delivery, and Manganese-Based Hybrid
Nanomaterials as Theranostic Agents, respectively. We will
discuss how Mn-based hybrid nanomaterials can be used as CAs
for detecting and monitoring cancer progression; how they act as
chemotherapeutic drug carriers to increase therapeutic index; and
how they can function as theranostic agents in imaging-guided
Frontiers in Oncology | www.frontiersin.org 2
PTT, PDT, SDT, and radiation therapy, etc. Here, we highlight the
Mn-based hybrid nanomaterials as theranostic agents, and such an
imaging-guided nanotheranostic platform would help to develop
optimized and individualized regimens in light of patient’s
response and offer an opportunity to develop CPM. The
progress and perspective are summarized in section Perspective.
MANGANESE-BASED HYBRID
NANOMATERIALS AS IMAGING AGENTS

The noninvasive, nonionized, and radiation-free characteristics
make MRI one of the most extensively utilized clinical imaging
tools. However, conventional signal intensity-based MRI is still
limited to its semiquantitative nature, which is susceptible to
many factors. Recently, various Mn-based hybrid nanomaterials
could increase T1-weighted MRI effect even in acid environment
with good biocompatibility or multimodal imaging free from the
effects of various conditions in the TME (14, 27, 28). The Mn-
based hybrid nanomaterials as imaging agents are summarized in
Table 1, with the schematic diagram and examples of imaging
effect shown in Figure 1.

T1-T2 dual-modal CAs could enable both T1 bright and T2
dark contrasts. Zhao et al. (27) prepared the multifunctional
DNA-Mn-based nanoflower (DMNF), showing enhanced T1-
weighted MRI effect even in acid environment and high spatial
resolution imaging of kidneys and liver. What is worthmentioning
is that Zhou et al. (28) made a 1,4,7-triazacyclononane-N,N’,N’’-
triacetic acid-conjugated truncated Evans blue (NEB), and after
chelating with Mn (MnNEB) and bovine serum albumin (Mn-
NEB+BSA), it could be used as novel T1-T2 dual-modal MRI CA.
This study opens a new avenue for contrast-enhanced MRI
diagnosis, and it also shows extraordinary promise for CPM (28).
MANGANESE-BASED HYBRID
NANOMATERIALS AS CARRIERS FOR
DRUG DELIVERY

Nanotechnology acts a great role in drug delivery to help
revolutionize CPM. Mn-based hybrid nanomaterials, such as
TABLE 1 | Manganese-based hybrid nanomaterials as imaging agents.

Agent
name

Description Tumor model Research group
and reference

Mn-
NEB
+BSA

As dual-modal MRI contrast agents, Mn-NEB+BSA could greatly eliminate suspicious artifacts and false-
positive signals in mouse brain imaging.

U87MG tumor-bearing
athymic nude mice

Jinhao Gao and
Xiaoyuan Chen’s
group (28)

DMNF DMNF showed high tumor-specific MRI with enhanced T1-weighted imaging effect, which was attributed
to the synergistic effect of active targeting of AS1411 aptamer and acid-activated release of Mn2+

promoting the MR signal enhancement.

MCF-7 tumor-bearing
BALB/c nude mice

Dayong Yang’s
group (27)

HMS Hollow manganese silicate (HMS) nanoparticles could release Mn2+ in physiological acidic condition as a
liver-specific MR contrast agent in hepatic tumor models.

HCC, NEC, and ADC
tumor-bearing nude mice

Won Jae Lee and In
Su Lee’s group (14)
October 2021 | Volum
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manganese silicate.
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nanosheets, hollow mesoporous nanoshells, and nanocubes, have
a high surface-to-volume ratio fit for drug delivery and could
produce Mn2+ for MRI (20). Currently fabricated composite
nanoparticles used for drug delivery include the nanoparticle for
the carrier and chemotherapeutic drug for cancer {e.g., doxorubicin
[DOX], paclitaxel [PTX], methotrexate [MTX], arsenic trioxide
[ATO], cisplatin [cis-diamminedichloroplatinum (CDDP)], etc.}
or non-tumor-specific drugs (e.g., hydroxychloroquine,
verteporfin, 5-fluorouracil, osteopontin siRNA, etc.) that is either
adsorbed, dissolved, or dispersed throughout the nanoparticle
complex or covalently attached to the surface of nanoparticles (5).
Also, they hold great potential to simultaneously codeliver more
drugs in combination therapy. The delivery of non-cytotoxic
prodrugs to cancer cells is one of the newer applications (29).

