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This paper presents a novel two-step approach that incorporates fuzzy c-means (FCMs) clustering and gradient vector flow (GVF)
snake algorithm for lesions contour segmentation on breast magnetic resonance imaging (BMRI). Manual delineation of the
lesions by expert MR radiologists was taken as a reference standard in evaluating the computerized segmentation approach. The
proposed algorithm was also compared with the FCMs clustering based method. With a database of 60 mass-like lesions (22 benign
and 38 malignant cases), the proposed method demonstrated sufficiently good segmentation performance. The morphological
and texture features were extracted and used to classify the benign and malignant lesions based on the proposed computerized
segmentation contour and radiologists’ delineation, respectively. Features extracted by the computerized characterization method
were employed to differentiate the lesions with an area under the receiver-operating characteristic curve (AUC) of 0.968, in
comparison with an AUC of 0.914 based on the features extracted from radiologists’ delineation. The proposed method in current
study can assist radiologists to delineate and characterize BMRI lesion, such as quantifying morphological and texture features and
improving the objectivity and efficiency of BMRI interpretation with a certain clinical value.

1. Introduction

Breast cancer is the most common cancer and a leading cause
of deaths in cancer for women worldwide [1]. In the United
States, the chance of developing invasive breast cancer in a
woman’s life is nearly 1 in 8 [2]. Medical imaging, specifically,
magnetic resonance imaging (MRI) plays a crucial role in
detecting and diagnosing breast lesions and tumors. While
mammography, as recently reported, might fail to spot up to
20 percent of tumors, MRI can detect breast cancer missed
by mammography [3, 4]. Because of MRI’s effectiveness
in detecting breast cancer, American Cancer Society has
published the guidelines for recommending women with
high risk of breast cancer to receive MRI screening [5].

With its high sensitivity and variable specificity, MRI
has been increasingly used for a breast cancer detection and
characterization [6–8]. As a result, there is an urgent need

to develop a computer-aided diagnosis system to release
radiologists from the heavy works of medical image analysis.
Unfortunately, compared with mammography, relatively
fewer automated CADs have been developed specifically for
breast MRI. Chen et al. [9] applied the region-growing
method to segment lesions and later they [10] proposed
a semiautomated algorithm based on the fuzzy c-means
(FCMs) clustering with the shortcoming oversensitivity to
noise; Liney et al. [11] presented a user-interaction-threshold
method to extract the region of interest (ROI), requiring
manual intervention; Stoutjesdijk et al. [12] designed an
automated computer program to select the ROIs on the basis
of a mean-shift-clustering method, the method is an accurate
method to automatically determine a contiguous region of
interest. Shi et al. [13] used the FCMs clustering algorithm
followed by a 3D level set (LS) method for segmentation
refinement, and a recent paper by Meinel et al. [14] reported
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a computerized segmentation method for mass-like breast
MRI lesion involving robust seed-point selection, which is
more reproducible than manual method in measuring the
size and shape of a lesion. Because MR images are a sequence
of two-dimensional images, the segmentation in 2D is still
important and the basis of 3D segmentation.

Texture analysis is extensively utilized to quantify image
characteristics (i.e., homogeneity and regularity with diag-
nosis potential in MR images). Gray level cooccurrence
matrix (GLCM) method, proposed by Haralick et al. [15],
is instrumental in medical image analysis. Various studies on
texture analysis have been reported, including brain disease
[16], bone [17], and abdominal tumor [18]. The GLCM
method is also applied to the analysis of breast cancer. Chan
et al. [19] put forward a method based on the texture features
for discriminating mammography lesions by using linear
discriminant analysis. Gibbs and Turnbull [20] manually
delineated the breast MRI lesions, and then employed the
GLCM method to differentiate benign and malignant lesions.

Computer-extracted morphological features have dem-
onstrated to be of certain usefulness for characterizing
breast lesions [11, 21, 22]. Breast Imaging Reporting and
Data System (BI-RADS) lexicon has been introduced to
categorize lesion appearance. However such lexicons are
subject to radiologists’ assessment. The objective computer-
extracted features may benefit a radiologist to improve the
interpretation and acceptability of a distinguishing feature.

