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The genome streamlining theory suggests that reduction of microbial genome size
optimizes energy utilization in stressful environments. Although this hypothesis has
been explored in several cases of low-nutrient (oligotrophic) and high-temperature
environments, little work has been carried out on microorganisms from low-pH
environments, and what has been reported is inconclusive. In this study, we performed a
large-scale comparative genomics investigation of more than 260 bacterial high-quality
genome sequences of acidophiles, together with genomes of their closest phylogenetic
relatives that live at circum-neutral pH. A statistically supported correlation is reported
between reduction of genome size and decreasing pH that we demonstrate is due
to gene loss and reduced gene sizes. This trend is independent from other genome
size constraints such as temperature and G + C content. Genome streamlining in
the evolution of acidophilic bacteria is thus supported by our results. The analyses of
predicted Clusters of Orthologous Genes (COG) categories and subcellular location
predictions indicate that acidophiles have a lower representation of genes encoding
extracellular proteins, signal transduction mechanisms, and proteins with unknown
function but are enriched in inner membrane proteins, chaperones, basic metabolism,
and core cellular functions. Contrary to other reports for genome streamlining, there was
no significant change in paralog frequencies across pH. However, a detailed analysis of
COG categories revealed a higher proportion of genes in acidophiles in the following
categories: “replication and repair,” “amino acid transport,” and “intracellular trafficking”.
This study brings increasing clarity regarding the genomic adaptations of acidophiles to
life at low pH while putting elements, such as the reduction of average gene size, under
the spotlight of streamlining theory.

Keywords: genome reduction, genome streamlining, extremophile, acidophile, chemolithoautotroph, gene gain
and loss, protein size reduction and expansion, evolution of acid resistance
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INTRODUCTION

Significant differences in genome sizes (number of base pairs
per genome) have been detected between closely related
lineages of prokaryotes isolated from a broad spectrum of
environments, with genome sizes down to 1.2 Mbp in free-living
bacteria (Konstantinidis and Tiedje, 2004; Dufresne et al., 2005;
Lynch, 2006; Giovannoni et al., 2014; Bentkowski et al., 2015;
Martínez-Cano et al., 2015; Rodríguez-Gijón et al., 2021). Small
or reduced genomes, also termed streamlined genomes, have
been widely observed in microorganisms adapted to live in low-
nutrient niches, such as cosmopolitan marine bacterioplankton
(Giovannoni et al., 2005; Schneiker et al., 2006; Swan et al.,
2013; Luo et al., 2014; Sun and Blanchard, 2014; Graham and
Tully, 2021), rivers (Nakai et al., 2016), slow growers in anoxic
subsurfaces (Chivian et al., 2008; McMurdie et al., 2009), and
in a wide range of extremophiles such as bacteria adapted to
supersaturated silica (Saw et al., 2008), halophiles (López-Pérez
et al., 2013; Min-Juan et al., 2016), thermophiles (Sabath et al.,
2013; Saha et al., 2015; Gu et al., 2021), psychrophiles (Dsouza
et al., 2014; Goordial et al., 2016), and alkaliphiles (Suzuki et al.,
2014). Differences in genome size have been reported for aerobes
vs. anaerobes (Nielsen et al., 2021) and for microorganisms living
in warmer vs. cooler environments (Lear et al., 2017; Sauer and
Wang, 2019) and in bacterial pathogens (Murray et al., 2021).

The streamlining theory proposes that genome reduction is
a selective process that these organisms undergo that promotes
their evolutionary fitness (reviewed in Giovannoni et al.,
2014). The theory suggests that a smaller genome reduces
the energy cost of replication, and by encoding fewer gene
products, there is a concomitant reduction of cell size that
could optimize transport and nutrient acquisition (Button,
1991; Sowell et al., 2009). Some marine microorganisms with
streamlined genomes have been found to have proportionately
fewer genes encoding transcriptional regulators and an overall
lower abundance of mRNA transcripts per cell, potentially
reducing the cost of transcription and translation (Cottrell and
Kirchman, 2016). These results are congruent with the observed
correlation between regulatory network complexity and genome
size (Konstantinidis and Tiedje, 2004). Genome size reduction is
also observed in symbiotic microorganisms (Baker et al., 2010;
Gao et al., 2014), but it has been theorized that this phenomenon
differs to the streamlining of free-living bacteria as the former
lose genes by genetic drift due to function redundancy between
the host and the symbiont, while the latter would lose them
by intense selective pressure (McCutcheon and Moran, 2012;
Giovannoni et al., 2014), although recent evidence has argued
otherwise (Gu et al., 2021).

Any organism that grows optimally at low pH can technically
be classified as an acidophile. However, because there are many
neutrophiles (optimum growth ∼pH 7) that successfully grow
at around pH 6 or lower, it is useful from a practical point of
view to define acidophiles as those microorganisms that grow
optimally below pH 5 and make a distinction between moderate
acidophiles that grow optimally between pH 5 and about pH 3.0
(Foster, 2004; Dopson, 2016; Benison et al., 2021) and extreme
acidophiles that grow below pH 3 (Johnson, 2007). The latter

are particularly challenged for survival and growth as they face
a proton concentration across their membranes of over 4 orders
of magnitude (Baker-Austin and Dopson, 2007; Slonczewski
et al., 2009). Acidophilic microorganisms have been identified
in all three domains of life (Johnson and Hallberg, 2003), but
currently more genomic information is available for prokaryotic
acidophiles (Archaea and Bacteria) (Cárdenas et al., 2016; Neira
et al., 2020).

