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Breast cancer is a heterogeneous malignant disease with different prognoses and has
been divided into four molecular subtypes. It is believed that molecular events occurring
in breast stem/progenitor cells contribute to the carcinogenesis and development
of different breast cancer subtypes. However, these subtype-specific molecular
characteristics are largely unknown. In this study, we employed 1217 breast cancer
samples from The Cancer Genome Atlas (TCGA) database for a multiomics analysis
of the molecular characteristics of different breast cancer subtypes based on PAM50
algorithms. We detected the expression changes of subtype-specific genes and
revealed that the expression of particular subtype-specific genes significantly affected
prognosis. We also investigated the mutations and copy number variations (CNVs) of
breast cancer driver genes and the representative genes of ten signaling pathways in
different subtypes and revealed several subtype-specifically altered genes. Moreover,
we detected the infiltration of various immune cells in different subtypes of breast cancer
and showed that the infiltration levels of major immune cell types are different among
these subtypes. Additionally, we investigated the factors affecting the immune infiltration
level and the immune cytolytic activity in different breast cancer subtypes, namely, the
mutation burden, genome instability and cancer-associated fibroblast (CAF) infiltration.
This study may shed light on the molecular events contributing to carcinogenesis and
development and provide potential markers and targets for the clinical diagnosis and
treatment of different breast cancer subtypes.
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INTRODUCTION

Breast cancer is a heterogeneous disease. In 2000, Perou first
reported the molecular characteristics-based classification
of breast cancer, namely, the luminal subtype (lumA and
lumB), basal-like subtype, HER2-overexpression subtype
and normal breast-like subtype (Perou et al., 2000). Sorlie
et al. (2003) divided the luminal subtype into A type and
B/C type. Each subtype has unique molecular signatures,
prognoses, clinical behaviors and treatment responses.
For example, the prognosis of patients with the lumA
and lumB subtypes is relatively good, and the primary
treatments are surgery, chemotherapy and endocrine therapy
(Harbeck et al., 2019). The 5-year survival rate of patients
with the basal-like subtype is low, and there is a lack of
effective treatments. Patients with the HER2 subtype are
usually treated with targeted drugs or chemoradiotherapy
until the tumor has been reduced to a specific size range
before undergoing surgical resection (Goldhirsch et al.,
2013). Studies have shown that the clinically identified
HER2 and basal-like subtypes are complex, explaining
why the clinical effects of drugs such as Herceptin on
patients with the HER2 subtype are general, and why
triple-negative breast cancer is largely difficult to treat
(Kumar and Aggarwal, 2016).

At present, numerous studies on breast cancer have focused
on tumorigenesis, development, treatment, and improving
prognosis (Nagini, 2017; Harbeck et al., 2019; Wang et al.,
2019). An increasing number of studies have revealed that the
traditional immunohistochemical classification of cancer has
some limitations in understanding breast cancer heterogeneity.
A more accurate and helpful subtype prediction model of
breast cancer is developed through computational biology
methods at various molecular levels, which makes up for
the lack of immunohistochemical typing. Furthermore,
through a deeper mechanism of breast cancer research,
reliable and effective treatment regimens can be revealed.
However, different molecular subtypes have different effects
on treatment and prognosis, and the mechanism remains
unclear. Wallden et al. (2015) reported that the PAM50
assay has clinical accuracy and technical precision based
on several clinical validation studies. In this project, we
used the current academic authoritative PAM50 subtype
prediction algorithm to classify breast cancer samples in
The Cancer Genome Atlas (TCGA) public database and
analyzed the differences among the subtypes at the DNA
and RNA levels. We analyzed the difference in driver gene
mutations, copy number variation (CNV), and gene fusion
in the different subtypes and assessed their prognostic
impact. To assess the differences in immune cell levels
among the subtypes, we also analyzed the infiltration levels
of immune cells and cancer-associated fibroblasts (CAFs). We
aimed to determine the potential differences among different
subtypes through bioinformatics methods and to find suitable
therapeutic targets for clinically conquering breast cancers of
different subtypes.