Furthermore, drugs can be formulated at a nanoscale level to
increase its therapeutic efficiency. Nanoscale drug delivery systems
(nano-DDSs) have already been proposed as a promising way to
realize tumor-specific treatment by being adaptable and responsive
to many endogenous substances and external stimuli, such as
acidity, overexpressed hydrogen peroxide (23), pH, enzyme, light,
temperature, and magnetic field.

Hence, numerous smart hybrid nanomaterials with one or dual
stimuli-responsive (e.g., lower pH, hypoxia, tumor-specific
enzymes such as glutathione, etc.) drug-releasing and one or
dual-mode diagnostic imaging functions (particularly MRI) have
been developed to realize improved therapeutic specificity and
efficacy (12, 13, 19, 21, 22, 24, 25, 30–48). The Mn-based hybrid
nanomaterials as carriers for drug delivery are summarized in
Table 2, with examples of the schematic diagram for drug
Frontiers in Oncology | www.frontiersin.org 3
delivery system, characterization analysis, and curative effect
shown in Figure 2. It is worth noting that redox-sensitive Mn-SS
(disulfide)/DOX@PDA (polydopamine)-PEG polymers (NCPs)
designed by Zhao et al. (30) served as a T1 CA under MRI and
showed a glutathione (GSH)-responsive release of DOX. Huang
et al. (9) fabricated theranostic nanocomposites Mn-
porphyrin&Fe3O4@SiO2@PAA-cRGD and effectively used them
in T1- and T2-weighted MRI and pH-responsive drug release.
Wang et al. (49) reported the one-pot synthesis of biocompatible
arginine-rich Mn silicate nanobubbles (AMSNs) with high tumor
killing activity via the glutathione-dependent peroxidases 4
(GPX4)-mediated ferroptosis pathway. Such imaging-guided
drug-carrying platforms would therefore tremendously promote
the development of CPM.
MANGANESE-BASED HYBRID
NANOMATERIALS AS THERANOSTIC
AGENTS

Many efforts have been made for cancer therapy, and the idea of
theranostics could help develop a smart nanoparticle to integrate
cancer diagnosis, drug delivery, and therapy monitoring
simultaneously in a system (50). The intelligent stimuli-
responsive manner could offer an efficient strategy for CPM by
employing the unique features of TME or clinical external
irradiations. With the improvement of polymerization and
emulsifying techniques, nanoparticles could be made with
hydrophilic and hydrophobic facets to load with different
A

B

C

FIGURE 1 | Manganese (Mn)-based hybrid nanomaterials as imaging agents and their application in tumor. (A) Diagram of the enhanced MRI of DNA-Mn-based
nanoflower (DMNF)-treated tumor-bearing mice (27). (B) Preparation and characterization of DMNF imaging agents (27). (C) Representative T1- and T2-weighted
images of mouse brain at pre- and post-contrast points. T1-T2 dual-modal MRI in brain tumor model through the synthesized MRI contrast agents, NOTA
conjugated NEB chelating with Mn2+ (Mn-NEB) and BSA (Mn-NEB+BSA) (28). DMNF, DNA-Mn-based nanoflower; NOTA, N, N’, N’’-triacetic acid.
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active materials for theranostics. The Mn-based hybrid
nanomaterials as imaging agents and carriers for drug delivery
have been summarized and discussed in this section, and the
Mn-based hybrid nanomaterials as theranostic agents are
summarized in Table 3, with the schematic diagram and
examples shown in Figure 3.

Imaging-Guided Photothermal Therapy
PTT, a combination of photothermal nanomaterials and light
irradiation, becomes a clinically promising modality for cancers.
It could controllably and selectively heat the target area to
minimize thermal damage.

Many Mn-based hybrid nanomaterials used for imaging-
guided PTT have been developed (11, 48, 71, 73–77), such as
Frontiers in Oncology | www.frontiersin.org 4
nanopetals of Mn3O4 hybrid nanomaterials for multifunctional
imaging-guided PTT (51), a 2-D nanoplatform based on Cu2MnS2
nanoplates for MRI/multispectral optoacoustic tomography
(MSOT) dual-modal imaging-guided PTT (52, 78), a plasmonic
modulation strategy of Gold Nanorods (GNRs) through MnO2

coating for TME-responsive photoacoustic (PA)/MR duplex
imaging guided NIR-II PTT (67), and a gold@ MnO2 (Au@
MnO2) core–shell nanostructure as a GSH-triggered smart
theranostic agent for PA and MR dual imaging-guided PTT
(53, 68).