Our current understanding about genome streamlining in
acidophiles comes from a limited number of observations. It
has been reported that the genomes of several acidophilic
microorganisms, such as Methylacidiphilum, Ferrovum,
Leptospirillum (domain Bacteria) and Picrophilus (domain
Archaea), are smaller (2.3, 1.9, 2.3, and 1.5 Mb, respectively)
compared to their closest neutrophilic phylogenetic relatives
(Angelov and Liebl, 2006; Hou et al., 2008; Ullrich et al., 2016;
Vergara et al., 2020). Genome reduction in acidophiles has been
discussed as a mechanism to reduce energy costs to survive
in extremely low-pH environments where organisms must
deploy multiple energy-intensive acid resistance mechanisms
to maintain a circum-neutral cytoplasmic pH (Hou et al.,
2008; Ullrich et al., 2016; Zhang et al., 2017; Vergara et al.,
2020) while thriving in often nutrient-scarce and heavy-metal-
polluted low-pH environments (Johnson, 1998; Dopson et al.,
2003; Johnson and Hallberg, 2008). Despite this progress,
there remains much to be discovered about genome reduction
in acidophiles. With the increased availability of genome
sequences of acidophiles (Cárdenas et al., 2016; Neira et al.,
2020), we aim to determine whether there is a statistically
supported correlation of genome reduction with low pH
and, if so, what are the elements influencing this tendency.
We also analyze and comment on the differences in genetic
functions between acidophiles and neutrophiles that are involved
in these changes.

MATERIALS AND METHODS

Data Procurement and Management
Genome Information
Genomes of 345 bacterial acidophiles together with their
associated growth and taxonomic data were obtained from
AciDB1 (Neira et al., 2020). This set of genomes was modified
for the present study in two ways: (i) organisms without an
identified phylum affiliation were discarded and (ii) seven new
genomes and their associated metadata from acidophiles have
been added since the publication of AciDB. This resulted in an
initial dataset of 342 genomes of acidophiles. In addition, 339
genomes were collected from non-acidophiles (growth optima,
pH 5–8). These included 222 genomes of neutrophiles (growth
optima, pH 6–8) that were the closest phylogenetic relatives
to the acidophiles as identified using the National Center for
Biotechnology Information (NCBI) taxonomy (Schoch et al.,
2020), GTDB (Chaumeil et al., 2020), and AnnoTree (Mendler
et al., 2019), resulting in an equal taxonomic representation

1https://acidb.cl/
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of genomes of acidophiles and their neutrophilic phylogenetic
relatives (Supplementary Table 1). The genome sequences were
downloaded from NCBI and the Joint Genome Institute (JGI).
The genomes were filtered for quality using CheckM v1.0.12,
with cutoffs for completeness at > 80% and contamination
at < 5% (Parks et al., 2015). This resulted in a final data set
of 597 high-quality bacterial genomes, comprising 264 genomes
from acidophiles (pH < 5) and 333 genomes from non-
acidophiles (pH 5–8). The genome information is provided in
Supplementary Table 2.

Genome average nucleotide identity was determined using
fastANI v1.3 with 4 threads (Jain et al., 2018). A cutoff of 95%
average nucleotide identity was defined (Kim et al., 2014) to
group identical or highly similar genomes into species clusters.
The genomic characteristics, proteomic data, and associated
metadata are reported as the means of each group for all plots.
This reduced data bias due to over-representation of some highly
sequenced species.

Growth pH and Temperature
Data on the optimal growth pH and temperature of a species were
downloaded from AciDB (Neira et al., 2020). For new species
with sequenced genomes not yet deposited in AciDB, information
for optimal growth pH and temperature was extracted from the
literature. When no description of these optima was available,
they were defined as the midpoint of the growth range reported
for the strain or closely related strain as described by Neira et al.
(2020). For metagenomes, the reported environmental data were
used to determine optimum pH and temperature.

Proteome Analyses
Protein Annotations
The genome annotations were downloaded from NCBI2 or
JGI.3 Genomes without an existing annotation were annotated
with prokka v1.13.3 (Seemann, 2014). A proteome table was
generated for each genome, which includes information for
each predicted protein, including size, predicted subcellular
localization, functional annotation with Clusters of Orthologous
Genes (COGs) and Pfams, COG category, and presence of signal
peptide and ortholog group. Unless stated, all software was run
with default options.

Ortholog Groups
To define ortholog groups, reciprocal BLASTP was performed
within each genome by using all the proteins in its predicted
proteome as queries against a database of the same proteins.
A coverage of 50%, a sequence identity of 50%, and an e-value of
10−5 were used as cutoffs (Tettelin et al., 2005; Naz et al., 2020).
The protein pairs that follow these conditions were assigned to
the same ortholog family if one or both were the best-scored
BLASTP hit of the other. Ortholog groups will also be referred
to as protein families.

2www.ncbi.nlm.nih.gov
3img.jgi.doe.gov

Subcellular Localization
Subcellular locations were assigned to each predicted protein
using PSORTb v3.0 (Yu et al., 2010), which predicts either
cytoplasmatic, inner membrane, exported, outer membrane,
periplasmic for gram-negative bacteria, or cell wall for gram-
positive bacteria. An “unknown” tag is assigned to proteins
whose subcellular location could not be predicted. This
was complemented with signal peptide identification, which
was assigned using SignalP v5.0b that predicts the presence
of signal peptides for translocation across the plasmatic
membrane by either the Sec/SPI (standard system), Sec/SPII
(lipoprotein signal peptide system), or Tat/SPI (alternative
system) translocation/signal peptidases (Almagro et al., 2019). All
three positive predictions were binned together and tagged as
“has signal peptide”. The proteins were sorted by both subcellular
localization and signal peptide presence.

Pfam and Clusters of Orthologous Genes Functional
Annotations
Pfams were assigned to predicted proteins using Pfam_scan v1.6
(Finn et al., 2016) under Pfam version 32.0 (El-Gebali et al., 2019),
which contains a total of 17,929 different functional annotations,
including protein families and clans. An e-value of < 10−5 was
applied as a cutoff for Pfam predictions of protein function. The
Pfam with the lowest e-value was assigned to each protein. COG
annotations were assigned with the web tool eggNOG-mapper
v5.0 (Huerta-Cepas et al., 2019) under the December 2014
version of the COG database, which contains 4,632 functional
annotations (Galperin et al., 2015). The percentage of ortholog
groups that have a Pfam assignment (Mistry et al., 2021) or
a COG assignment (Galperin et al., 2021) was calculated for
each proteome. The percentage of ortholog groups belonging
to each COG category was also calculated. In addition, Pfam
assignments were used for the analysis of intra-protein family
size variation and to determine the percentage of proteins
with an annotation.