MATERIALS AND METHODS

Data Source
The breast cancer data included 113 normal samples and 1104
tumor samples from TCGA database1. We only used samples
that had available data from the UCSC Xena database2 across
the following four genomic platforms: RNA expression, gene
mutation, CNV, and gene fusion. The representative genes of ten
classic pan-cancer signaling pathways were obtained from the
PathwayMapper database3 (Bahceci et al., 2017). The driver genes
studied in this analysis were predicted by at least seven algorithms
(accounting for half of the total number of algorithms) in the
DriverDBv3 online database4 (Liu et al., 2020).

Subtype and Prognosis Analysis of
Breast Cancer
Gene expression profiles were used to classify the molecular
subtypes of the breast cancer samples from the TCGA. The
PAM50 algorithm developed by Parker et al. was applied for
this process (Parker et al., 2009). The prognostic analysis was
performed on samples of the five subtypes obtained (lumA, lumB,
HER2, basal-like, and normal) using Kaplan–Meier analysis.

Screening of Subtype-Specific RNA and
Driver Genes in Each Subtype
The transcriptome data of the breast cancer samples from the
TCGA were used to perform subtype-specific RNA analyses
among the five molecular subtypes. The method used the
Seurat3.0 package, and a p value less than 0.01 was considered
to represent a statistically significant difference between a specific
subtype and other subtypes.

We then used the 15 recognized driver gene prediction
algorithms provided by the DriverDBv3 database to identify
the driver genes. We defined driver genes as genes that were
determined to be driver genes by more than seven algorithms.

DNA-Level Differences Between
Subtypes
The DNA-level changes in the driver genes and ten oncogenic
pathway representative genes were analyzed in our study, namely,
CNV, gene mutation, and gene fusion. The frequency of DNA
changes and the number of samples with DNA changes were
analyzed in detail for each subtype.

Analysis of Tumor Mutation Burden
Tumor mutation burden (TMB) was defined as the total amount
of somatic gene coding errors, base substitutions, insertions or
deletions detected per million bases. TMB data were downloaded
from the TCGA database through the GDC tool. We classified
the samples of each subtype into low-and high-TMB groups

1https://portal.gdc.cancer.gov
2https://xenabrowser.net/datapages/
3http://www.pathwaymapper.org/
4http://ngs.ym.edu.tw/driverdb
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FIGURE 1 | The subtype-specific RNA expression. (A) The number of samples of each breast cancer subtype. (B) The number of subtype-specific RNAs in each
subtype. (C) The expression of specific mRNAs in each subtype. (D) The expression of specific lncRNAs in each subtype.

according to the median data. Then, we merged the TMB data
with corresponding survival information via the ID number of
the samples. Kaplan–Meier analysis was conducted to compare
the survival difference between the low-and high-TMB groups of
each subtype, and the p value of the log-rank test was calculated.

Selection and Classification of Genes in
Pathways
Genes were assigned to pathways based on a combined revision
of pathway analyses from previous papers published between
2008 and 2017, a review of the scientific literature and expert
curation. Several genes in the pathways, such as TGF-β, Myc,
and PI3K, had been analyzed by specific working groups. These
groups were led by experts on each pathway, and each published
separate manuscripts (Foroutan et al., 2017; Ge et al., 2018;
Knijnenburg et al., 2018; Peng et al., 2018). The pathways
included in our study were (1) Hippo signaling, (2) cell cycle, (3)
TGFβ signaling, (4) Notch signaling, (5) receptor tyrosine kinase
(RTK)/RAS signaling, (6) β-catenin/Wnt signaling, (7) oxidative
stress response/Nrf2, (8) Myc signaling, (9) P53, and (10) PI-3-
kinase signaling. Gene mutation, copy number amplification and
deletion were evaluated in all essential representative genes from

the 10 pathways. The frequency of crucial gene changes in the
pathways was also counted.

