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A P P L I E D  P H Y S I C S

Spontaneous oscillations and negative-conductance 
transitions in microfluidic networks
Daniel J. Case1, Jean-Régis Angilella2, Adilson E. Motter1,3*

The tendency for flows in microfluidic systems to behave linearly poses challenges for designing integrated flow 
control schemes to carry out complex fluid processing tasks. This hindrance precipitated the use of numerous external 
control devices to manipulate flows, thereby thwarting the potential scalability and portability of lab-on-a-chip 
technology. Here, we devise a microfluidic network exhibiting nonlinear flow dynamics that enable new mechanisms 
for on-chip flow control. This network is shown to exhibit oscillatory output patterns, bistable flow states, hysteresis, 
signal amplification, and negative-conductance transitions, all without reliance on dedicated external control 
hardware, movable parts, flexible components, or oscillatory inputs. These dynamics arise from nonlinear fluid 
inertia effects in laminar flows that we amplify and harness through the design of the network geometry. These 
results, which are supported by theory and simulations, have the potential to inspire development of new built-in 
control capabilities, such as on-chip timing and synchronized flow patterns.

INTRODUCTION
Microfluidic systems—networks of miniature flow channels capable 
of processing fluids—are now commonly used in applications ranging 
from chemical analysis (1) and flow cytometry (2) to computing (3) 
and point-of-care diagnostics (4). The value of microfluidic net-
works is manifest in their utility for manipulating fluid motion with 
precision. However, such manipulation is often controlled through 
the use of external hardware (4–6). For instance, microscopic valves 
generally need to be actuated by macroscopic, computer-operated 
pumps (7), which has impeded development of portable microfluidic 
systems (4, 6). The need for active control stems from the low Reynolds 
numbers typical of microfluidic flows, whereby fluid inertia forces 
are small relative to viscous dissipation, causing flow rate changes to 
be linearly related to pressure changes (8). Thus, it remains challeng-
ing to design integrated control mechanisms that are capable of 
inducing responsive flow dynamics, such as oscillations, switching, 
and amplification, without relying on nonlinear input signals or 
moveable parts.

Nonetheless, substantial progress has been made in the develop-
ment of built-in microfluidic controls. State-of-the-art approaches 
for incorporating passive valves for flow-rate regulation generally 
take advantage of flexible membranes and surfaces to generate non-
linear fluid-structure interactions (9–11). Complex flow patterns and 
operations have been implemented in such networks, but flexible 
components can hinder integration, yield to high driving pressures, 
and may require polymer materials that are not chemically compatible 
with the working fluid (4, 6, 12). On the other hand, recent appreci-
ation has emerged for the impact and utility of fluid inertia effects 
on manipulating local flow dynamics in microfluidics (13,  14). It 
has been shown that even for moderate Reynolds numbers, the for-
mation of vortices and secondary flows can be exploited for particle 
segregation (15–18), mixing fluids (19, 20), and diverting flow 
streams (21, 22).

Here, we present a microfluidic network construction that demon-
strates new dynamics resulting from fluid inertia, which can serve as 
novel flow control mechanisms and facilitate the design of integrated 
microfluidic systems. Our network exhibits (i) spontaneous emer-
gence of persistent flow-rate oscillations for fixed driving pressures; 
(ii) hysteretic flow behavior in which more than one set of stable 
flow rates exist for the same driving pressures; and (iii) negative- 
conductance transitions, whereby an increase (decrease) in the driving 
pressure leads to a discontinuous decrease (increase) in the flow rate. 
These behaviors are interesting in their own right and are analogous to 
behaviors formerly sought through different approaches. Oscillations 
have been implemented in microfluidic networks by using flexible 
components (23, 24) and used as a timing mechanism (11, 25). Hys-
teresis has been explored through the implementation of hysteretic 
valves and, along with oscillatory driving, found applications in 
establishing microfluidic logic systems (10, 26). Nonmonotonic 
pressure-flow relationships analogous to negative-conductance tran-
sitions have been previously sought using flexible diaphragm valves 
(27, 28) and used for signal amplification and flow switching. Our 
network does not include flexible components, nor does it rely on 
oscillatory inputs. Instead, the behaviors in (i) to (iii) arise by struc-
turing the network so that dynamic vortices are generated in the flow 
and nonlinear fluid inertia effects are amplified. The results presented 
in this work are derived from simulations of the Navier-Stokes 
equations and an analytical dynamical model developed to capture 
the diverse flow properties of the network.