Paralog Frequencies
Paralog families were defined as ortholog groups with two or
more proteins from the same proteome. The percentage of
proteins that belong in paralog families was calculated for each
COG category in relation to the total number of proteins in the
category. The same procedure was repeated for the full proteome.

Statistical Analyses
A python script was developed to gather, filter, organize, and
analyze the data from the organisms’ genomes and proteomes.
Data distributions were statistically analyzed using the following
methods. The scipy library (Virtanen et al., 2020) was used for
linear fittings (with the “linregress” module), binomial test (with
the “stats.binom_test” module), and Pearson’s linear correlation
coefficient (with the “stats.pearsonr” module). A two-sided
mode was used for all the tests. The P-value thresholds used for
statistical significance were 0.05, 0.01, and 0.001. For estimation
of correlation in potentially heteroscedastic distributions,
generalized least squares was applied using the module

Frontiers in Microbiology | www.frontiersin.org 3 March 2022 | Volume 13 | Article 803241

http://www.ncbi.nlm.nih.gov
https://img.jgi.doe.gov
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-803241 March 15, 2022 Time: 19:12 # 4

Cortez et al. Genome Streamlining Across Acidophilic Bacteria

“regression.linear_model.GLS” within the statsmodels library
(Seabold and Perktold, 2010). For multi-testing analyses, false
discovery rate was used to determine the statistical significance
using the Benjamini/Hochberg procedure (Benjamini and
Hochberg, 1995) with the “stats.multitest.multipletests” module
also within the statsmodels library. A q-value of 0.05 was used
for Pearson’s correlation p-values. The q-value is the upper
limit of the rate of the findings (null hypothesis rejections)
that is expected to be a false positive. Principal component
analysis (PCA) was performed with the “decomposition. PCA”
module within the sklearn library (Pedregosa et al., 2011).
The number of components for dimensionality reduction
was set to 2. Data was plotted using the matplotlib library
(Hunter, 2007).

RESULTS AND DISCUSSION

Phylogenetic Distribution and
Associated Metadata of the Genomes
Interrogated
From the 342 publicly available genomic sequences (264 high-
quality plus 78 low-quality genomes) of acidophilic bacteria,
331 genomes with well-defined taxonomy (phylum and class)
were mapped onto a rooted cladogram (Figure 1). The genome
sequences come from 177 species distributed in 17 classes and
8 phyla out of a total of 37 recognized bacterial phyla (55 if
candidate phyla are included) (Schoch et al., 2020; Figure 1 and
Supplementary Table 3). The acidophiles are widely distributed
in the cladogram, supporting the idea that acidophile lineages
have emerged independently multiple times during evolution
(Cárdenas et al., 2016; González et al., 2016; Colman et al., 2018;
Khaleque et al., 2019; Vergara et al., 2020).

Supplementary Figure 1 shows the distribution of acidophilic
species with sequenced genomes by phylum across pH, where
pH represents the optimum for growth for each species. The
total number of species declines from about 60 species in
the range pH 4–5 to about 10 at pH 0.5–1.5, consistent
with the observation that species diversity declines in low-
pH environments (Bond et al., 2000; Baker and Banfield,
2003; Johnson and Hallberg, 2003; Méndez-García et al., 2014;
Lukhele et al., 2020; Hedrich and Schippers, 2021). These
estimates are based on the distribution of acidophiles with
publicly available sequenced genomes; the true richness of
acidophile diversity is likely to be much higher and will
probably increase as more acidic econiches are sampled using
metagenomics approaches.

Figure 2 shows the distribution of species by percentage
across pH. The results have been divided into three sections
(a–c) for discussion. Section (a) with a pH range of 1.0–2.0 is
dominated by species in the phyla Proteobacteria, Firmicutes,
and Nitrospirae in approximately equal proportions at around
pH 2 and by Firmicutes at pH 1. Section (b) shows the
species distribution in the range pH 2–4. Acidophilic species
of phylum Proteobacteria are the most prevalent in this range
but exhibit a declining percentage with decreasing pH. Species

of Actinobacteria and Verrucomicrobia are represented about
equally, but both phyla have few representatives below pH 2.
Species of Aquificae are present in a low percentage (∼3%),
down to about pH 3, beyond which there are no representative
genomes. Section (c) shows the species distribution in the range
pH 4–5. All seven phyla (eight, including the one species from
Armatimonadetes) have species in this range, but Acidobacteria
show a declining percentage from pH 5–4, below which there are
no representative genomes.

Genome Size as a Function of pH
A scatterplot of genome size across optimal growth pH
shows declining genome sizes from about 4.5 Mb for
circum-neutrophiles to an average of about 3.4 Mb for extreme
acidophiles (Figure 3). There are no large genomes (> 5 Mb)
for bacteria that grow below about pH 4, whereas large genomes
including up to about 10 Mb are present in acidophiles that
grow between pH 4 pH 5 and in neutrophilic relatives of the
acidophiles that grow from pH 5 to 8. A linear regression model
fitted to the data shows a tendency that is statistically significant
with a positive Pearson’s correlation coefficient of 0.19 and a
p-value of 2.97 × 10−5, implying that genomes are smaller at a
lower pH. However, there is evidence of heteroscedasticity4 in
the plot, which means that the variance is not constant across
one of the variables (in this case, the pH), which invalidates
Pearson’s correlation tests. We applied generalized least squares
regression to take into account heteroscedasticity, and a p-value
of 1.8× 10−3 was obtained, supporting the proposed relationship
between pH and genome size.