Infiltration of Immune Cells and
Fibroblasts
The infiltration levels of immune cells and fibroblasts in breast
cancer samples were predicted by Newman et al. (2015) and Becht
et al. (2016) algorithms, respectively, using the mRNA expression
profiles of the samples. The correlation between immune cells
and fibroblasts was calculated by Pearson correlation. All the data
processing was performed using R 3.6.1.

Immunophenoscore Analysis in Breast
Cancer
An immunophenogram was used to predict anti-PD-
1/PD-L1 therapy responses across cancers (Charoentong
et al., 2017). The immunophenoscore (IPS) was calculated
by the immunophenogram among four cancer subtypes
(CTLA4_negative + PD-1_negative, CTLA4_positive + PD-
1_negative, CTLA4_ negative + PD-1_ positive, CTLA4_
positive + PD-1_positive) from the TCGA-BRCA database. The
IPS ranged from 0 to 10. A high PD-1_positive IPS indicated
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FIGURE 2 | Correlation of expression of subtype-specific RNA with overall survival in breast cancer. Kaplan–Meier survival curves were generated for
subtype-specific RNA by comparing groups of high (red line) and low (blue line) gene expression. p < 0.05 in log-rank test.
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FIGURE 3 | Analysis of DNA alterations in different breast cancer subtypes. (A) The different classified categories of DNA mutations in each breast cancer subtype.
(B) The number of copy number variations in each subtype. (C) Statistics of SNV changes in different subtypes. (D) Waterfall chart showing the mutations of different
subtype-specific genes. (E) Correlation analysis of subtype-specific RNAs and their modifications in different subtypes. The numbers in the figure are correlation
coefficients, a negative value represents a negative correlation, and a positive value represents a positive correlation.

a well-predicted response to anti-PD-1/PD-L1 therapy. The R
code used is available at GitHub5.

RESULTS

Identification of Molecular
Subtype-Specific RNA in Breast Cancer
To explore the differences among breast cancer molecular
subtypes, we first used the PAM50 method to predict the
molecular subtypes of 1,217 breast cancer samples from the

5https://github.com/Mayer/C-imed/Immunophenogram

TCGA. The prediction results showed that the number of samples
in each breast cancer subtype was lumA: 362, lumB: 282, HER2:
155, basal-like: 233, and normal: 185 (Figure 1A). We counted
the number of RNAs specifically expressed in each subtype, as
shown in Figure 1B (Supplementary Table 1). We compared
differential expression levels of mRNA, lncRNA and miRNA in
each subtype (Figures 1C,D and Supplementary Figure 1). We
generated Kaplan–Meier survival curves to explore the potential
link between subtype-specific RNA and OS. The median was
used as the cutoff for high or low expression chosen for subtype-
specific RNA. Among the RNAs, a total of 25 were shown to
significantly predict OS (Figure 2, p < 0.05). These genes were
considered to be potential subtype-related prognostic genes.
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FIGURE 4 | Analysis of the driver genes in different breast cancer subtypes. (A) The expression levels of eleven driver genes in each subtype. (B) The waterfall chart
shows the frequency mutations of the driver genes in each subtype. (C) Kaplan–Meier survival curve of the driver genes with gene mutations. Red indicates the gene
alteration group, and blue indicates the non-alteration group.
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FIGURE 5 | Immune cell infiltration levels in different breast cancer subtypes. (A) Differential analysis of the immune cell infiltration level in different breast cancer
subtypes (p < 0.05). (B) The infiltration level of fibroblasts in different breast cancer subtypes. (C) Analysis of TMB in different breast cancer subtypes. (D) Correlation
analysis between TMB and 22 immune cell infiltration levels in different subtypes. Red indicates a positive correlation, and blue indicates a negative correlation. The
number represents the degree of correlation, and p < 0.05.
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Gene Mutations Among the Breast
Cancer Subtypes
To assess the alteration of genes among different subtypes
in breast cancer, we analyzed the mutations in each subtype,
including gene mutation and CNV. In summary, these
mutations were classified according to different categories, in
which missense mutations accounted for the largest fraction
(Figure 3A). The lumA subtype had the most missense
mutations, and the lumB subtype had the lowest (16,967 and
13,364 mutations, respectively). The CNV analysis across the
five subtypes revealed that the highest levels of amplification
and deletion were detected in the basal-like and lumB subtypes
(Figure 3B). Comparison across the five subtypes revealed
that they all had increased C > T transversions (Figure 3C).
The C > G transversions were markedly higher in the HER2
subtype than in other subtypes. The basal-like subtype had
more T > C transversions than the other subtypes. We further
performed mutation analysis on the subtype-specific genes in
which mRNA expression was significantly different in each
subtype. The results showed that the mutation of these genes,
namely ZNF695, RBPMS1-AS1, OIP5, and PYY, correlated with
their RNA expression levels (Figures 3D,E).