Microfluidic network description and simulation results
A circuit schematic of our microfluidic network is shown in Fig. 1. 
The network consists of five channel segments that are constructed 
into two parallel paths connected by a transversal path. Typically, 
the steady-state relation between the flow rate Q through a micro-
fluidic channel and the pressure loss P along the channel takes the 
form P = RQ, where R is the (absolute) fluidic resistance of the 
channel. When R is constant, this relation is analogous to Ohm’s 
law for electronic resistors (29, 30). Therefore, we represent the 
three (straight) channels in the network that exhibit constant fluidic 
resistance as linear resistors in the schematic (Fig. 1A). The two 
remaining channels include either a chicane of blade-like barriers 
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(Fig. 1B) or an array of six cylindrical obstacles (Fig. 1C) that induce 
nonlinear pressure-flow relations and are represented as nonlinear 
resistors. As we show below, the obstacle-laden channel serves to 
amplify inertial effects and the chicane channel gives rise to oscilla-
tions. The lengths of the channels vary (Fig. 1D) but all share a common 
width w of 500 m. The cylindrical obstacles have a radius of w/5, 
and the two barriers, which extend to the center of the chicane 
channel, are of thickness w/10. No-slip boundary conditions are 
assumed at all surfaces, and we consider the static pressure at the 
outlets of the system Pout to be held at a fixed common value, taken 
to be zero. At the inlets, we control either the pressures (  P 1  in   and   P 2  in  ) 
or the flow rates (Q1 and Q2).

We present the outstanding properties of this microfluidic net-
work through fluid dynamics simulations of incompressible flow 
in two dimensions. We consider a water-like working fluid with 
density  = 1000 kg/m3 and dynamic viscosity  = 10−3 Pa·s. In micro-
fluidics, pressure-driven flow is used across a variety of applica-
tions (5), whereby the system inlets are connected to a pressurized 
fluid reservoir, the outlets are open to atmosphere (or a lower- 
pressure reservoir), and flow is driven by the resulting pressure 
gradient. Here, we investigate the case in which a common static 
pressure is applied at the inlets, that is,   P 1  in  =  P 2  in  =  P   in  , which cor-
responds to the physical scenario in which the inlets are connected 
to a high- pressure reservoir through intermediate passive pressure 
regulators.

In Fig. 2A, we show simulation results of the total flow rate QT = 
Q1 + Q2 through the network in Fig. 1 over a range of driving pressures, 
Pin, from which we observe two notable properties. First, for Pin 
within two disjoint ranges, two stable solutions for the total flow 
rate exist. Second, a subset of solutions are unsteady and exhibit 
oscillating flow rates (Supplementary Materials, fig. S3, and movie 
S1), despite Pin being fixed. In particular, we find that at a critical 
value of Pin, solutions along the high-flow branch (red symbols in 
Fig. 2A) become small-amplitude limit cycles. The corresponding 
amplitudes and periods grow with Pin (the frequency of the oscilla-
tions decreases from 20 to 4 Hz; see the Supplementary Materials 
and fig. S2). At a higher critical Pin, the limit cycle collides with 
the unstable branch, thereby destabilizing the high-flow solution 
branch. An important property of the oscillating solutions is 
that the proportions of the flow rates through different channel 
segments also become time dependent (Fig. 2B). Bistability and 
spontaneous oscillations have been previously studied in fixed- 
structure microfluidic networks when feedback loops are incorpo-
rated (31) or when multiple working fluids with different viscosities 
are used (32). However, neither of these mechanisms are required 
in our system.