In this study, we investigate systematically the segmen-
tation and characterization of both benign and malignant
breast lesions inside breast MR images using a computerized
segmentation and characterization package we developed
specifically for Breast MRI. The computational results of
both segmentation and characterization of breast lesions
are also compared with the manual delineation and the
pathological results given by experienced radiologists.

2. Materials and Methods

Figure 1 shows the flowchart for our computerized breast
lesion segmentation and characterization method. Our com-
puter program performs an automated segmentation and an
image analysis consequently after the manual lesion identi-
fication of a breast MRI (2D) is input. In the computerized
segmentation section, FCMs clustering based method is used
to produce an initial segmentation of the input image, while
the gradient vector flow (GVF) snake model is applied to
the initial segmentation to obtain the final segmentation.
The initial segmentation method is referred to as the FCMs-
based and the final segmentation method is referred to as
the GVF-FCMs for short. The segmentation performance
of both methods is evaluated with manual segmentation
by experienced radiologists on dynamic contrast-enhanced
(DCE) MRI. In the computerized characterization section,
we extract morphological and texture features from both the
GVF-FCMs method and radiologists’ delineation. Finally,
Fisher stepwise discriminant analysis (FSDA) is applied to
select the features extracted by the GVF-FCMs and the
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FCM clustering contour

GVF snake algorithm

Output: lesion contour
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Figure 1: Flowchart of computerized lesion segmentation and
characterization on breast MRI.

radiologists’ manual delineation in differentiating between
benign and malignant lesions.

2.1. Breast Lesions Database. This study consists of 22 benign
and 38 malignant breast lesions which have been examined
with a final histopathology confirmation (age range = 27–
65 years old, mean age ± standard deviation = 42 ± 9
years). Only mass-like lesions that showed strong contrast
enhancements were selected for this study. The database of
the images for each case includes one sagittal postcontrast
image slice that shows an obvious contrast enhancement and
demonstrates the maximum dimension of a mass lesion. The
size of the image is 512 × 512 pixels with a 256-gray level.

MR imaging was performed on a 1.5 T superconduc-
tive magnetic system (GE, Signa, HDx). A breast-specific
4-channel phased-array surface coil was used. Contrast
medium was injected through a hand venipuncture tech-
nique. Patients were scanned in the prone position with
bilateral breast naturally hanging into the two holes of the
coil and their feet were first placed into the machine. A cross-
sectional FSE T1WI was first employed using the following
parameters: TR = 650 ms, TE: Min Full, ETL = 2, and BW =
20.83. The cross-sectional and sagittal FSE T2WI were then
employed using the following parameters: TR = 4650 ms, TE
= 85 ms, ETL = 16 and BW = 20.83, THK = 6 mm, spacing
= 1 mm, and FOV was adjusted based on the breast size,
ranging from 18 cm to 28 cm, matrix = 320 × 224, Frep
DIR = A/P and NEX = 2. Except cross-sectional T1WI, all
other sequences were fat suppression sequence. DCE-MRI
was conducted after plain scan as following: (1) dynamic
scanning was initiated after satisfied image quality was
obtained in prescanning by simultaneously push the high-
pressure syringe button and the dynamic scan button; (2)
using MRI-specific high-pressure syringe (Medrad injector
system, Pittsburgh) to inject 0.1 mmol/kg body weight con-
trast medium gadolinium diethylenetriamine penta-acetic
acid (Gd-DTPA) using hand venipuncture technique at rate
of 3 mL/s and then inject 10 mL saline at 3 mL/s to wash the
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tube; (3) all patients accepted sagittal vibrant multitemporal
DCE-MRI using 3D Fast FSPGR pulse sequence and the
following parameters: FA = 12, BW = 83.33, matrix = 288
× 288, FOV = 38 mm, phase FOV = 0.90, Frep DIR = A/P,
multiphase = 8∼10, Zip = 2, THK = 3.4 mm and locs per
slab = 50 mm; (4) the initial section of the dynamic study
was obtained in the sagittal plane at 20 second intervals for
11 minutes. After that, cross-sectional and sagittal MRI was
employed using fat-suppressed enhanced T1WI sequence.