However, the presence of heteroscedasticity suggests the
possibility that other variables, in addition to pH, may contribute
to the determination of genome size. To address this issue, we
investigated the potential contributions of growth temperature
and genomic G + C content on the distribution of genome size
across pH. Many acidophiles are also moderate or even extreme
thermophiles (Johnson and Hallberg, 2003; Capece et al., 2013;
Colman et al., 2018), and temperature has been suggested to
be a driving force for genome reduction (Sabath et al., 2013).
Genome size has also been associated with G+ C content, where
organisms with relatively low genomic G + C content tend to
have smaller genomes (Veloso et al., 2005; Almpanis et al., 2018).

We evaluated how these factors are correlated with genome
size and pH (Supplementary Figure 2). Temperature is
negatively correlated with genome size (Pearson’s correlation
coefficient, −0.34; p-value, 2.9 × 10−13), and G + C is positively
correlated with genome size (Pearson’s correlation coefficient,
0.48; p-value, 1.91 × 10−25). A negative correlation between
genome size and temperature has recently been reported for
extreme acidophiles of the Acidithiobacillus genus (Sriaporn
et al., 2021). However, no statistically supported correlation is
observed between temperature and pH (Pearson’s correlation
coefficient, −0.01; p-value, 0.84) nor between G + C content
and pH (Pearson’s correlation coefficient, −0.06; p-value,
0.22). Therefore, while both temperature and G + C content

4en.wikipedia.org/wiki/Heteroscedasticity
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FIGURE 1 | Taxonomic distribution of the acidophilic genomes interrogated. (A) A rooted cladogram displaying the phyla, classes, and metadata of acidophiles with
genomic data. The cladogram was constructed using AnnoTree (Mendler et al., 2019) as a guide for phylogenetic positioning and rooted as described by Parks et al.
(2018). The phyla with acidophiles were broken down into classes. Lineages with known acidophiles are highlighted, and their branches are shown with thick red
lines. (B) Genomic and growth data of the taxa with acidophiles. Dashed lines connect the acidophilic lineages with the taxon’s information when necessary. Growth
pH pie charts represent the percentage of species that grow optimally at pH < 3 (red) and at pH 3–5 (yellow). Genome source pie charts represent the percentage of
acidophilic genomes sequenced from laboratory pure strains (dark green) vs. metagenome assemblies (gray). (C) Percentage of acidophilic species by phyla for both
pH ranges (< 3 and 3–5). (D) Totals of both pie charts from (B) for all the phyla combined. Ph., phylum; Sph., superphylum. The asterisk indicates the mean values
for the acidophiles in the taxon. A more detailed table with the classes’ information can be found in Supplementary Table 3.

have a strong influence on genome size, they appear to act
independently of the relationship between pH and genome size.

To investigate further the interplay of pH, temperature, and
G + C content with genome size, we performed dimensionality
reduction and visualization via PCA (Jolliffe, 2005). As seen
in Figure 4, the directions of the loading vectors show that
temperature is negatively correlated with both G + C content
and genome size, while genome size is positively correlated

with both G + C content and pH. This is also depicted in
how the smallest genomes are found in thermophiles (optimal
temperature: > 55◦C, rightmost cluster) followed by extreme
acidophiles (optimal pH: < 3, upmost cluster), while the biggest
genomes are found in a high-G + C-content group (leftmost
cluster). Conversely, the orthogonality of the loading vectors
suggests that no correlation is observed between pH and
temperature or between pH and G + C content. Therefore,
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FIGURE 2 | Distribution of acidophilic species with sequenced genomes by
phylum across pH. Cumulative plot of relative abundance (%) of acidophiles
across pH. Percentages indicate species that can live at or below a given pH.
(a–c) Indicate pH ranges 1–2, 2–4, and 4–5, respectively. The phyla are
color-coded. Phylum Armatimonadetes has only one acidophilic species and
is not shown.

when considering all variables at once, the same results are
observed as when the variables were individually assessed
(Supplementary Figure 2), providing additional evidence that
neither G + C content nor temperature affects the correlation
between pH and genome size; rather, multiple driving forces can
independently exert their influence on genome size.

Genetic Mechanisms Affecting Genome
Sizing
Given the observation that genome size is negatively correlated
with pH in acidophiles, we aimed to determine what genomic
processes influence this relationship. Figure 5A shows a
diagrammatic representation of genetic mechanisms that have
been postulated to be involved in genome expansion or
reduction in Bacteria and Archaea (Keeling and Slamovits,
2005; Sabath et al., 2013; Giovannoni et al., 2014; Gillings,
2017; Kirchberger et al., 2020; Rodríguez-Gijón et al., 2021;
Westoby et al., 2021). Genome size changes could result from
having changes in the number of orthologous families (i,
Figure 5A) or paralogous genes (ii, Figure 5A), in genome
compaction/expansion resulting from changes in the number
of intergenic nucleotides, including alteration in the frequency
of overlapping genes (iii, Figure 5A; reviewed in Kirchberger
et al., 2020), and in smaller or larger genes, including loss/gain
of domains (iv, Figure 5A).

Based on the schema shown in Figure 5A, we investigated the
contribution of the different mechanisms in genome size changes
in acidophiles across pH. Annotated open reading frames (ORFs)

FIGURE 3 | Scatterplot of the genome size (Mb) of bacterial acidophiles and
their most closely related extant, circum-neutral relatives vs. optimal growth
pH. Each point corresponds to a different species. A linear regression curve
has been fitted to the data with a Pearson’s correlation coefficient of 0.19 and
a p-value of 2.97 × 10−5. The generalized least squares p-value was
1.8 × 10−3.

were used as surrogates for “genes”. A caveat is that ORF
prediction depends on the quality of the genome sequence, where
poor-quality genomes frequently have incorrectly annotated
chimeric and truncated ORFs that confound the subsequent
identification of genes (Klassen and Currie, 2013). We minimized
these potential errors by analyzing only genomes that had passed
a high-quality CheckM filter (Parks et al., 2015), yielding the
597 genomes used in our genomic analyses. However, even
high-quality genomes are prone to errors of ORF annotation,
especially in the identification of correct translation start sites
(Korandla et al., 2020), which will impact the predictions
of gene and intergenic spacer sizes. Currently, there is no
computational program for ORF prediction that is flawless,
including GenBank (Korandla et al., 2020), and we expect
that future work will improve the annotations of ORFs
used in our study.

