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Abstract

In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative
fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-
acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively
to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation
versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is
expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice
lacking a single cis element 21.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed
in late-stage erythroblasts, the 21.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked
differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the 21.8 kb site
selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the
locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating
specific steps in the mechanism by which a critical transcription factor is repressed.
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Introduction

Metazoan development is characterized by complex transcrip-

tional programs specified by gene regulatory networks [1,2].

Transcription factors in these networks occupy specific cis elements

at target gene loci where they modulate chromatin remodeling and

modification, and thereby transcription. The covalent modifica-

tion of histones to yield specific histone marks promotes either the

activation or repression of transcription [3]. Models of gene

regulation have led to an attractive paradigm in which repression

occurs in sequential stages of increasing stability [4]. While

transcription factors bind and recruit chromatin-modifying and

remodeling proteins, the relative contribution of individual cis

elements residing within clusters of cis elements to the transcrip-

tional control of endogenous loci is incompletely understood.

GATA factor cross-regulation represents an instructive model

system for investigating the contribution of individual cis elements

to the initiation and maintenance of transcriptional repression.

The GATA family of transcription factors plays diverse roles in

multiple developmental contexts [5]. GATA factors are often

expressed in an overlapping but reciprocal pattern, such that

expression of one GATA factor increases as expression of

another decreases. For example, GATA-1 directly represses Gata2

transcription via displacing GATA-2 from chromatin sites at its

own locus, a process termed a ‘‘GATA Switch’’ [6,7].

GATA factor function has been extensively studied in the

context of hematopoiesis, where GATA-1, GATA-2, and GATA-3

are key regulators. GATA-2 has a broad role in hematopoietic

development, as demonstrated by impaired hematopoiesis in Gata2

knock-out mice resulting in lethality during midgestation [8,9].

GATA-1 is critical for the production of red blood cells and

platelets [10], and GATA-3 is required for specification of T cells

[11]. Forced expression of GATA-2 blocks erythroid development

[12,13,14], leading to a model in which GATA-1-mediated

repression of Gata2 through specific cis elements is required for

differentiation. Genome-wide studies revealed GATA-1 occupan-

cy at only a small subset of cis elements in the genome [15]. These

cis elements exist as single or more complex GATA motifs,

although the functionality of different permutations of GATA

motifs at endogenous loci has not been investigated.

The role of individual GATA-binding sites in gene regulation

has been investigated extensively at the Gata2 locus, where several

conserved GATA motif-containing regions span approximately

100 kb of the locus [16]. To test whether GATA switch sites

function collectively or independently to regulate Gata2 expression,

and to investigate the underlying mechanisms, we generated mice
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lacking one of these regulatory regions residing 21.8 kb upstream

of the Gata2 promoter. We find that while this site is not essential

for Gata2 expression in hematopoietic progenitors or initiation of

Gata2 repression during erythropoiesis, it maintains Gata2 re-

pression in erythroblasts. Molecular analyses demonstrate that loss

of the 21.8 kb site reduces GATA-1 binding, allows for increased

RNA Polymerase II (Pol II) occupancy at the locus, and results in

changes in select histone marks. Further, elimination of the

21.8 kb site dysregulates Gata2 transcriptional control, disrupts

the GATA-2-dependent genetic network, and interferes with red

blood cell maturation. These results highlight the qualitatively

distinct activities of individual cis elements in specific aspects of

gene repression during development.

Results

Targeted deletion of the Gata2 21.8 kb cis element
Previous studies in erythroid cell lines [17–22] and transgenic

mouse models [23–25] have identified five GATA-binding regions

upstream and in an intron of the Gata2 locus (Figure 1A). It

remains unknown whether these regions function collectively to

confer Gata2 transcriptional regulation, or if individual regions

function uniquely at specific developmental stages and/or in select

cell types. The site at 21.8 kb is of considerable interest, since it

possesses strong GATA-2 binding activity that is lost upon

repression [17]. Thus, we reasoned that removal of this site would

phenocopy GATA-2-deficiency. As definitive analysis of cis

element function requires genetic ablation of endogenous loci,

we generated a mouse strain lacking the palindromic GATA-

binding site 1.8 kb upstream of the Gata2 transcriptional start site

(D-1.8 allele) (Figures 1B, S1). Mice homozygous for the D-1.8

allele were born at expected Mendelian ratios, as assessed by PCR

genotyping (Figure 1C.), implying that embryonic development

was largely unaffected. Morphologically, E12.5 wild-type and

mutant embryos were similar (Figure S2A), and adult mutant mice

lacked gross abnormalities (data not shown).