Identification of Driver Genes in Breast
Cancer Subtypes
To further understand the molecular features of different
subtypes, we used the DriverDBv3 online database to predict the
driver genes of breast cancer samples in the TCGA database.
To increase the accuracy of our results, we used more than
seven algorithms to simultaneously predict driver genes and
obtained 11 driver genes, namely ERBB2, AKT1, PIK3CA,
PIK3R1, PTEN, TP53, CDH1, GATA3, MAP2K4, CTCF, and
FOXA1. We analyzed the effect of driver gene expression in the
different subtypes and found that the expression of PIK3CA,
PIK3R1, and PTEN was significantly lower in tumor samples
than in normal samples (Figure 4A). ERBB2, GATA3, PIK3CA,
MAP2K4, and other driver genes are either overexpressed
considerably or expressed at low levels in specific subtypes,
which indicates that these genes have essential significance in
the formation and progression of tumors in these subtypes and
may be used as subtype-determining markers and breast cancer
treatment targets.

Other studies have also shown that breast cancer cells often
have many driver gene mutations (Kaur et al., 2018). To more
intuitively show the impact of driver genes on the prognosis
of patients with breast cancer, we analyzed the driver gene
mutations in each subtype and the abnormal alterations of
frequently altered genes and essential cancer genes in different
signaling pathways. A large proportion of samples from patients
with various subtypes of breast cancer had abnormal changes in
the MAP2K4, TP53 and PIK3CA genes (Figure 4B). The change
frequency of TP53 in basal-like samples was more significant
than that in other subtypes, and missense mutation of PIK3CA
was more extensive in the lumA subtype. In addition, many
patients with the HER2 subtype had ERBB2 gene alterations, and
patients with the lumB subtype had a deletion of MAP2K4. And

we discovered that some key oncogenes and tumor suppressor
genes in 10 classical signaling pathways, namely MDM4, MTOR,
MYC, CCND1, and RB1, had a higher proportion of mutations.
Consistent with other studies, the average mutation rate of
oncogene PIK3CA and tumor suppressor gene TP53 was as high
as 10% (Supplementary Figure 2).

Next, we evaluated the impact of driver gene alterations on the
prognosis of patients with breast cancer. We divided the samples
of each subtype into an altered group and a non-altered group
according to whether the driver gene had a change in mutation,
CNV, or gene fusion. This analysis found that the survival effect
of the abnormally altered ERBB2 and FOXA1 groups in the lumB
subtype group was significantly lower than that of the non-altered
group, and the survival effect of the abnormally altered AKT1
and GATA3 groups in the HER2 subtype group was substantially
lower than that of the non-altered group (Figure 4C). The
survival effect of the abnormally altered CDH1 group in the
lumA subtype group was significantly higher than that of the
non-altered group.