2.2. Initial Segmentation. Segmentation accuracy has a con-
siderable influence on the subsequent characterization used
to differentiate between benign and malignant breast lesions.
Because of this reason, an experienced radiologist is included
to identify the suspicious areas of breast lesions by firstly
locating and defining a rectangle region of interest, as shown
in Figure 2(a). The regions of interest serve as an input
to the following sections. Then a two-step segmentation
method is used to find out the accurate contour of a
lesion. FCMs clustering based method is used to produce
an initial segmentation of the ROI before the GVF snake for
refinement is carried out.

The FCMs is an unsupervised machine learner in the
pattern-recognition field and it has been widely used in
image processing as well [23]. MR images always present
overlapping intensities for different tissues because of the
noise and blur in acquisition. The borders between different
tissues are intrinsically fuzzy. The conventional (hard)
clustering methods forces pixels to belong exclusively to one
class. Therefore, fuzzy c-means clustering (FCMs) method
allows uncertain belonging by a varying membership map
and turns out to be particularly suitable for the segmenta-
tions of MR images.

In this study, the FCMs method is applied to the ROI for
building the likelihood membership map (cluster number, 2;
weighting exponent, 2; stop criteria, 0.0005, max iteration,
100). To binarize the membership map, we have referred
to some articles [10, 13] and experimentally determined a
likelihood threshold T = 0.5. Within the binary member-
ship map, the processes including hole-filling, morpholog-
ical opening, and two-dimensional connected-component
labeling (8-connected objects) are carried out to remove
the disconnections from the main lesion part. Finally, an
initial segmentation is obtained with a slightly reduced size.
Figure 2(b) shows an initial lesion segmentation using the
FCMs-based method.

2.3. GVF Segmentation. In this study, the gradient vector
flow (GVF) snake model is applied to further refine the
initial segmentation. Here the word “snake” refers to a curve
that can deform under the influence by both “internal”
and “external” forces [24]. GVF snake model are commonly
applied to medical images because they can capture the irreg-
ular shapes and shape deformations found in anatomical
structures. Its main contributions are to overcome leakage
at weak boundaries in progressing snakes into concave
boundary regions. As for the GVF snake model, the external
force field is defined as a diffusion of the gradient vectors of

a gray-level edge map derived from the image [25]. The edge
map f (x, y) derived from an image I(x, y) is defined as

f
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where μ is a regularization parameter governing the tradeoff
between the first term and the second term in (2). According
to [25], we chose μ = 0.1 experimentally for the segmenta-
tion task in our study.

A GVF snake is a parameter curve defined as

x(s) = (x(s), y(s)
)
, (3)

where s denotes an arc length parameter. The curve deforms
iteratively until reaching a balance between the internal force
Fint and the external force Fext. The internal and external
forces are

Fint = αx′′(s)− βx′′′′(s),

Fext = v
(
x, y

)
,

(4)

where α and β are weighting parameters that control the
snake’s tension and rigidity and experimentally set as 0.01
and 0 according to [24, 25]. Double and quadruple primes
represent the second- and fourth-order derivatives of x(s),
respectively. The GVF snake model is solved numerically
by discretization and iteration in similar fashion to the
traditional snake [24]. In the iterative procedure, the inter-
nal force prevents the snake contour from stretching and
bending excessive [25], while the external force pulls the
snake toward the real contour. We will set the max iterations
when the snake is iterating to reach a balance. It is hard
to reach a balance when the image is quite blurred and
complex. Figure 2(c) shows the deformation of the GVF
snakes initialized by an FCMs-based method.