We analyzed fetal liver erythropoiesis in D-1.8 mice for

alterations in Gata2 expression. Using fluorescence-activated cell

sorting with the erythroid markers CD71 and Ter119 [26], we

isolated cells from Stages I, II, III, and IV, corresponding to

CD71loTer1192 (committed erythroid progenitors, Stage I),

CD71hiTer1192 (proerythroblasts, Stage II), CD71hiTer119+

(basophilic erythroblasts, Stage III), and CD71loTer119+ (late

erythroblasts, Stage IV) (Figure 2A). In wild-type mice, Gata2 was

most highly expressed in Stage I progenitors, after which it was

repressed in Stages II, III, and IV (Figure 2B). Gata2 expression

was modestly increased in Stage IV, to about one fifth of that

observed in Stage I. In D-1.8 mice, Gata2 expression was normal in

Stage I, and decreased normally in Stage II and III, indicating that

the 21.8 kb site is not required for initiation of GATA-1-mediated

repression. However, Gata2 expression was significantly elevated in

Stage IV cells from the D-1.8 versus wild-type mice (p#0.05)

(Figure 2B). Thus, the 21.8 kb site is selectively required to

maintain Gata2 repression in Stage IV erythroblasts.

Impaired erythroid development in D-1.8 mutant mice
To determine if GATA-2 derepression has functional conse-

quences in erythropoiesis, we analyzed erythroid cells in E12.5

fetal livers from wild-type and D-1.8 mice. Total cell numbers

from wild-type and mutant fetal livers were similar (Figure 2C).

Cytospins of peripheral blood and fetal liver cells from wild-type

and mutant E12.5 embryos had similar appearance upon May-

Gruenwald-Giemsa staining (Figure S2B). At this stage in

development, most of the embryonic blood is comprised of

primitive erythroid cells. However, some enucleated definitive cells

were detected in both wild-type and D-1.8 embryos (Figure S2B).

Hematopoietic colony assays from wild-type and D-1.8 E14.5 fetal

livers revealed that the total number of colonies and lineage

distribution of colony types (representing multipotential and

lineage-restricted progenitors) were similar (Figure S2C). Exami-

nation of cells spanning different stages of erythroid development

revealed no difference in the absolute number of Stage I, Stage II

or Stage IV erythroid progenitors. However, the absolute number

of Stage III erythroid progenitors was increased significantly

(p#0.05) in the D-1.8 mice (Figure 2D). These results demonstrate

that at E12.5, Stage III progenitors from D-1.8 mice expand

relative to both their precursors and progeny, implying a block in

the Stage III to Stage IV transition. The increased number of

Stage III progenitors is in accordance with other models of

ineffective erythropoiesis, in which impairment of erythroid cell

maturation is accompanied by a compensatory increase in earlier

red blood cell precursors [27]. The timing of this block

corresponds to the stage at which Gata2 is reactivated

(Figure 2B), indicating that Gata2 dysregulation perturbs erythroid

development. To examine this further, we utilized red blood cell

enucleation as a cellular read-out of erythroid differentiation.

Enucleation was measured using Draq5 to quantitate DNA

content in Stage IV cells from wild-type and mutant embryos (a

representative FACS plot is shown in Figure S2D). Stage IV cells

in D-1.8 embryos contained a significantly reduced (.2-fold,

p#0.05) proportion of enucleated cells compared to those from

wild-type, demonstrating that mutant cells fail to differentiate

efficiently upon reactivation of Gata2 expression (Figure 2E).