Imaging-Guided Photodynamic Therapy
PDT has emerged as a promising therapeutic option for
cancers, and it could generate cytotoxic oxygen-based
TABLE 2 | Manganese-based hybrid nanomaterials as carriers for drug delivery.

Delivered
molecules

Agent name Description Tumor model Research group and ref-
erence

DOX HMnO2

nanoshells
Hollow mesoporous MnO2 (HMnO2) nanoshells with DOX loaded could be used for
tumor-specific therapy in pH-responsive MRI.

4T1 tumor-bearing
Balb/c mice

Zhuang Liu’s group (24)

DOX Mn-SS/
DOX@PDA-
PEG NCPs

Redox-sensitive Mn-SS (disulfide)/DOX@PDA (polydopamine)-PEG polymers (NCPs)
for T1-contrast MRI and glutathione (GSH)-responsive release of DOX

4T1 tumor-bearing
mice

Zili Ge and Zhuang Liu’s
group (30)

DOX MnO2-PEG-
FA/DOX
nanosheets

A redox/pH dual responsive nanotheranostic platform, MnO2-PEG-FA/DOX
nanosheets through MnO2 nanosheets combined with FA and DOX for MRI and
chemotherapy

S180 tumor-nearing
mice

Zhenzhong Zhang and Yun
Zhang’s group (35)

DOX DOX-GOx-
MnCaP NPs

A pH-responsive DOX-loaded glucose oxidase (GOx) with MnCaP spherical
nanoparticles for MRI and cascade reaction-enhanced cooperative cancer treatment

4T1 tumor-bearing
mice

Peng Huang’s group (39)

DOX BMDN MnO2/DOX-loaded albumin nanoparticles (BMDN) for MRI and simultaneous
chemotherapy

MCF-7/ADR tumor-
bearing mice

Huabing Chen and Hu-Lin
Jiang’s group (31)

DOX USMO@MSNs USMO@MSNs loading DOX for pH-switching MRI and chemotherapy HSC3 tumor-
bearing nude mice

Renfei Wang and Duohong
Zou (34)

DOX Hollow MCO
NPs

Hollow manganese/cobalt oxide nanoparticles (MCO-70 NPs) with a tunable size for
GSH-responsive dual T1/T2-weighted MRI reporting drug release of DOX

U87MG tumor-
bearing nude mice

Zhiping Wan, Junqing Hu,
and Yijing Liu’s groups (22)

PTX W-PTX-
MNPs-PPR

Three shaped Mn-Zn ferrite (Mn0.63Zn0.37Fe2O4) MNPs for more efficient dual-mode
MRI/fluorescence imaging-guided drug delivery

4T1 tumor-bearing
mice

Ning Gu and Fei Xiong’s
group (41)

MTX MTX-
Mn@PEG
NCPs

A chelating agent free, stoichiometry, and pH-responsive NCPs for MRI-guided MTX
delivery

HeLa tumor-nearing
BALB/c nude mice

Youfu Wang, Dawei Li and
Xinyuan Zhu’s group (38)

ATO [Mn(HAsO3)]
n@SiO2

A pH-sensitive multifunctional trioxide (ATO) drug delivery system (MDDS) through
hollow silica nanoparticles loading water-insoluble manganese-arsenite complexes
(MnAsOx@SiO2) and ATO for real-time monitoring of ATO release by activatable MRI

H22 tumor-nearing
BALB/c mice

Jinhao Gao’s group (36)

CDDP MnO2/HA/
CDDP
nanosheets

MnO2/HA/CDDP nanosheets (MnO2 nanosheets functionalized by HA, with CDDP
absorbed) for pH-responsive MRI and delivering CDDP

A549 tumor-bearing
mice

Zhenzhong Zhang and Yun
Zhang’s group (37)

HCQ HA-Mn2O3/
HCQ

TME-responsive drug release and tumor targeting drug carriers-Hollow mesoporous
Mn2O3 NPs conjugated with hyaluronic acid (HA) loading hydroxychloroquine (HCQ,
traditional autophagy inhibitor) into the hollow core, for MRI-guided in situ autophagy
inhibition