Reduction/Expansion of Gene Number
The number of protein coding genes (ORFs) of each
genome under interrogation was plotted as a function
of the optimal growth pH of the species (Figure 5B).
The results indicate that there is a statistically significant
reduction (Pearson’s coefficient: 0.18; P-value: 1.25 × 10−4)
of the average number of ORFs per organism across pH
from an average of about 4,100 ORFs/organism at pH
7 to about 3,200 ORFs/organism at pH 2 (Figure 5B).
This has been regarded as possibly the most predominant
mechanism for genome size changes (Konstantinidis and
Tiedje, 2004), and this is likely also true for our dataset
(Supplementary Figure 3).
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FIGURE 4 | Principal component analysis (PCA) of multiple variables potentially influencing the genome size. Dimensionality reduction was performed by PCA,
inputting the optimal growth pH, optimal growth temperature, G + C content, and genome size of each species in the dataset. A biplot was constructed, which
shows the loadings of each variable as arrows at the center of the plot and the distribution of the principal components. The average genome size of each species is
shown as a color scale. Three clusters within the dotted circles are highlighted for their distinctive features.

Reduction of Intergenic Spacers as a Possible
Contributor to Genome Compactness
It is well established that bacteria have compact genomes with
an average protein-coding density of 87%, with a typical range of
85–90% (McCutcheon and Moran, 2012). Genome size reduction
could occur by decreasing the amount of DNA occupied by
intergenic spacers—for example, by promoting the frequency
of overlapping genes (Veloso et al., 2005; Saha et al., 2015;
Kreitmeier et al., 2021). This strategy has been especially
exploited in compacting viral genomes (Pavesi, 2021).

To evaluate whether a reduction in the fraction of the
genome dedicated to non-protein-coding DNA contributed to
the smaller genomes observed in acidophiles, we calculated
the percentage of intergenic spaces (IG) dedicated to the
total genome content across pH. IG was calculated as
genome size (Mbp)—

∑
Mbps of all ORFs in a genome,

expressed as a percentage of the total Mbps in the genome.
A smaller % IG implies greater genome compaction. A tendency
was observed for % IG to increase as pH growth optima
declines (Figure 5C), which is borderline statistically significant
(Pearson’s coefficient = −0.11; p-value, 0.06). An increase in
intergenic space in acidophiles is an interesting finding that
might be explored further in future studies and indicates
that this element is most likely not contributing to the
reduced genome sizes of acidophiles. This result is particularly
sensitive to the aforementioned errors of ORF annotation,

and this influences the estimation of the percentage of
intergenic genomic DNA.

Reduction/Increase of Protein Size
The average protein size was plotted as a function of pH
(Figure 5D). There is a statistically supported positive correlation
(p-value: 4.03× 10−8) between average protein size and pH, with
an average size of 320 amino acids at pH 7 to 300 at pH 2. This
indicates that acidophiles have shorter proteins on average, which
could be produced by a loss of larger proteins or by protein size
reduction (Figure 5A, mechanism iv) or possibly both.

To quantify protein size reduction in acidophiles, we analyzed
the protein sizes of several conserved Pfams (> 90% of the
species) in the dataset (Figure 6). We observed that the conserved
Pfams with reduced protein sizes in acidophiles are over 5 times
as many as the conserved Pfams with increased sizes (Figure 6A;
binomial test p-value, 2.1 × 10−13). This result accounts mainly
for changes in the predominant domain architectures, implying
that these proteins in acidophiles likely have fewer domains—
for example, the Pfam for the biotin attachment domain was
mainly found without additional domains below pH 5, while in
neutrophiles it can often be found next to other domains, such
as dihydrolipoamide acyltransferase (Supplementary Table 4).
This inclination toward protein size reduction is also observed
in a collection of conserved Pfams that are also in single copy
and predominantly in single-domain architectures (Figure 6B;
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FIGURE 5 | Mechanisms involved in genome size changes. (A) Diagrammatic representation of the genetic mechanisms involved in genome size changes. Five
genes of a hypothetical genome are shown, where the top, middle, and bottom rows represent an expanded genome, a transition genome, and a streamlined
genome, respectively. The orange boxes indicate paralogous genes. The processes involved in genome size changes are shown, where (i) and (ii) represent gene
loss/gain of single-copy genes or paralogous genes, respectively, (iii) shows the intergenic space reduction or expansion, which we refer to as genome compaction,
and (iv) shows the gene size reduction or increase. (B) Number of genes (ORFs, open reading frames) across pH. Pearson’s correlation coefficient is 0.18, with
p-value 1.25 × 10−4. (C) Intergenic space vs. pH. Intergenic space is defined as the genome size minus the sum of the nucleotide length of all protein-coding genes
as defined by the ORFs of a genome divided by genome size, in percentage. A stricter genome quality filter of 97% completeness and 2% contamination was used
in this analysis to minimize mis-annotation errors due to fragmented genomes. In total, 394 genomes from 317 species passed the filter. Pearson’s correlation
coefficient is −0.11, with p-value 0.06. (D) Average protein length across pH. Pearson’s correlation coefficient is 0.25, with p-value 4.03 × 10−8.

binomial test p-value, 7.4 × 10−3). This result accounts mainly
for loop size reductions and domain size reductions. Such is the
case of the ribosomal protein L19 that, in acidophiles, lacks long
loops and is 4 amino acids shorter on average (Supplementary
Table 5). As for the possible contribution of gene gain/loss into
the reduction of the average protein size in acidophiles (by gain of
smaller proteins or loss of larger proteins), we estimate that it had
a much less significant contribution than protein size reduction
(Supplementary Figure 4).

Gene Categories Over- and
Underrepresented in Acidophiles
Having established that there is a statistically supported positive
correlation between genome size and optimal pH for growth
and that gene gain and loss events likely contributed to this
correlation, we investigated in more detail what types of genes
were involved in these events.