Another outstanding property that arises from the bistability in 
our system is the possibility of negative-conductance transitions 
and other sudden transitions in QT that result from small changes in 
Pin. We characterize these transitions, which occur at the boundaries of 
the bistable regions (Fig. 2A), by defining (local) fluidic conductance 
and resistance as C = QT/Pin and its reciprocal, respectively. Here, 
 indicates a finite change and Pin is the controlled variable. Therefore, 
negative-conductance and negative-resistance transitions occur 

Fig. 1. Microfluidic network structure. (A) Circuit schematic of the network, where the labels denote pressures (Pi), channel resistances (Ri), and flow rates (Qi). The inlet 
and outlet pressures are identified by the superscripts “in” and “out”, respectively, and the positive flow directions are indicated by arrows. Two channels exhibit variable 
(flow-dependent) resistance due to the presence of obstacles. (B and C) Geometric structure of the chicane (B) and obstacle-laden (C) channels. The blue curves mark 
example streamlines and specify flow direction. The closed streamlines in (B) represent vortices that form near the barriers and r marks the linear size of the left vortex. 
(D) Network topology of the circuit in (A), where the length of each channel segment is labeled by Li.

Fig. 2. Bistability and spontaneous oscillations. (A) Bifurcation diagram of total 
flow rate as a function of the inlet pressure Pin, generated from direct simulations 
of the network in Fig. 1 for   P 1  in  =  P 2  in  =  P   in  . There exist stable high-flow (red) and 
low-flow (blue) solution branches, separated by an unstable intermediate-flow 
branch (black). Oscillating solutions arise spontaneously along the high-flow 
branch, where the oscillation amplitude is indicated by the shaded region. The 
Reynolds number for flows through the chicane channel and the obstacle-laden 
channel are in the range of 14 to 90 and 80 to 155, respectively. The solutions for 
Pin = 180 Pa, marked with a, b, and c, will be used as references in comparing 
with other figures. The unstable solutions are determined through flow-controlled 
simulations (see Supplementary Materials and fig. S1). (B) Time series of the pro-
portion of flow exiting the obstacle-laden channel that passes through the chicane 
channel (Q3/Q4) for two driving pressures that yield oscillatory flows, showing that 
frequency decreases and amplitude increases as the driving pressure is increased.
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when an increase (decrease) in Pin leads to a decrease (increase) in 
QT. Notably, as shown in Fig. 3A, our system exhibits transition points 
at which C(Pin) diverges in the limit of small Pin: two points at which 
C(Pin → 0) = +∞, corresponding to positive-conductance transi-
tions, and two points at which C(Pin → 0) = −∞, corresponding 
to negative-conductance transitions. Figure 3B shows that related 
transitions emerge when the flow rate QT, rather than the pressure 
Pin, is taken as the control variable. In this case, a change in QT can 
lead to transitions in which Pin changes by a finite amount. In 
particular, the latter includes signal amplification transitions, which 
are remarkable transitions in which an infinitesimal increase (de-
crease) in QT leads to a finite decrease (increase) in Pin. Both the 
pressure- and flow-driven transitions reported here are intimately 
related to the emergence of hysteresis in the system, which is another 
consequence of bistability that has potential applications in the 
development of systems with built-in memory.

The solutions belonging to the different branches in Fig. 2A can 
be further distinguished by the flow rate and internal flow structure 
through specific channels. It is particularly insightful to examine the 
streamlines around the complex geometry in the chicane channel 
and the associated flow rate Q3. In Fig. 4A, we show the streamlines 
corresponding to the three labeled states in Fig. 2A. A number of 
steady vortices are observed in the flow around the barriers. The sizes 
of the vortices are correlated and we designate r to be the size of one 
of them, as labeled in Figs. 1B and 4A. We use a one-dimensional 
measure for r, taken to be the distance from the barrier to the vortex 
reattachment point along the channel wall. In Fig. 4 (B and C), we 
show that both Q3 and r differ markedly for solutions belonging to 
the three branches in Fig. 2A and that oscillations simultaneously 
emerge in these variables (Supplementary Materials, fig. S3, and 
movie S1). Notably, solutions along the (high-) low-flow branch in 
Fig. 2A correspond to (large) small values of Q3 and r.