4T1 tumor-bearing
BALB/c mice

Lin Hou and Zhenzhong
Zhang’s group (21)

BPD MnO2/BPD
NPs

MnO2/BPD nanocomposites for vessel embolization therapy with MR, PA, and FL
multimodal imaging as a predictor

Hep-G2 tumor-
bearing BALB/c
mice

Meng Niu, Ke Xu and Jie
Tian’s group (19)

OPN
siRNA

PEG-MnO2-
OPN siRNA

PEG-modified MnO2 nanosheets carrying osteopontin (OPN) siRNA for GSH-
responsive MRI-guided gene delivery

786-O tumor-
bearing mice

Kai Xua and Jingjing Li’s
group (20)

5-Fu Mn-ZIF-8/5-Fu
NPs

A pH-responsive bimetallic zeolitic imidazolate framework (Mn-ZIF-8) loading 5-
fluorouracil showing diagnostic (MRI) and improved therapeutic applications in U87-
MG tumor-bearing mice

U87-MG tumor-
bearing Balb/c nude
mice

Jianhua Wang, Anwen
Shao, and Jianmin Zhang’s
group (40)
October 2021 |
HMnO2, hollow mesoporous MnO2; DOX, doxorubicin; MRI, magnetic resonance imaging; PDA, polydopamine; SS, disulfide; GSH, glutathione; GOx, glucose oxidase; MnCaP,
manganese-doped calcium phosphate; BMDN, BSA-MnO2-DOX nanoparticles; USMO@MSNs, Ultrasmall manganese oxide-capped mesoporous silica nanoparticles; MCO-70 NPs,
Hollow manganese/cobalt oxide nanoparticles with an average size of 70 nm; MTX, methotrexate; MDDS, multifunctional drug delivery system; MnAsOx@SiO2, hollow silica nanoparticles
loading water-insoluble manganese-arsenite complexes; HA, hyaluronic acid; CDDP, cis diamminedichloroplatinum; TME, tumor microenvironment; HA, hyaluronic acid; HCQ,
hydroxychloroquine; BPD, benzoporphyrin derivative; Mn2O3, manganese trioxide; OPN, osteopontin; ZIF, zeolitic imidazolate framework.
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molecular species via photosensitizer to ablate tumor growth
by inducing cell apoptosis, necrosis, or autophagy. As a
new noninvasive modality, PDT could enhance the
conventional cancer treatment by overcoming drug resistance
or escape pathways.

A lot of Mn-based hybrid nanoparticles were synthesized for
imaging-guided PDT diagnosis and treatment (10, 54, 55, 79,
80). For example, Zhang et al. (10) have proven that Mn-doped
iron oxide nanoparticles modified with denatured BSA (MnIO-
dBSA) and Fmoc-L-L/Mn2+/Ce6 nanoparticles (FMCNPs) could
improve antitumor PDT efficacy. Also, oxygen-generating
theranostic nanoparticles (CDM NPs) with MnO2 could be
applied for trimodal imaging-guided combined PDT in breast
cancer (69). A multifunctional DNA-templated silver
nanoclusters/porphyrin/MnO2 nanoplatform could be used for
non-labeled fluorescence images of Zn2+ and 635-nm red light-
triggered PDT (56). The MnO2 NP-based PDT nanocomplex
Frontiers in Oncology | www.frontiersin.org 5
could generate oxygen to overcome the limitation of insufficient
oxygen level in tumors (55).

Imaging-Guided Sonodynamic Therapy
SDT is an alternative promising method for cancers by
generating reactive oxygen species (ROS), ROS to induce cell
death with low-intensity ultrasound irradiation combined with
nontoxic sonosensitizers (81, 82). It is characterized by high
therapeutic efficiency with the advantages of noninvasiveness
and mitigated side effects.