Differences in Immune Cell Infiltration of
Different Subtypes
A high number of mutations in breast cancer samples indicates
inferior genome stability, and many mutations in tumor tissues
can induce the production of new antigens. Simultaneously,
patients with specific gene mutations are suitable candidates for
immunotherapy, such as patients with BRCA1/2 gene mutations
(Mateo et al., 2019). Consequently, to study the difference in
immune cell infiltration among breast cancer subtypes and
identify personalized immunotherapy for patients. Here, we
used CIBERSORT to analyze the differences in the infiltration
of 22 immune cell types in each subtype of tumor tissues. In
the more malignant tumor tissues of the basal-like and HER2
subtypes, the infiltration level of M1 macrophages, activated
memory CD4 T cells, and CD8 T cells was significantly higher.
In contrast, the infiltration levels of M2 macrophages, naive B
cells, and resting memory CD4 T cells were substantially lower
(Figure 5A). Then, we used an MCP counter to analyze the
fibroblast infiltration levels in each subtype (Figure 5B), among
which the infiltration levels of fibroblasts in the lumB and basal-
like subtypes were low. Correlation analysis between immune
cells and fibroblasts showed that T cells and fibroblast levels were
negatively correlated (Supplementary Figure 3).

Furthermore, we analyzed the correlation between TMB and
immune cell infiltration in each subtype and found that HER2
mutation was significantly correlated with NK cell infiltration,
and the other subtypes were significantly correlated with T
cell infiltration (Figures 5C,D). The basal-like subtype was
considerably correlated with CD4 T cell infiltration, and the
lumB subtype was significantly correlated with CD4 and CD8
infiltration. This suggests that basal-like and lumB subtype
tumors with higher TMB have more T cell infiltration and lower
fibroblast infiltration. We speculate that the cellular components
involved in positive and negative immune responses are complex,
leading to poor immunotherapy effects. The proportions of
these immune responses could potentially be changed. The
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FIGURE 6 | Kaplan–Meier survival curve of immune cells and TMB in different breast cancer subtypes. (A) Kaplan–Meier survival curve of the immune cell infiltration
level in different breast cancer subtypes (p < 0.05). Purple represents a high level of infiltration, and green represents a low level of infiltration. (B) Kaplan–Meier
survival curve of TMB in different breast cancer subtypes. Blue represents the high TMB group, and orange represents the low TMB group.

components of the positive immune response can work to
inhibit negative immune cells, thereby improving the efficacy of
immunotherapy for this type of tumor.

Then, we assessed the correlation between immune cell
infiltration and prognosis among the different subtypes
(Figure 6A). It was shown that a low degree of memory B cell
infiltration indicated a better prognosis in the lumA and lumB
subtype groups, while naive B cell infiltration indicated a poorer
prognosis in the lumA subtype group. The group with high Treg
cell infiltration had a more extended survival period in the HER2
subtype group; high M2 macrophage infiltration in the basal-like
subtype group had a worse prognosis. The above results suggest
that the immune cell infiltration in different subtypes is related
to patient prognosis.

Different Responses to Immunotherapy
Among the Different Molecular Subtypes
To evaluate the different responses to immunotherapy among
the subtypes, we analyzed the mRNA expression of breast cancer

immune checkpoint genes, namely PD-1, PD-L1, PD-L2, LAG3,
VTCN1, IDO1, and TIM3 (Figure 7A). The expression of PD-L1
and PD-L2 was significantly higher in the basal-like subtype than
in other subtypes (Figure 7B). The expression of other immune
checkpoint genes (CD40, CD80, CD86, IDO1, and LAG3) was
also significantly elevated in the basal-like subtype (Figure 7A
and Supplementary Figure 4). VTCN1 and TIM3 expression was
higher in the lumA and HER2 subtypes, respectively (p< 0.0001).
Then, we used immunophenogram analysis to predict the
response to anti-PD-1/PD-L1 therapy among the subtypes. We
found that in the CTLA4_negative + PD-1_negative subtype,
the lumB and HER2 subtypes exhibited a lower IPS than the
other subtypes (Figure 7C). In the CTLA4_negative + PD-
1_positive and CTLA4_positive + PD-1_positive subtypes, the
IPS of the basal-like subtype was significantly higher (Figure 7C).
We assessed the correlation between immune checkpoint gene
expression and prognosis among the different subtypes. The
results showed that patients with the basal-like subtype with
higher levels of PD-L2 expression had a better OS rate
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(Figure 7D). These results indicated that patients with the basal-
like subtypes were likely to have a higher positive response to
anti-PD-1/PD-L1 therapy or a combination of anti-PD-1/PD-L1
and anti-CTLA4 treatments.