2.4. Feature Extraction

2.4.1. Texture Features. Texture is one of the intrinsic
characteristics of an object, and it is important for medical
image analysis [26]. Various textural algorithms have been
proposed by researchers, such as fractal-based description,
texture spectrum, and Markov random field model [27–29].
The GLCM texture method is widely used in medical image
processing through utilizing the relative positions of pixels
[15]. The matrix element pθ,d(i, j) of the GLCM is the joint
probability density of the occurrence for a pixel pair in an
ROI with a defined distance d, direction θ, and gray levels i
and j. We calculated thirteen textural measures for the near-
est pixels (distance: 1 pixel) in four limited directions, 0◦, 45◦,
90◦ and 135◦, respectively. Thirteen features derived from
the GLCM are angular second moment, contrast, correlation,
inverse difference moment, sum average, sum variance, sum
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Figure 2: Lesion segmentation on a breast MRI scan: (a) locate a rectangle ROI box that contained a postcontrast breast MRI lesion; (b)
initial segmentation by the FCMs-based method; (c) deformation of GVF snake using FCMs-based contour for initialization; (d) radiologists’
manual delineation. The average time cost and dynamic memory cost of the method we proposed are 2.4180 seconds and 1256.75 KB.

entropy, entropy, difference average, difference variance,
difference entropy, information measure of correlation 1,
and information measure of correlation 2, respectively.
Owing to the isotropic texture of the images investigated, the
features we evaluated in the current study are the averages
over the four directions. These texture features contain some
important information on homogeneity, contrast, and other
organized structures of images.

2.4.2. Morphological Features. Eight morphological features,
including compactness, spiculation, extent, elongation,
solidity, circularity, and entropy of radial length distribution,
are selected and computed to describe the morphological
properties f as defined in the Breast Imaging Reporting and
Data System lexicon. Listed below are the definitions of these
features.

p1: Compactness

p1 = P2

4πS
, (5)

where P and S are the perimeter length and area for a
given breast MRI lesion contour, respectively.

p2: Spiculation

p2 = 1
N

N∑

i=1

|ri − ri+1|, rN+1 = r1, (6)

where N is the number of pixels on the lesion contour
and ri is the individual radial length. The individual
radial length is defined as the Euclidean distance from
the object’s center to each of contour pixels.

p3: Extent

p3 = S

Sbox
, (7)

where Sbox is the area of the smallest rectangle
containing the given lesion contour.

p4: Elongation

p4 = min(H ,L)
max(H ,L)

, (8)

where H and L are the vertical and horizontal length
of the smallest rectangle containing the given lesion
contour.

p5: Solidity

p5 = S

Sconvex
, (9)

where Sconvex is the area of the smallest convex
polygon that can contain the given lesion contour.

p6: Circularity

p6 = 1
N

N∑

i=1

ri − μr , (10)

where μr is the average of ri.

p7: Entropy of radial length distribution

p7 = −
∑

p(ri) log
(
p(ri)

)
, (11)

where p(ri) is the probability density of a given ri.
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p8: Eccentricity

Eccentricity is a scalar that specifies the eccentricity of
the ellipse that has the same second-moments as the
lesion region. It is the ratio of the distance between
the foci of the ellipse and its major axis length.

2.5. Segmentation Performance Measure. It is somewhat
difficult to appraise the segmentation performance of a com-
puterized segmentation method, because there is no golden
truth in delineating accurate contour. In this paper, we
take the manual delineation by two experienced radiologists
in interpreting BMRI as a reference standard. All images
were manually delineated by the two radiologists who were
blinded to the histological results, and the disagreements
were resolved by consensus. Figure 2(d) demonstrates the
delineation of the radiologists.

The lesion areas extracted by the FCMs-based ini-
tial segmentation and the GVF-FCMs are compared with
their counterparts segmented manually by the radiologists.
Pearson’s correlation coefficient (Pearson’s r) and Paired
Student’s t-test are used to evaluate the consistency between
computerized and manual segmentation. In the following
discussion, AC and AR denote the lesion area calculated by
computer and radiologists for a given lesion, respectively.
AC ∩ AR means an intersection set of the lesion areas
returned from both methods, while AC ∪ AR means a
union set. AOR1 and AOR2 are defined as two overlapping
measures to compare the computerized segmentation with
the radiologists’ delineation [10, 13] as follows:

AOR1 = AC ∩ AR

AR
,

AOR2 = AC ∩ AR

AC ∪ AR
.