Mn-based theranostic agents could integrate imaging and
therapy into a single nano-platform for imaging-guided SDT. It
has been reported that even in the presence of skull, sinoporphyrin
sodium (DVDMS) chelating with Mn (DVDMS-Mn-LPs) could
effectively inhibit the tumor growth (57). The efficacy of SDT
could be severely inhibited by hypoxia and high glutathione in
TME, while a Mn porphyrin-based metal-organic framework
A

D

E

B

C

FIGURE 2 | Mn-based hybrid nanomaterials as carriers for drug delivery and their application in tumor. (A) Schematic illustration of PEG-MnO2-OPN siRNA (20).
(B) Preparation and characterization of GOx-MnCaP-DOX, glucose oxidase (GOx) with manganese-doped calcium phosphate (MnCaP), and doxorubicin (DOX) (39).
(C) Tumor cell-selective uptake analysis by confocal laser scanning microscope and in vivo tumor homing behavior evaluation by T1-weighted MRI of arginine-rich
manganese silicate nanobubbles loading DOX (AMSNs/DOX) (49). (D) The in vivo antitumor efficacy of GOx-MnCaP-DOX on the 4T1 tumor-bearing mouse model (39).
OPN, Osteopontin; GOx, Glucose; MnCaP, manganese-doped calcium phosphate; DOX, doxorubicin; AMSNs, Arginine-rich manganese silicate nanobullles.
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TABLE 3 | Manganese-based hybrid nanomaterials as theranostic agents.

Therapy Agent name Description Tumor
model

Research group
and reference

PPT Au@Mn3O4

magneto-
plasmonic
nanoflowers

With great potential in T1-weighted MRI and photothermal therapy (PPT) in vitro and
in vivo

4T1 tumor-
bearing mice

Aiguo Wu’s group
(11)

PPT MONPs-BSA-
EDTA

For multifunctional imaging-guided PPT HCT116
tumor-
bearing mice

Jing Zhou’s group
(51)

PPT Cu2MnS2 NPs For MRI/MSOT dual-modal imaging-guided PTT of cancer in the NIR-II window S180 tumor-
bearing mice

Chunhua Lu and
Huanghao Yang’s
group (52)

PPT MNP-Mn A multifunctional nanoplatform for MR/PA dual-modal imaging-guided PTT Hep-2 tumor-
bearing mice

Ruiping Zhang’s
group (53)

PPT Mn2+-doped PB
nanocubes

Mn2+-doped PB (PB : Mn) nanocubes for MRI-guided PTT with enhanced performance 4T1 tumor-
bearing Balb/
c mice

Liang Cheng and
Zhuang Liu’s group
(48)

PDT FMCNPs Amphiphilic amino acid-coordinated ionic manganese simultaneous encapsulation of
chlorin e6 (FMCNPs) for MRI-guided PDT

MCF7 tumor-
bearing mice

Xia Xin, Shiling
Yuan, and Xuehai
Yan’s group (54)

PDT MnIO-dBSA Manganese-doped iron oxide nanoparticles modified with denatured bovine serum
albumin (MnIO-dBSA) composites for efficient tumor MRI and PDT

4T1 tumor-
bearing mice

Zhijun Zhang’s
group (10)

PDT IHM By encapsulating a MnO2 NP in an ICG-modified hyaluronic acid nanoparticle (HANP) for
fluorescent and PA imaging-guided tumor PDT

SCC7 tumor-
bearing mice

Guoqing Zhao,
Qingjie Ma, and Lei
Zhu’s group (55)

PDT P-AgNCs-MnO2 A novel multifunctional DNA-templated silver nanoclusters/porphyrin/MnO2 theranostic
nanoplatform for non-labeled fluorescence images of Zn2+ and PDT

MCF-7
tumor-
bearing mice

Daoquan Tang and
Fenglei Gao’s
group (56)

SDT DVDMS-Mn-LPs Encapsulation of DVDMS chelating with Mn into nanoliposomes for integrating imaging
and therapy into a single nano-platform

U87 tumor-
bearing mice

Fei Yan’s group
(57)

SDT Mn-MOF A nanosensitizer to self-supply O2 and decrease GSH for enhanced SDT and ferroptosis H22 and 4T1
tumor-
bearing mice

Xiangliang Yang
and Lu Gan’s
group (58)

CDT MnS@BSA Size-controllable, biodegradable, and metastable g-phase manganese sulfide
nanotheranostics using BSA as a biological template for tumor pH-responsiveness
traceable gas therapy-primed CDT

4T1 tumor-
bearing mice

Peng Huang’s
group (59)

CDT GSH-Gated
MnO2@PEI-IAA

For GSH-gated miRNA-21 signal amplification and GSH-activated MRI-guided CDT MCF-7
tumor-
bearing mice

Caina Xu and
Huayu Tian’s group
(60)