We determine the relationship between r and Q3 by performing 
simulations in which the flow rates at both inlets (Q1 and Q2) are 
controlled. From these simulations, we compute r, Q3, and the pressure 
loss along the chicane channel P34, where the latter corresponds 
approximately to P3 − P4 (Fig. 1). In Fig. 5, we show relations 
between these quantities for sets of simulations in which Q1 is fixed 
while Q2 is varied. We observe nonlinear relations between r and Q3 
(Fig. 5A), between Q3 and the pressure loss along the chicane channel 
(Fig.  5B), and between r and the fluidic resistance of the chicane 
channel (Fig. 5C). These nonlinear relations suggest a coupling 
between the pressure-flow relation of the chicane channel and the 

vortex size. We also note that discontinuities arise in the pressure- 
flow relation for the chicane channel (Fig. 5B) that result from abrupt 
changes in the vortex size as Q2 is varied (Fig. 5A). These disconti-
nuities show the emergence of regions where the pressure-flow 
relation is negatively sloped, which correspond to regions of negative 
differential resistance.

Analytical dynamical model
We now construct an analytical model of the system in Fig. 1 that 
characterizes our simulation results. For unidirectional laminar flow 
through a straight channel, the average flow rate of an incompressible 
fluid can be approximated from the Navier-Stokes equations as

  l Q ̇   = P − RQ  (1)

where the dot implies a time derivative and l may be referred to 
as the fluidic inductance (33). For flow through a two-dimensional 
channel of length L, where the characteristic time scale of the flow is 
larger than the viscous time scale, the fluidic resistance and inductance 
can be approximated as R = 12L/w3 and l = L/w. More generally, 
when the time scale of the flow exceeds the viscous time, memory 
effects in R and l become substantial. Under steady flow conditions, 
Eq. 1 reduces to P = RQ.

One of the assumptions in the derivation of Eq. 1 is that all 
streamlines of the channel flow are straight, which causes the 
nonlinear inertial terms in the Navier-Stokes equations to vanish. 
Streamlines in the chicane channel violate this assumption (Fig. 4A) and 
nonlinear effects are therefore expected to be present. Indeed, we observe 
an approximately quadratic relation between the chicane channel 
resistance, R3, and the vortex size, r, for 60 < r < 400 m (Fig. 5C). 
To construct an approximate dynamical equation for Q3, we use the 
form of Eq. 1 with the constant resistance replaced by a function of 
r. Specifically, we take R3(r) = 12(Lb + (r − rb)2)/w3, where Lb 
serves as a base component of the resistance,  is a constant coeffi-
cient of the variable component that depends on the vortex size, and 
rb is the vortex size that minimizes the resistance (from Fig. 5C, rb ≈ 
150 m). With this added dependence on r, we must also account 
for the dynamics of the vortex size. The steady-state relation between 
Q3 and r found through flow-controlled simulations (Fig. 5A) can be 
well fit by a cubic equation of the form   Q  3   −  Q 3  *   =   (r −  r   * )   3  − (r −  r   * ) , 
where  and  are positive parameters and   Q 3  *    and r* are constants 
that shift the cubic relation from the origin. For simplicity, we con-
sider the growth rate of r to be proportional to the deviation from 
this equilibrium relation. Therefore, the dynamical equations that 
characterize the chicane channel take the form

   r ̇   = ( Q  3   −  Q 3  *   −   (r −  r   * )   
3
  + (r −  r   *  ) )  (2)

    Q ̇    3   =   w  P  34   ─   L  3     −   12 ─ 
 w   2   L  3  

   ( L  b   +   (r −  r  b  )   2  )  Q  3    (3)

where  is a positive constant. For suitable parameters, we find that 
these equations capture the most salient properties in Fig. 4 (B and 
C). We show in Fig. 6 that for different P34, Eqs. 2 and 3 can exhibit 
bistability and stable limit cycle solutions. We note that the addi-
tional dependence of the relations presented in Fig. 5 on Q1 can be 
accounted for by allowing  and Lb to be functions of Q1 (Supple-
mentary Materials).