(12)

We calculate the AOR1 and AOR2 to evaluate the segmen-
tation performance of the FCMs-based initial segmentation
and the GVF-FCMs methods, respectively. Generally, a better
segmentation attains when the AOR value approaches one.

2.6. Fisher Stepwise Discriminant Analysis Model. Discrimi-
nant analysis involves deriving a variate, which is a linear
combination of the independent variables that would dis-
criminate the best from a priori defined groups [30]. The
method transforms the coordinates of the initial data to
realize the least overlapping of the projections of data points
in different groups for maximizing the diagnostic accuracy.

2.7. Statistical Analysis. The FSDA involves entering and
removing features to get a statistically significant subset that
predicts malignancy well, according to the discriminatory
power of the subset adding to the group membership
prediction [30]. Referring to [31], we set the value of
the entering critical probability and the removal critical
probability as P = 0.10 and P = 0.15, respectively. The
FSDA is used to do the selection and classification of the
features. In this study, a single database has been used for
both training and testing, with the use of a “leave-one-out

cross validation” method to avoid overfit. All the diagnostic
performance details were calculated by the “leave-one-out
cross validation” method.

The accuracy of a model in making predictions is evalu-
ated regularly using a ROC analysis. An ROC curve is gener-
ated by combining the true positive fraction (sensitivity) and
false positive fraction (1-specificity) with different setting
decision thresholds. The area under an ROC curve (AUC)
is taken to estimate the classification accuracy. Generally, a
larger AUC stands for a better predictive performance.

3. Results and Discussion

While an accurate delineation of lesions on breast MRI is
crucial for diagnosis and associated image-guided biopsy,
a slice-by-slice manual delineation by radiologists is both
time-consuming and subject to interobserver and intraob-
server variations [32]. Our current study involves both
computerized segmentation and characterization. This study
is aimed at overcoming these problems.

3.1. Segmentation Performance. Table 1 summarizes the
mean values and standard deviations of the areas from the
lesion contours which were segmented by the FCMs-based,
GVF-FCMs and the radiologists’ manual delineation, respec-
tively. The differences between the computerized method
and radiologists’ manual delineation are analyzed using the
Pearson’s correlation coefficient (Pearson’s r) and Paired
Student’s t-test (Table 1). The original hypothesis is that there
is no significant difference between the two groups of lesion
areas segmented by different methods.

Pearson’s r between the lesion areas segmented by the
FCMs-based method and the radiologists’ manual delin-
eation was 0.891 while the paired t-test between the areas
extracted by the two methods achieves a P value of 0.105. The
result indicates that the areas worked out by the two methods
are highly correlated without a significant difference at the
averages. After refined by the GVF method, the r and
P values were both increasing, which still showed highly
correlation between the areas without a significant difference
at averages (P > 0.05). These results indicate that both
the two computerized methods have certain potentials to
help radiologists in an accurate delineation, and the GVF-
FCMs method showed the better performance among the
two methods.

Figure 3 shows the log-log scatter plot of the areas mea-
sured using the computerized method versus radiologists’
manual segmentation. The lesion area is the pixels numbers
in the lesion region. We drew the log-log scatter plot because
the range of lesion area is wide. Judged by the distribution of
the data points in Figure 3, the computerized methods have
somewhat underestimated the lesion area when compared
with the radiologists’ reference area, since the most of the
data points are distributed below the reference diagonal
line. The GVF-FCMs method has the smaller underesti-
mated. One drawback of the FCMs implementation is that
the method depends simply on the intensity information
and does not include the pixels’ spatial relationships. For
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Table 1: Areas, statistical comparisons and area overlap measures of computerized delineation and radiologists’ manual delineation.