CDT MCDION-Se Nanoselenium-coated MCDION-Se for MRI guided CDT HeLa and
HK-2 tumor-
bearing mice

Duohong Zou and
Zhengyan Wu’s
group (61)

RIT 131I-HSA-MnO2

NPs
Radionuclide 131I-labeled human serum albumin (HSA)-bound manganese dioxide
nanoparticles (131I-HSA-MnO2) as a novel radioisotope therapy (RIT) nanomedicine
platform for tumor microenvironment

4T1 tumor-
bearing mice

Kai Yang and
Zhuang Liu’s group
(62)

Gene therapy f-L-SQDs The (f-L-SQDs)-folic acid-conjugated liposome core–shell co-doped Mn : ZnSe/ZnS/
ZnMnS sandwiched quantum dots (SQD) to deliver cancer cell-targeted siRNA for dual-
mode imaging (MRI and fluorescence imaging) and gene therapy

Panc-1
(ATCC CRL-
1469)

Tze Chien Sum and
Ken-Tye Yong’s
group (63)

Photo-
genetherapy

DNA/Mn NPs A multifunctional theranostic nanoplatform-DNA/Mn NPs by encapsulating indocyanine
green (ICG)-labeled CHA-DNAzyme prodrugs and MnO2 adjuvant into a biocompatible
poly nanocarrier for photo-genetherapy strategy

MCF-7
tumor-
bearing mice

Fuan Wang’s group
(64)

Magnetic
hyperthermia
therapy

FIMO-NFs Novel room-temperature FIMO-NFs to harness the advantages and potential of T1-T2
dual-mode MRI and magnetic hyperthermia therapy for precision medicine

U87MG
tumor-
bearing SCID
mice

Jun Ding and Hai
Ming Fan’s group
(65)

PTT and CDT PFN A second near-infrared PFN for activatable MRI-guided synergetic PTT and CDT Panc02
tumor-
bearing mice

Ruizhi Wang, Yu
Luo and Xiaolin
Wang’s group (66)

photothermal-
chemodynamic
therapy

GNRs A plasmonic modulation strategy of GNRs for imaging guided NIR-II photothermal-
chemodynamic therapy

U87MG
tumor-
bearing mice

Peng Huang’s
group (67)

photothermal-
enhanced

GSH-triggered
Au@MnO2

An Au@MnO2 core–shell nanostructure as a GSH-triggered smart theranostic agent for PA
and MRI-guided photothermal-enhanced chemodynamic therapy

4T1 tumor-
bearing mice

Qiwei Tian and
Shiping Yang’s
group (68)

(Continued)
Frontiers in Oncolog
y | www.frontiersin
.org October6
 2021 | Volume
 11 | Article 707618

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu and Rong Mn-Based Nanomaterials for CPM
(Mn-MOF) could improve antitumor immunity and
immunosuppressive microenvironment upon ultrasound
irradiation to show great potential for hypoxic cancer therapy (58).

Other Imaging-Guided Therapies
Mn-based hybrid nanomaterials also hold great potential for
many other traceable therapies for cancer, such as
Frontiers in Oncology | www.frontiersin.org 7
chemodynamic therapy (CDT) (60, 61), radiation therapy (83),
magnetic hyperthermia therapy, and combination therapy (70,
84, 85).

For pH-responsive traceable gas therapy-primed CDT, a g-
phase Mn sulfide nanotheranostics using bovine serum albumin
(MnS@BSA) could greatly suppress tumor growth (59). During
radiation therapy, ionizing radiation will damage both normal
TABLE 3 | Continued

Therapy Agent name Description Tumor
model

Research group
and reference

chemodynamic
therapy
chemo-
photodynamic
therapy

CDM NPs Oxygen-generating theranostic nanoparticles by hierarchically assembling DOX, Ce6, and
MnO2 with poly-b-poly-b-poly for trimodal imaging-guided combined chemo-
photodynamic therapy