Fig. 3. Hysteresis and flow state transitions. (A) Hysteresis loop and resulting 
negative-conductance transitions for the network in Fig. 1 when quasistatically in-
creasing (red) or decreasing (blue) the inlet driving pressure. (B) Counterpart of (A) 
and resulting signal amplification transitions when quasistatically varying the total 
flow rate. For the latter, Q1 and Q2 are controlled to maintain equal pressures at 
the inlets.
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A second nonlinear element of the network in Fig. 1 is the obstacle- 
laden channel. As the flow rate through this channel segment in-
creases, stationary eddies form in the wake of the obstacles for 
moderate Reynolds numbers. The presence of many of these obstacles 
in close proximity generates large velocity gradients in the surround-
ing flow, which amplifies energy dissipation and results in an over-
all nonlinear pressure-flow relation for steady flow through the 
channel. This equilibrium relation is well characterized by the 
Forchheimer equation used to describe steady flow through porous 
media, where inertial effects become substantial when Re is of order 
10 (34). The Forchheimer equation takes the form P = LV + 
LV2, where V is the average velocity,  is the reciprocal permea-
bility, and  is the non-Darcy flow coefficient. The latter two 
parameters are solely dependent on the system geometry and not on 
the working fluid. For our two-dimensional channel with obstacles, 
we take V = Q4/w so that the pressure-flow relation for the channel 
becomes   P  4   =   L  4    Q  4   / w +   L  4    Q 4  2  /  w   2  , where  and  are fit from 
simulations (Supplementary Materials and fig. S4). We account for 
this nonlinearity in a dynamical equation for Q4 by using a flow 
rate–dependent function in place of the constant resistance in Eq. 1. 
Specifically, we take R4(Q4) = L4/w + L4Q4/w2 to recover the 
Forchheimer equation in steady flow. A consequence of the non-
linearity of this channel is that it gives rise to a nonmonotonic relation 
between the pressure difference across the chicane channel and Pin. 
As Pin is increased from zero, Q3 initially increases, before decreasing, 
as indicated by the low-flow solution branch in Fig. 4B.

We now construct the dynamical model for the full network in 
Fig. 1 as follows: (i) we use flow relations of the form in Eq. 1 with 
constant resistances for the three channel segments without obstacles 
and with a flow rate–dependent resistance function (discussed above) 
for the obstacle-laden channel; (ii) we use Eqs. 2 and 3 to describe 

the flow rate and vortex dynamics in the chicane channel with P34 
substituted by (P3 − P4), where  is a free parameter that may devi-
ate from 1 to account for an effective pressure difference across the 
chicane channel due to the finite size of the channel junctions; and 
(iii) we account for the most dominant minor pressure losses due to 
diverging flows at the channel junctions (35). For the latter, we 
include terms of the form kQ3Q5/Q1 in the flow equations for Q3 
and Q5, where k is a positive constant. This leads to six ordinary 
differential equations (five for flow rates and one for the vortex 
size), which can be reduced to four equations by making use of the 
equations that account for flow rate conservation at the channel junc-
tions: Q1 = Q3 + Q5 and Q2 = Q4 − Q3 (see Supplementary Materials 
for details of the model).

The model predictions of the total flow rate, chicane channel flow 
rate, and vortex size for the network in Fig. 1 under a common driving 
pressure at the inlets are presented in fig. S5. The model captures 
well the complex solution structure observed in Figs. 2A and 4 
(B and C), shows strong quantitative agreement with simulations, 
and provides several interpretations for the observed flow behavior. 
First, spontaneous oscillations are found to arise through the transition 
from a fixed-point solution to a stable limit cycle via a supercritical 
Hopf bifurcation. The amplitude of the limit cycle grows with the driv-
ing pressure and eventually collides with the unstable solution surface 
of Q3 and r, as shown in fig. S5, thereby destabilizing the oscillating 
solution through a homoclinic bifurcation. Second, the nonlinearity 
arising from the Forchheimer effect gives rise to the two distinct 
bistable regions (and thus two negative-conductance transitions), as 
a result of the nonmonotonic relation between Pin and the pressure 
loss along the chicane channel. Third, the difference in the total flow 
rate between the solution branches is primarily determined by the mi-
nor losses. Without these terms, the model may still predict bistability, 
but the difference in total flow rate for solutions belonging to differ-
ent branches would be negligible.