Segmentation method
Area

(mean ± SD pixels)
Pearson’s

correlation
t-test

P value
AOR1

(mean ± SD)
AOR2

(mean ± SD)

FCM-based 1599.5 ± 1355.4 0.891 0.105 0.75 ± 0.13 0.72 ± 0.12

GVF-FCM 1815.3 ± 1722.2 0.976 0.437 0.81 ± 0.10 0.78 ± 0.08

Radiologists’ manual 2114.9 ± 2093.8 — — — —
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Figure 3: Scatter plot of the lesion areas segmented by comput-
erized and radiologists’ manual delineation. The diagonal line is
represented the most perfect segmentation performance. Square is
for areas segmented by FCMs-based initial method, circle is for areas
extracted from GVF-FCMs method.

a more complicated lesion enhancement, it is difficult for the
FCMs-based method to locate the contour that approaches
near to the realistic lesion contour. The GVF-FCMs method
improves the initial segmentation when deforming to a
balance of internal and external forces.

Figure 4 exhibits the histograms of the overlap measures
on the computerized methods: the FCMs-based and the
GVF-FCMs. It turns out that all lesions segmented by the
GVF-FCMs method have the values of AOR1 and AOR2 over
0.6. The GVF-FCMs method has the better performance in
overlap measures, too. From [10], 3D segmentation over
the threshold value 0.4 indicates that this method has a
successful segmentation of the lesion. The threshold should
be stricter in 2D segmentation and is set to 0.6. At the overlap
threshold, mass lesions were all segmented correctly after
the refinements by GVF method. Two sets of overlap value
were compared by using the Paired Student’s t-test, and the
P value between AOR1 was 0.064, while AOR2 was 0.005.
AOR2 values were found to be statistically significant in aver-
age between the two computerized segmentation methods
(P < 0.05).

3.2. Feature Selection and Performance of the Fisher Stepwise
Discriminant Analysis Model. For the computerized char-
acterization part, morphological and texture features are
assessed to find out whether they can be used for classifying
breast lesions, and whether the features from computerized
segmentation method can have a better diagnostic perfor-
mance in discriminating between benign and malignant
lesions. Within the two training sets, features extracted by the
two methods both had no statistically significant correlations
between pairs of features.

3.2.1. Features Extracted by GVF-FCMs Method. Among
two computerized segmentation methods, the GVF-FCMs
method achieves the better segmentation performance. Thus
GVF-FCMs method is therefore adopted in the follow-
ing analysis as a preferred method for the computerized
characterization. When morphological features are taken
into account alone, the classifier involves three features:
spiculation, eccentricity, and solidity, with an AUC of 0.883.
When using GLCM texture features, however, the classifier
contains four features: entropy, difference average, difference
variance and information measure of correlation 1, and the
classifier could attain an AUC of 0.921. When combining all
the morphological and texture features, five features were
selected by the classifier with the improved AUC of 0.968.
They were entropy, correlation, sum average, difference
average and solidity. The diagnostic measure details are
shown in Table 2.

3.2.2. Features Extracted by Radiologists’ Manual Delineation.
The classifier selects only one morphological feature: spic-
ulation with an AUC of 0.836. In view of the GLCM
texture features, the classifier selects three features: entropy,
difference average, and information measure of correlation 1
for ROC analysis with an AUC of 0.914. When combining
the morphological and texture features, only the three
aforementioned texture features were selected without any
morphological feature. So the AUC was the same as only
using texture features. The details of diagnostic performance
are given in Table 2.

3.2.3. Comparison of the Diagnostic Performance Based on
Computerized and Manual Segmentation Methods. Different
morphological features are selected when using different
segmentation methods. Spiculation, eccentricity, and solidity
are selected when GVF-FCMs segmentation method is
applied, whereas only the spiculation is selected by means of
radiologists’ delineations. These features are both weighting
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Figure 4: Histograms of the overlap measures on computerized methods: (a) AOR1; (b) AOR2. The closer the AOR value approximates to
one, the better the segmentation performs. The GVF-FCMs method has the better performance among the two methods.

Table 2: Diagnostic performance details of the segmentation by computerized and manual delineation methods.

Segmentation Method Features Accuracy (%) Sensitivity (%) Specificity (%)

GVF-FCM
Morphology (three selected) 83.3 84.2 81.2

GLCM (four selected) 86.7 86.8 86.3

Combing all features (five selected) 88.3 86.8 90.9

Radiologists’ manual
Morphology (one selected) 75.0 73.7 77.3

GLCM (three selected) 81.7 84.2 77.3

Combing all features (three selected) 81.7 84.2 77.3

the irregularity of the contour. Generally, a spiculated con-
tour and irregular shape are attributed to a malignant lesion
while smooth contour and circle-like shape are attributed
to a benign one. The computerized segmentation method
can improve the discriminatory power of morphological
features, comparing with the results from radiologists’
delineations.