DISCUSSION

Breast cancer is a heterogeneous disease with different molecular
characteristics and various clinical treatment responses and
prognoses. This study found that the level of subtype-specific
RNA expression can assess patient prognosis within different
subtypes. For example, HRH3 and GABRA3 expression was
lower in the lumA subtype than in the other subtypes, and the
better prognosis of patients with the lumA subtype with low
HRH3 and GABRA3 expression. Similarly, Kiranmai Gumireddy
et al. reported that high expression of GABRA3 was inversely
correlated with breast cancer survival. GABRA3 can promote
breast cancer cell migration, invasion and metastasis by activating
the AKT pathway (Gumireddy et al., 2016). However, an A-to-
I RNA-edited form of GABRA3 showed that edited GABRA3
suppresses breast cancer cell invasion and metastasis. This is
the first report in which an edited RNA was found to play a
crucial role in the progression, invasion and metastasis of breast
cancer, and it may be a potential therapeutic target. Therefore,
it is suggested that subtype-specific RNA expression in breast
cancer may be targeted therapeutically, along with providing
information regarding the prognosis of patients with different
breast cancer subtypes.

Driver genes play an essential role in tumor progression.
There is apparent heterogeneity in the frequency and diversity
of tumor driver gene mutations. Stephens et al. (2012) reported
that few driver genes have high-frequency repeated mutations
in breast cancer, except PIK3CA and TP53, which is mutated
in approximately 30% of tumors, and ERBB2, FGFR1, and
CCND1, which are amplified in approximately 15% of tumors.
Significantly, even small numbers of driver gene mutations might
correlate with the clinical response of breast cancer. In this study,
we found that MAP2K4 (55%), PIK3CA (49%), and TP53 (30%)
were mutated in a large number of cancer samples. Among
them, the level of TP53 mutation was significantly higher in
the basal-like subtype than in the other subtypes, which may
be the reason for the higher malignancy of TNBC. In addition,
the copy number amplification of ERBB2 in the HER2 subtype
was significantly higher than that in the other subtypes, which
may promote the development of the HER2 subtype. The driver
genes abnormally altered in different subtypes may help explain
the differences in response to clinical treatment. Our results
were consistent with Shah et al. (2012), who reported that in
primary TNBCs, TP53 mutation was the most frequent clonal
event (53.8%), followed by PIK3CA mutations (10.7%). The
mutation frequencies of TP53 are 12–29 and 72–80% in the
lumB, HER2, and basal-like subtypes, respectively. This indicates
that TP53 mutation plays a critical carcinogenic effect in most
breast cancers (Cancer Genome Atlas Network (CGAN)., 2012).
Other studies also reported that the frequency of PIK3CA
mutations in ER + and HER2 + tumors is 29–45 and 22.7–39%,

respectively (Yang et al., 2016). Although the mutation frequency
is significantly different, highly active PI3K pathway expression
suggests that PI3K inhibitors may be an effective targeted
treatment for breast cancer. Some studies have shown that many
genes, such as CDK4, MDM2, and CDH1, have significant CNV.
Therefore, further research is needed to understand the driver
gene mutations in breast cancer, which may have substantial
value for targeted therapy (Luen et al., 2016).