Changes in Ortholog Group Representativity in
Acidophiles
To gain insight into the contribution of gains or losses of genes
in the observed genome size changes of acidophiles (mechanism
i, Figure 5A), we first clustered the genes into ortholog families

and systematically classified the predicted proteomes of each
genome by (i) subcellular location and (ii) functional category
as predicted by Pfam annotations (Mistry et al., 2021) and
COG categories (Galperin et al., 2015). Subsequently, we mapped
the frequencies of ortholog families of these categories in the
genomes across pH.

Changes in Ortholog Frequencies by Subcellular Location
Figure 7A shows the frequency of occurrence of protein families
with subcellular location and/or signal peptide predictions
expressed as a percentage of the total protein families per genome.
The frequency of predicted cytoplasmic proteins does not change
across pH. However, there is a statistically significant decrease
(Pearson’s correlation coefficient, 0.22; p-value, 1.4 × 10−6) in
the frequency of proteins predicted to have a signal peptide with
decreasing pH and a statistically significant increase (Pearson’s
correlation coefficient, −0.19; p-value, 4.4 × 10−5) in the
frequency of inner membrane proteins with decreasing pH.
There is a small but, nevertheless, statistically significant decrease
(Pearson’s correlation coefficient, 0.21; p-value, 7.5× 10−6) in the
frequency of proteins predicted to be in the category “periplasm,
outer membrane, cell wall, and exported” with decreasing pH.

The decrease in proportion of proteins with signal peptides
at low pH is consistent with the observation that there
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FIGURE 6 | Protein size vs. pH correlations for conserved Pfams. (A) Pfams present in over 90% of species and in a pH span of at least 6 pH units were selected for
analysis. For each Pfam, the Pearson’s correlation coefficient for protein size vs. organism optimal growth pH was calculated using the species averages as data.
Each point corresponds to a different Pfam. Positive correlations (91 red points to the right) indicate Pfams whose proteins are shorter at low pH, while negative
correlations (17 purple points to the left) are Pfams whose proteins are larger at low pH. The 25 Pfams with the lowest p-values are listed in
Supplementary Table 4. (B) Analog to (A) but for a list of Pfams that in addition to being present in over 90% of the species and in a span of at least 6 pH units
were also in a unique copy in the genomes (proteins with the Pfam per genome < 1.1), and only one domain architecture was dominant in the proteins. These Pfams
are listed in Supplementary Table 5. For both plots, a false discovery rate q-value of 0.05 was used for statistical significance. Significant correlations are shown as
big points, which are red for positive correlations and purple for negative correlations. Non-significant correlations are shown as small gray points.

are correspondingly fewer proteins predicted in the category
“periplasm, outer membrane, cell wall, and exported” at low
pH since most of these proteins require a signal peptide export
mechanism to pass through the periplasmic membrane (Green
and Mecsas, 2016). We hypothesize that the decrease in relative
frequency of proteins found outside the inner membrane in
acidophiles could be due to physico-chemical challenges that
such proteins would encounter as they are exposed to high
concentrations of protons at low pH, potentially limiting the
diversity of proteins that have evolved to confront such challenges
(D’Abusco et al., 2005; Chi et al., 2007; Duarte et al., 2009, 2011;
Panja et al., 2020; Chowhan et al., 2021). We speculate that
the observed enrichment of predicted inner membrane protein
families in acidophiles (Figure 7A) reflects the importance
of such proteins in acid stress management since the inner
membrane is the barrier that separates the neutral (pH ∼7)
cytoplasm from the extreme acid conditions of the periplasm
or extracellular space (Slonczewski et al., 2009; Lund et al.,
2014; Zhang et al., 2016; Hu et al., 2020; Vergara et al.,
2020). This is also supported by the lack of correlation of the
representativity of inner membrane proteins with genome size in
neutrophiles (Supplementary Figure 5), suggesting that this is a
specific adaptation to low-pH environments rather than a general
streamlining element.

Changes in Ortholog Frequencies by Functional Category
The contribution of gene gain or loss to genome size changes
across pH was also analyzed using gene functional classification
using COG and Pfam annotations. In total, 25 functional
categories are recognized in the 2014 COG database (Galperin

et al., 2015), and Pfam v32.0 contains a total of 17,929 families
(El-Gebali et al., 2019).5 The combination of COG and Pfam
analyses provides deep and accurate coverage for searching for
predicted protein function in our dataset. Figure 7B shows
that the percentage of proteins per genome with a COG
or Pfam annotation decreases at a lower pH with statistical
significance (Pearson’s correlation coefficients, 0.24 and 0.14;
p-values, 2 × 10−7 and 2.6 × 10−3), which is not observed
for small neutrophilic genomes (Supplementary Figure 6). This
indicates that acidophiles have a higher proportion of putative
protein-coding genes that are not recognized by either COG
or Pfam. These proteins can be classified as non-conserved,
hypothetical proteins with no functional prediction, which do
not have protein clusters with sufficient entries to have their
own functional annotation in the COG or Pfam databases.
It is possible that some of these represent poorly annotated
sequences and pseudogenes. However, an intriguing possibility
is that some could correspond to validated protein-coding genes
that are enriched in acidophiles. Their analysis could potentially
yield clues about novel acid tolerance mechanisms and other
functions enriched in acidophiles. Examples of such proteins have
recently been detected, although their functions remain unknown
(González et al., 2016; Vergara et al., 2020).