When considering texture features, the features selected
by the two segmentation methods are nearly the same.
entropy, difference average, and information measure of cor-
relation 1 are all selected by the two methods, but difference
variance only selected by the computerized method. Entropy
is related with the heterogeneity and complexity of lesion
texture. The texture feature is presumably associated with
a smooth margin, homogeneous, and lower enhancements
of a benign lesion in comparison with an irregular margin,
heterogeneous, and higher enhancements of a malignant
lesion. The diagnostic performance is similar between the
texture features from different segmentation methods.

By combining the morphological and texture features,
none of morphological features is selected based on the
radiologists’ delineation while solidity is selected by the

computerized segmentation method. This possibly could
be due to the coarse polygon-like contour delineated by
radiologists, and the morphological features only have mod-
erate discriminatory powers. Since the GVF-FCMs method
involves stretching and bending contour until the force
balance, it can fit in with the real lesion contour well, and
therefore the features from the GVF-FCMs method are more
eligible for the classification of a breast lesion.

3.3. Comparison of the Areas under the ROC Curve. Figure 5
displays the ROC curves of the two discriminant functions.
Applying the method by Delong et al. [33], no significant
difference on the two AUCs is observed between the two
classifiers (P = 0.231). The result yields two implications:
firstly, the features extracted by the computerized segmenta-
tion method have the similar discriminant power with the
situation when the contour is given by radiologists; secondly,
the computerized characterization of a lesion probably
provides a more efficient and objective method to quantify
both the appearance (texture) and shape (morphology)
features.



8 Computational and Mathematical Methods in Medicine

100-specificity

0 20 40 60 100

Se
n

si
ti

vi
ty

80

0

20

40

60

100

80

GVF-FCM
Radiologists’ delineation 

Figure 5: The ROC curves of classifer based on FSDA method by
different features extracted by GVF-FCMs and radiologists’ manual
segmentation methods, respectively. The dotted line represented
the ROC curve from radiologists’ manual segmentation method
with AUC of 0.914. The dash line denoted the ROC curve from
computerized method (GVF-FCMs) with AUC of 0.968.

4. Conclusion

In this study, we have developed an approach based on FCMs
clustering and the GVF snake model for mass-like lesion
contour segmentation and computerized characterization on
breast MRI. The segmentation performance measures show
that the two step computerized segmentation method is an
accurate method to automatically determine a suspicious
lesion region and can help radiologists in their detec-
tion and delineation of breast MRI. At the computerized
characterization part, Fisher stepwise discriminant analysis
is used to select morphological and texture features and
make classifications with the use of a “leave-one-out cross
validation” method. The predictive performance based on
the GVF-FCMs segmentation is better than the radiologists’
manual method, but the difference is insignificant with
the use of ROC curve analysis. The application of the
breast MRI computerized segmentation and characterization
package we developed may help radiologists to quantify
the morphological and texture features and improve the
objectivity and efficiency in interpreting breast MRI. In
future, we intend to do further verification and assessment
on a larger independent database.

Appendices

A. Fuzzy c-Means Clustering Algorithm

The fuzzy c-means clustering is an unsupervised learning
method in pattern recognition [23]. The algorithm is used
to minimize the objective function J as follows:

J =
c∑

k=1

N∑

i=1

ubki‖xi − ck‖2, (A.1)

with constraints

c∑

k=1

uki = 1, 1 ≤ i ≤ N ,

uki ∈ [0, 1], 1 ≤ i ≤ N , 1 ≤ k ≤ c,

0 <
N∑

i=1

uki < N , 1 ≤ k ≤ c,

(A.2)

where N is the number of pixels in the region of interest
(ROI); c is the number of clusters (the value is set to 2); b is a
weighting exponent (A.2); xi is the gray-level of a pixel in the
ROI; ck is the cluster center (start with random assignment);
uik is the likelihood that the pixel xi belongs to cluster j; the
|| · || denotes the Euclidean distance.