In the past, breast cancer was considered a tumor type
with poor immunogenicity. Compared with other cancers with
a high mutation load that respond well to immunotherapy
(such as non-small cell lung cancer and melanoma), breast
cancer has a lower mutation load (Smith et al., 2019). However,
recent studies have revealed that some molecular subtypes of
breast cancer are infiltrated by immune cells, suggesting that
immunotherapy may improve the prognosis of these patients
(Dieci et al., 2018). Therefore, it is essential to predict whether
patients will respond to immunotherapy. In this study, we
found that different infiltration levels of immune cells are
related to the prognosis of breast cancer. The high infiltration
level of M2 macrophages indicated a worse prognosis in the
lumA and basal-like subtypes (Figure 6A). The high level of
Treg cell infiltration in the HER2 subtype indicates a longer
survival time. However, it is generally recognized that Treg
cells have a high potential to suppress the immune system.
They promote tumor development by inhibiting the effective
antitumor immune mechanism of malignant tumors. Therefore,
most studies have demonstrated that Treg cell accumulation in
breast cancer tumors is related to shorter overall survival times.
In addition, we found that the CAF and TMB were also different
among the breast cancer subtypes, and both were correlated
with immune cell infiltration. In all subtypes of breast cancer,
CAFs are negatively correlated with T cell infiltration. In the
basal-like subtype, TMB and CD4 + T cell infiltration were
higher, CAFs were lower, and high TMB indicated a better
prognosis (Figure 6B).

Recent years, PD1 and PDL1 are hot spots in the immune
regulation. Several studies reported that they governed pathways
acting as feedback to prevent excessive T cell response (Yang
et al., 2019). In this study, the basal-like subtype samples
showed higher expression of immune checkpoint genes (PD-
L1, PD-L2, CD40, CD80, CD86, IDO1, and LAG3) than other
subtypes. Immunophenogram analysis of the different subtypes
also showed that the basal-like subtype responds well to anti-PD-
1 therapy but not to anti-CTLA4 therapy. These features suggest
that patients with the basal-like subtype may respond better
to immunotherapy. Other studies on TMB and immune cell
infiltration also showed that higher TMB tends to promote T cell
and NK cell infiltration. Patients with bladder cancer with higher
TMB levels have a better prognosis (Fan et al., 2020; Mi et al.,
2020; Wu et al., 2020). However, in head and neck squamous
cell carcinoma and melanoma, high TMB can lead to a shorter
survival period, which may be related to infiltrating immune
cells (Jiang et al., 2020, 2021). The above results indicate that
the cellular components of the tumor involved in the immune
response are complex, which leads to different immunotherapy
effects in patients. In the future, it may be possible to change
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FIGURE 7 | Association of PD-L1 expression and IPS among subtypes in patients with breast cancer. (A) Heatmap representation of differences in mRNA
expression levels of immune inhibitory checkpoint-related genes. (B) Comparison of PD-1, PD-L1, and PD-L2 expression levels between each subtype in breast
cancer. (C) IPS comparison between each subtype in breast cancer patients in the CTLA4-negative/positive or PD-1-negative/positive groups. CTLA4-positive or
PD1-positive represented anti-CTLA4 or anti-PD-1/PD-L1 therapy, respectively. (D) Kaplan–Meier survival curves of PD-L1 and PD-L2 in different breast cancer
subtypes. Red represents the high expression group, and blue represents the low expression group.

the ratio of immune cells to increase the positive immune
cell component and suppress negative immune cells, thereby
improving the effect of tumor immunotherapy.

Several recent retrospective and prospective studies have
shown that the classification of molecular subtypes and the
mechanisms of interaction between tumors and immune cells
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of different subtypes are significant for predicting therapeutic
response and prognosis and developing individualized treatment
plans (Waks and Winer, 2019). Therefore, we analyzed the
specific molecular characteristics of different subtypes of
breast cancer from a multiomics perspective, providing a
theoretical basis for selecting patients most likely to benefit
from immunotherapy and providing potential biomarkers for
future treatments.
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