An analysis of the distribution of functional categories
across pH using COGs shows that acidophiles are enriched
in several functions that could possibly be attributed to
their distinctive metabolisms and environmental challenges
(Table 1)—for example, enrichment in proteins assigned to

5https://pfam.xfam.org
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FIGURE 7 | Distribution of protein families across pH. Each point corresponds to a species. (A) Subcellular localization and signal peptide presence of protein
families across pH. PSORTb and SignalP were used to predict the subcellular location of proteins and signal peptide, respectively. Either subcellular localization or
signal peptide presence is expressed in terms of percentage of the protein families (ortholog groups). Pearson’s correlation coefficient and p-value, respectively, are
−0.01 and 0.77 for cytoplasmic (blue), −0.19 and 4.4 × 10−5 for inner membrane (orange), 0.21 and 7.5 × 10−6 for periplasmic, outer membrane, cell wall, and
exported (green), and 0.22 and 1.4 × 10−6 for proteins with a signal peptide (red). (B) Percentage of protein families with functional classification across pH. The
blue data points and the blue line correspond to proteins with a Clusters of Orthologous Genes (COG) annotation, and the orange data points and the orange line
correspond to proteins with a Pfam annotation. Pearson’s correlation coefficients and p-values are, respectively, 0.24 and 2 × 10−7 for proteins with a COG
annotation and 0.14 and 2.6 × 10−3 for proteins with a Pfam annotation.

COG L (replication, recombination, and repair) and COG O
(chaperone, post-translational modification) might reflect their
need for DNA repair and protein refolding when confronted
by potentially damaging stresses, such as low pH, high metal
concentrations, and oxidative stress (Crossman et al., 2004;
Baker-Austin and Dopson, 2007; Cárdenas et al., 2012; Dopson
and Holmes, 2014). The increase in the frequency of proteins
assigned to COGs C, F, and H (energy production and transport;
nucleotide metabolism and transport, and coenzyme metabolism
and transport, respectively) could reflect enzyme and pathway
requirements associated with obligate autotrophic metabolism
that has been found in many acidophiles (Johnson, 1998; Johnson
and Hallberg, 2008). As for COG J, it is possible that as
ribosomal proteins are very conserved across prokaryotic life
(Lecompte et al., 2002), they are less likely to be discarded. Future
research could investigate what functions in this category are
overrepresented in acidophiles.

On the contrary, the genomes of acidophiles are depleted in
proteins assigned to COG T (Signal transduction mechanisms).
A depletion of signal transduction mechanisms has been
observed in some marine microbes, especially those that are
slow-growing types (Gifford et al., 2013; Cottrell and Kirchman,
2016), in the streamlined genome of the extreme acidophile
Methylacidiphilum infernorum (Hou et al., 2008) and in the

metagenomic profiling data of acidic environments (Chen
et al., 2015). The abundancy of signal transduction mechanisms
generally declines with decreasing genome size, as it has been
found that the number of one- and two-component signal
transduction systems is proportional to the square of the genome
size (Konstantinidis and Tiedje, 2004; Galperin, 2005; Ulrich
et al., 2005). Extensive research has been conducted on the
different signal pathways and regulatory networks of acidophiles
(Rzhepishevska et al., 2007; Shmaryahu et al., 2009; Moinier
et al., 2017; Díaz et al., 2018; Osorio et al., 2019). However,
additional research is needed to uncover what signal pathways
are not present in these organisms. Acidophiles possess several
features which may explain their underrepresentation in proteins
from this category, such as having small genomes and having a
relatively slow growth speed (Fang et al., 2006; Mykytczuk et al.,
2010). The genomes of acidophiles also have a proportionately
reduced number of proteins assigned to COG S (unknown
function). These are proteins with unknown function that are
conserved across multiple species.

Paralog Frequency Across pH
We next examined whether the gain or loss of paralogs
contributed to genome size changes (mechanism ii, Figure 5A).
In contrast to what has been described above concerning gain
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FIGURE 8 | Paralog frequency vs. pH by Clusters of Orthologous Genes
(COG) category. The percentage of genes (relative to the proteome size)
belonging to paralog families (paralog frequency) was calculated for each
COG category. The categories where the paralog frequency had a statistically
significant correlation with pH (p-value < 0.01) are shown. The mean
duplication frequencies at pH 1 and 7 are displayed, calculated with linear
regression (Supplementary Figure 7). **p-value < 0.01, ***p-value < 0.001.

TABLE 1 | Genomic representativity of protein families by function as defined by
Clusters of Orthologous Genes (COG) categories in acidophile genomes.

COG category Pearson’s
correlation
coefficient

p-value

Increased representativity in acidophiles (p-value < 0.01)

(L) Replication,
recombination, and repair

−0.25 3.6 × 10−8

(F) Nucleotide metabolism
and transport

−0.21 5.4 × 10−6

(C) Energy production and
conversion

−0.21 8.0 × 10−6

(H) Coenzyme metabolism
and transport

−0.19 3.0 × 10−5

(D) Cell cycle control and
cell division

−0.16 5.2 × 10−4

(J) Translation and
ribosome

−0.15 1.1 × 10−3

(O) Chaperones,
post-translational mod.

−0.13 6.3 × 10−3

Decreased representativity in acidophiles (p-value < 0.01)

(S) Function unknown 0.30 1.3 × 10−10

(T) Signal transduction
mechanisms

0.26 3.4 × 10−8

or loss of specific COG and Pfam gene functions, here we
explored how genome size could be influenced by the expansion
or contraction of the number of genes in such families. Gene
duplication, followed by functional diversification, has been
invoked as a major contributor to gene evolution (reviewed in
Innan and Kondrashov, 2010; Copley, 2020), and gene paralogs
can be present as a significant proportion of a genome (Swan

et al., 2013). An increase in the number of paralogous protein
copies (including in- and out-paralogs and xenologs; Remm et al.,
2001; Darby et al., 2017) has been observed to be correlated with
a better performance in a specific function, such as heavy metal
resistance or adaptation to other multiple stressors (Kondratyeva
et al., 1995; Dulmage et al., 2018). Relatively high paralog
frequencies for proteins linked to acid resistance mechanisms
have been detected in acidophiles (Ullrich et al., 2016; Vergara
et al., 2020).

We analyzed the paralog frequency changes in genomes
across pH by COG categories. The COG annotation has been
proved useful for gene enrichment analyses across several
genomes (Galperin et al., 2021). As can be seen in Figure 8
and Supplementary Figure 7, acidophiles have relatively high
paralog frequencies in the COG categories “replication, repair,
and recombination”, “intracellular trafficking and secretion”,
and “energy production and conversion” but low frequencies
in the COG categories “signal transduction”, “translation and
ribosome” and “amino acid metabolism”, as shown by statistically
significant correlations (p-value < 0.01).