Our model can also be used to integrate the nonlinear behaviors 
described above into larger microfluidic systems. As an example, 
we consider an extended network with three outlets (Supplementary 
Materials and fig. S6), with two separate inlet flows. By driving the 
flows through this network using a common pressure, three unique 
oscillatory flow compositions can be realized at the outlets. Our 
model predictions show that the flow composition at the individual 
outlets is different, but the flow rate at the outlets oscillates in phase 
(Supplementary Materials and fig. S6B). Thus, the property that flow 
rates through all channel segments oscillate with the same period can 
be extended to larger networks and used to produce synchronized, 
time-dependent output flow patterns.

DISCUSSION
Motivated by the challenge of developing built-in controls in micro-
fluidics, we identified mechanisms that can facilitate integration 
without dependence on movable parts or external actuation (other 
than through the working flow). This includes our demonstration 
of self-sustained oscillations, which can be used for timing and syn-
chronization of flows through different channels; multistability and 
associated transitions, which can be used for signal amplification 
and switching; and hysteresis, which could serve as a possible mech-
anism for memory. In particular, we demonstrated the emergence 
of spontaneous periodic variations in the relative uptake rates from 
different inlets, which can be explored to generate time-dependent 

Fig. 4. Flow structure in the chicane channel. (A) Streamlines corresponding to 
the labeled solutions in Fig. 2A show variations in the vortices around the blade 
barriers. The size of one of the vortices is denoted by r. (B and C) Bifurcation 
diagrams for Q3 (B) and r (C), corresponding to all simulation results presented in 
Fig. 2A.
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mixtures and output flow patterns. While these dynamical behaviors 
may resemble those found in microelectronics, they rely on effects 
that do not have direct analogs in electrical networks, namely, fluid 
inertia and the resulting nonlinearity arising from interactions 
between components.

Our results demonstrate that fluid inertia effects can be amplified 
and induce behaviors in fixed-structure microfluidic systems that have 
not been previously generated without external actuation. Indeed, the 
negative-conductance transitions, spontaneous oscillations, hysteresis, 
and multistability simulated and modeled in our system all emerge 
as a consequence of coupling between the geometric structure of the 
network and fluid inertia effects. Flows around obstacles and through 
the porous-like channel are determinant for generating these dynamics. 
Porous media microfluidics have become important for the study 
of flows through natural systems and laboratory-controlled experi-
ments (36). In this work, we placed new emphasis on the viability of 
porous-like structures to serve as nonlinear fluid resistors and 
harness fluid inertia effects for nonlocal flow control throughout the 
network, which, crucially, can be realized as a built-in mechanism. 
Given that our system can be constructed from rigid materials, it is 
able to withstand a wide range of driving pressures (e.g., 1 to 106 Pa), 
which facilitates implementation across the length scales relevant to 
microfluidics.

The flow dynamics that arise in our system can be tailored for 
various applications. Microfluidic systems capable of carrying out 
sequential operations generally require a timing mechanism that 
is generated either from an external device or through the use of 

flexible valves (25). The oscillations that arise in our system could 
serve as an on-chip frequency reference and enable process syn-
chronization or waveform synthesis. Moreover, the vortex dynamics 
that give rise to the oscillations may be used to enhance state-of-
the-art methods for particle sorting and manipulation that function 
through interactions between particles and micro-vortices (37). In 
particular, vortex dynamics can be used to produce complex (and 
even chaotic) particle trajectories in laminar flows (38). Lastly, micro-
fluidic networks are now widely used in the study of colloids (39) 
and active matter (40). Our system offers a rich environment to further 
investigate these materials given that they exhibit unusual collective 
behavior when placed in different flow fields (41) and when driven 
through porous media (42). Moving forward, we anticipate that the 
coupling of fluid inertia effects and network geometry can be further 
explored across microfluidic applications to yield new built-in flow 
control functionality.