MCF-7
tumor-
bearing mice

ZhiYong Qian’s
group (69)
October
 2021 | Volume
PPT, photothermal therapy; MSOT, multispectral optoacoustic tomography; PA, photoacoustic; PB, Prussian Blue; FMCNPs, Fmoc-L-L/Mn2+/chlorin e6 nanoparticles; MnIO-dBSA,
manganese doped iron oxide nanoparticles modified with denatured bovine serum albumin; HANP, hyaluronic acid nanoparticle; PDT, photodynamic therapy; SDT, sonodynamic therapy;
DVDMS, organic sinoporphyrin sodium; CDT, chemodynamic therapy; MCDION-Se, nanoselenium coated manganese carbonate-deposited iron oxide nanoparticle; HSA, human serum
albumin; RIT, radioisotope therapy; SQD, sandwiched quantum dots; ICG, indocyanine green; CHA, catalytic hairpin assembly; FIMO-NFs, ferromagnetic IMO nanoflowers; PFN,
photothermal Fenton nanocatalyst; GNRs, gold nanorods; CDM NPs, chlorin e6-DOX-MnO2 nanoparticles.
A

DB

C

FIGURE 3 | Manganese (Mn)-based hybrid nanomaterials as theranostic agents and their application in tumor. (A) Schematic illustration of multifunctional
nanocapsule and the systemic delivery of the self-sufficient theranostic nanoplatform (64). (B) Preparation and characterization of a core–shell MnS@Bi2S3-
PEG nanostructure theranostic agents (70). (C) In vivo multimodal imaging (PA images, CT images, and MR images with the red circles mark the tumors) and
corresponding signal analysis of tumor-bearing mice before and after intravenous injection of the monolayer bi-anchored Mn boride nanosheets (MBBN) (71).
(D) In vivo therapeutic evaluation of FHCPC@MnO2 nanoflowers (polyphosphazene coated onto Fe3O4 nanoclusters, with MnO2 nanosheets as outer shell).
Scale bar = 75 mm (72). PA, photoacoustic; FHCPC, coating multifunctional polyphosphazenes onto Fe3O4 nanoclusters and then growing manganese oxide
nanosheets as outer shell; MBBN, Bi-anchored manganese boride nanosheets.
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tissues and tumors (86), and hypoxia within TME would often
lead to the resistance to radiotherapy. To improve the effect of
radiation therapy, radionuclide 131I-labeled human serum
albumin (HSA)-bound MnO2 nanoparticles (131I-HSA-MnO2)
could function as an effective agent to show great efficacy in
tumor treatment (62). The novel room-temperature
ferromagnetic wüstite iron-manganese oxide nanoflowers
(FIMO-NFs) could harness the advantages and potential of
dual-mode MRI and magnetic hyperthermia therapy to induce
cancer cell apoptosis (65).

Mn2+-doped bio-response theranostic NP could be designed
for tumor-specific enhanced combination therapy under the
guidance of multimodal imaging (64, 66, 87, 88). Pd@Au
bimetallic NP-decorated hollow mesoporous MnO2 (H-MnO2)
NPs could achieve both nucleus-targeted PTT and TME hypoxia
relief-enhanced PDT (89). As an intelligent nanoflower
composite with multistage H2O2/pH/GSH-responsive
properties, FHCPC@MnO2 could realize the specific release of
drugs in tumor and significantly increase the synergetic
therapeutic effect (72).
PERSPECTIVE

Cancer still remains a significant challenge worldwide, and the
new discovered theranostic nanomaterials, such as Mn-based
hybrid nanomaterials, which make diagnosis and treatment
together in a unified platform, provide a novel therapy
specialized for tumors. Since nanomaterials for theranostics
create great new opportunities in developing CPM, this review
focused on Mn-based nanoparticles with various applications
(used as imaging agents, drug delivery, and theranostic agents) in
CPM. Although a multitude of Mn-based hybrid nanomaterials
Frontiers in Oncology | www.frontiersin.org 8
have not been successfully used in the clinic, several well-
designed Mn-based hybrid nanoparticles provide a new
promising treatment option in the near future. What is worth
emphasizing is that the novel nanoparticles should be thoroughly
characterized, whether used as imaging agents, carriers for drugs,
or theranostic platforms, and the toxicity studies in both cell
culture and animal models are needed before they can be applied
clinically. A future perspective is proposed for further research
and development of complex targeted, multistage responsive
nanomedical drug delivery systems with high intelligence,
precision, and minimum toxicity for personalized cancer
diagnosis and effective therapy. A major obstacle in designing
theranostic Mn-based hybrid nanomaterials might be that
providing target specificity to biomaterials for enhancing
therapeutic effect and visualization in CPM. With the aid of
multimode imaging, theranostic nanoparticles can visualize and
monitor drug delivery and therapeutic responses at tumor site.
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