High paralog frequencies were found in the “replication,
repair, and recombination” category in acidophiles, which add
to their overrepresentation of protein families from this category
(Table 1). This might be attributed to a large number of
transposases and integrases and also to DNA repair proteins.
The high prevalence of mobile elements and horizontal gene
transfer in acidophilic genomes has been previously pointed out
as key factors for acidophilic evolution (Aliaga et al., 2009; Acuña
et al., 2013; Navarro et al., 2013; Ullrich et al., 2016; Zhang
et al., 2017; Colman et al., 2018; Vergara et al., 2020). DNA
repair proteins have been found to protect against oxidative
stress and heavy metal stress, which acidophiles are exposed
to in higher levels (Crossman et al., 2004; Baker-Austin and
Dopson, 2007; Cárdenas et al., 2012). As for the increased number
of paralogous proteins from the “intracellular trafficking and
secretion” category, this could result from an abundance of type
II secretory systems involved in conjugation or vesicle-related
proteins. The former are frequently associated with mobile
elements and are particularly abundant in the flexible genomes of
acidophiles (Acuña et al., 2013; Beard et al., 2021). In addition,
vesicle-related proteins are linked to biofilm formation (Jan,
2017), which, in turn, has been widely observed in acidophiles
(Baker-Austin et al., 2010; González et al., 2013; Díaz et al.,
2018; Vargas-Straube et al., 2020). Ultimately, a more detailed
examination of what specific functions are duplicated is necessary
and remains a topic for future research.

Similar to the results of genome representativity (Table 1),
the increased paralog frequencies of proteins from the “energy
production and conversion” category in acidophiles might
be related to their overrepresentation of chemolithotrophic
metabolism. Some of the enzymes involved in iron or
sulfur oxidation belong to this category, such as cytochrome
C, heterodisulfide reductase, and quinone-related proteins
(Quatrini et al., 2009; Zhan et al., 2019). Additionally, several
proteins in this category are involved in proton exporting
functions, such as the H+-ATPase, and the overall electron
transfer chain proteins, such as ubiquinone oxidoreductase
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(Walker, 1992; Fütterer et al., 2004; Feng et al., 2015). This
indicates that some genes in this category might be in high
copy numbers to increase the acid resistance of acidophiles.
Alternatively, it could be a consequence of the high energy
requirements of maintaining a neutral internal pH (Baker-Austin
and Dopson, 2007; Slonczewski et al., 2009).

The reduced paralog frequencies in the “signal transduction”
category are concordant with their reduced genome
representativity in acidophiles and thus might be accounted
by the same phenomena exposed in the previous section about
the depletion of these proteins in streamlined organisms.
As for the “amino acid transport and metabolism” category,
this might be accounted for by a reduction in the number of
amino acid importers that are not common in acidophiles.
The predominancy of autotrophic metabolism in acidophiles
could result in an inclination of these organisms toward the
biosynthesis of amino acids rather than uptake by active
transporters. Additionally, uptake of amino acids could be
harmful to acidophiles as organic acids carry protons into
the cytoplasm of these organisms, thus short-circuiting acid
resistance mechanisms (Kishimoto et al., 1990; Lehtovirta-
Morley et al., 2014; Carere et al., 2021). The current hypothesis
is that organic acids are protonated in the extremely acid
medium where acidophiles grow (pH < 3), becoming non-ionic
and soluble in bacterial membranes and permitting diffusion
into the cytoplasm where they uncouple from the proton.
A similar phenomenon could occur with amino acids but involve
membrane transporters, as amino acids are unlikely to diffuse
passively through the membrane.

As for COG J “translation and ribosome,” their reduced
paralog frequency is opposite to the increased representativity of
protein families from this category in the genomes of acidophiles
(Table 1). In other words, acidophiles tend to discard (or not
evolve) duplicated genes from this category rather than losing
core functions by relinquishing unique protein families. Further
exploration is needed to identify the changes that acidophiles
exhibit in this category.

Concordantly, as there was an equilibrium between COG
categories with increased and decreased paralog frequencies in
acidophiles, the overall paralog frequency had no statistically
significant correlation with optimal pH and remained at
a relatively constant 8% average, ranging from 2 to 20%
(Supplementary Figure 8). These relatively low percentages
indicate that paralog frequencies are only a minor contributor
to genome size changes in our dataset. The constant paralog
frequency across pH still contradicts what has been found
for other streamlined organisms, which have a relatively low
number of paralogs (Giovannoni et al., 2005; Swan et al., 2013).
This unusual finding could be partially a consequence of acid
resistance genes in multiple copies that would compensate the
evolutionary pressure of discarding paralogs.

CONCLUSION

We have shown that acidophilic bacteria possess several
streamlining features, such as having smaller genomes, fewer

ORFs, smaller proteins, and an underrepresentation of signal
transduction proteins. Some features that have been described
as important in genome reduction in several systems were
not detected in acidophiles, such as lower intergenic space
percentages and lower overall paralog frequencies. Our study
had a statistical approach in contraposition to other streamlining
studies which focus on single clades. When considering a
dataset of several hundred genomes, our results suggest that
the organisms lose genes in the process of adapting to low-
pH environments. The reduction in average protein size is an
element that has not been the focus of other streamlining studies
and is an interesting topic to be developed further in future
studies. In addition, several of our findings shed light on the ever-
expanding knowledge about acidophile ecology and their acid
resistance systems. Mainly, the higher representativity of inner
membrane proteins and increased paralog frequencies in COG
categories possibly related to energy production, DNA repair,
and biofilm formation. The investigation of which functions
might be in higher copy number in acidophiles is an interesting
topic for future research, as it may uncover novel survival
mechanisms for acidophiles. Similarly, acid-related genes shared
between acidophiles could be hidden among the proteins without
functional annotation.
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