MATERIALS AND METHODS
Navier-Stokes simulations
Our simulations of the Navier-Stokes equations for incompressible 
fluid were performed using OpenFOAM-version 4.1. Meshes of the 
system geometry were generated using Gmsh version 2.9.3, with 
average cell area ranging from 10 to 70 m2. The pisoFoam and 
simpleFoam solvers in OpenFOAM were used for time-dependent and 
steady-state simulations, respectively. For simulations where a Dirichlet 
static pressure boundary condition was used at an inlet/outlet, a 

Fig. 6. Analytical dynamical model of flow through the chicane channel. (A to D) Phase space plots showing example trajectories (red and green curves) and stream-
lines (gray curves), generated from Eqs. 2 and 3 for the flow rate and vortex dynamics at different values of P34. Fixed-point solutions to the equations exist at the inter-
sections of the r and Q3 nullclines (i.e., the curves in phase space for which   r ̇   =   Q ̇    3   = 0 ). The solution set may consist of one steady solution (A), three steady solutions (two 
stable and one unstable) (B), two steady solutions (one stable and one unstable) and a stable limit cycle (C), or a single stable limit cycle (D), depending on the value 
of ∆P34. (E) Bifurcation diagram of Q3 produced for Eqs. 2 and 3. The parameters used here are   Q 3  *   = 25  l/s per mm depth, rb = 146 m, r* = 250 m, Lb = 0.146 cm,  = 
0.264 m−1, and  = 4166 m−1.

Fig. 5. Vortex-flow rate interaction. (A to C) Navier-Stokes simulation results of the network in Fig. 1 for fixed values of Q1 as Q2 is increased, from which we determine 
the relation between Q3 and r (A), the pressure-flow relation for the chicane channel (B), and the dependence of the chicane channel resistance on r (C). Transitions are 
evident at the points of discontinuity in (B), which can be associated with the points of discontinuity in Fig. 3, albeit for different control and independent variables. The 
pressures P3 and P4 are approximated from simulations by averaging pressure values sampled across the channel width near the chicane channel junctions. The chicane 
channel resistance is defined as (P3 − P4)/Q3 and is nondimensionalized by dividing it by /w2.
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Neumann boundary condition was used to set the gradient of the 
velocity field to zero in the direction normal to the inlet/outlet. This 
combination of boundary conditions results in a fully developed 
velocity profile at the inlet/outlet and corresponds to the physical 
situation in which the channels extend upstream and downstream 
of the computational domain. Similarly, when instead the flow rate 
was controlled at an inlet, a parabolic velocity profile was specified 
and a zero-gradient boundary condition was used for the pressure. 
Values for P3 and P4 in Fig. 5 were measured by averaging the pressure 
sampled across the channel width at a distance 3w/5 downstream of 
the chicane channel junctions.

Network dimensions
For the network presented in Fig. 1, the individual channel segment 
lengths, as labeled in Fig. 1D, are L1 = 0.1 cm, L2 = 0.6 cm, L3 = 0.1 cm, 
L4 = 1.0 cm, and L5 = 0.5 cm. The cylindrical obstacles in the obstacle- 
laden channel (Fig. 1C) are separated by a distance of approximately 
6w/5, where w = 500 m is the channel width (common to all channels 
in the network). The blade-like barriers in the chicane channel 
(Fig. 1B) are each placed a distance w/2 from the midpoint of the 
axis along the channel.

Reynolds numbers
The characteristic length scale used in defining the Reynolds numbers 
of the flows is the hydraulic diameter of the channels, defined as 
4A/P, where A is the area and P is the perimeter of the channel cross 
section (common to all channel segments). In two dimensions, the 
hydraulic diameter is 2w, and the characteristic velocity used is 
Q/w. Therefore, we define the Reynolds number for individual 
channel segments to be 2Q/, where Q is the associated flow rate 
through the channel.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/20/eaay6761/DC1
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