The objective function may minimize only if

uki = 1
∑c

j=1

(
‖xi − ck‖/

∥
∥
∥xi − c j

∥
∥
∥
)2/(b−1) ,

1 ≤ i ≤ N , 1 ≤ k ≤ c,

(A.3)

ck =
∑N

i=1 u
b
kixi

∑N
i=1 u

b
ki

. (A.4)

The values of uki and ck will iteratively update with the (A.3)
and (A.4). The iteration will stop when the stop criterion is
reached (|Jn+1− Jn| ≤ 0.0005) or the max iteration is reached
(100).

B. Gray-Level Cooccurrence Matrix (GLCM)
and Features Extracted from GLCM

Spatial gray-level cooccurrence matrix estimates image prop-
erties related to the second-order statistics [15]. Each element
(i, j) in GLCM specifies the number of times that the pixel
with gray-level value i occurred adjacent to a pixel with value
j at a given offset (Δx,Δy). Mathematically, GLCM element
over an image S is given as

p
(
i, j
) = #

{[(
x, y

)
,
(
x + Δx, y + Δy

)] ∈ S | f (x, y
) = i, f

(
x + Δx, y + Δy

) = j
}

#S
, (B.1)
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where # represented the number of specific pixel-pair. If N is
the number of distinct gray levels of an image, we denote that

px(i) =
N∑

j=1

p
(
i, j
)
, i = 1, 2, . . . ,N ,

py
(
j
) =

N∑

i=1

p
(
i, j
)
, j = 1, 2, . . . ,N ,

px+y(k) =
N∑

i=1

N∑

j=1

p
(
i, j
)
, k = i + j = 2, 3, . . . , 2N ,

px−y(k) =
N∑

i=1

N∑

j=1

p
(
i, j
)
, k = ∣∣i− j

∣
∣ = 0, 1, . . . ,N − 1.

(B.2)

Then the thirteen texture features are calculated as
follows.

f1: Angular second moment

f1 =
∑

i

∑

j

p
(
i, j
)2
. (B.3)

f2: Contrast

f2 =
N−1∑

k=0

k2px−y(k). (B.4)

f3: Correlation

f3 = 1
σxσy

N∑

i=1

N∑

j=1

(
i j
)
p
(
i, j
)− μxμy , (B.5)

where μx and σx are the mean and standard deviations
of px, respectively; μy and σy are the mean and
standard deviations of py , respectively.

f4: Inverse difference moment

f4 =
∑

i

∑

j

1

1 +
(
i− j

)2 p
(
i, j
)
. (B.6)

f5: Sum average

f5 =
2N∑

k=2

kpx+y(k). (B.7)

f6: Sum variance

f6 =
2N∑

k=2

(
k − f5

)2
px+y(k). (B.8)

f7: Sum entropy

f7 = −
2N∑

k=2

px+y(k) log
(
px+y(k)

)
. (B.9)

f8: Entropy

f8 = −
∑

i

∑

j

p
(
i, j
)

log
(
p
(
i, j
))
. (B.10)

f9: Difference average

f9 =
N∑

i=1

(
i− μ

)2
px(i), (B.11)

where μ is the average of p(i, j).

f10: Difference variance

f10 =
N−1∑

k=0

(k − d)px−y(k), (B.12)

where d is the mean of px−y .

f11: Difference entropy

f11 = −
N−1∑

k=0

px−y(k) log
(
px−y(k)

)
. (B.13)

f12: Information measure of correlation 1

f12 =
f9 +

∑
i

∑
j p
(
i, j
)

log
(
px(i)py

(
j
))

max
(
−∑ j px(i) log

(
px(i)

)
,−∑ j py(i) log

(
py(i)

)) .

(B.14)

f13: Information measure of correlation 2

f13 =
√

1− exp
(−2

(
E − f8

))
, (B.15)

where E = −∑i

∑
j px(i)py( j) log(px(i)py( j)).
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