Gata2 reactivation in D-1.8 mice dysregulates GATA
factor target genes

We reasoned that aberrant expression of GATA-2 target genes

in D-1.8 mice might underlie the block in the transition from early

to late erythroblasts. Increased Gata2 expression could reactivate

GATA-2 target genes expressed in early erythropoiesis, including

those associated with proliferation, at a stage in which cells should

exit the cell cycle. Alternatively, increased Gata2 expression could

Author Summary

Different cell types are formed and maintained by proteins
called transcription factors that directly bind to specific
DNA sequences to activate or repress gene expression.
While numerous DNA sequences bound by transcription
factors are established, many questions remain unan-
swered regarding how they function at specific sites
located at distinct chromosomal regions. As a model to
study this process, we examined the regulation of a gene
controlling red blood cell development, Gata2, by the
transcription factor GATA1. In the DNA sequence upstream
of Gata2, there are several sites that GATA1 is known to
bind to; however, it is unclear whether these binding sites
work together or independently to control expression of
Gata2. To study this, we engineered mice to specifically
remove one of these GATA1-binding sites. We found that
removal of this single site reactivated expression of Gata2
in a specific stage of red blood cell development where
Gata2 is normally not expressed, caused a block in
differentiation of these cells, and changed the histone
modification pattern specifically in the region upstream of
Gata2. This work supports a model in which individual
transcription factor binding sites within regions of multiple
binding sites can independently and distinctly regulate
gene expression during development.
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aberrantly repress late erythroid genes necessary for efficient

differentiation. Finally, abnormal reactivation of Gata2 expression

in cells expressing GATA-1 and other transcription factors

involved in specifying alternate lineage programs could lead to

the aberrant transcription of non-erythroid genes. To distinguish

among these possibilities, we quantified gene expression in fetal

liver erythroid cells from E12.5 mice. Several gene expression

changes were apparent in Stage IV erythroblasts (Figure 3A).

Expression of Gata1 and Eraf, a globin chain stabilizing protein,

were reduced by ,40% (p#0.01) and ,50% (p#0.05), respec-

tively, in the late erythroblasts of D-1.8 versus wild-type mice. In

contrast to Gata1 and Eraf, most late erythroid genes examined,

including the transcription factors Scl, Eklf, and the heme synthesis

enzyme Alas2, were expressed at similar levels, indicating that

erythroid genes are differentially sensitive to Gata2 reactivation.

Whereas expression of b-like globin genes (Hbb-y, Hbb-bh1, Hbb-b1)

was normal (Figure 3B), expression of a-globin (Hba-a1) was

reduced by 50% (p#0.05) and f-globin (Hba-x) was increased by 2-

fold (p#0.05) (Figure 3B). We also examined two genes expressed

early in erythropoiesis. Both cMyb and the established GATA-2

target cKit were upregulated 4-fold (p#0.05) (Figure 3C). In mast

cells and megakaryocytes, GATA-2 is expressed in combination

with other transcription factors including SCL and GATA-1. As

GATA-2 is aberrantly coexpressed with these factors in the D-1.8

erythroblasts, we examined select GATA-2 target genes from the

mast cell and megakaryocyte lineages in our wild-type and mutant

erythroblasts. Cpa3, active in mast cells, and cMpl, expressed in

megakaryocytes, were upregulated 4- and 2-fold, respectively, in

mutant versus wild-type erythroblasts (p#0.05) (Figure 3D). These

results indicate that Gata2 reactivation is coupled with aberrant

GATA-2 target gene expression. Given the dysregulation of genes

associated with early progenitor proliferation, erythroid matura-

tion, and alternate lineage fate, it is likely that these factors

contribute in aggregate to the block in erythroid development.

Defective stress erythropoiesis in D-1.8 mice
In contrast to the E12.5 fetal liver, erythroid progenitors isolated

from the bone marrow of adult wild-type and D-1.8 mutant mice

(Stage II–IV) did not reveal differences in Gata2 expression (data

not shown), indicating that Gata2 transcription is differentially

regulated during fetal and adult erythropoiesis. Adult erythropoi-

esis has several unique attributes relative to the fetal process,

including differences in proliferative capacity and rate of transit

through the differentiation program [28,29]. Such differences

might explain the ontogenic specificity of Gata2 reactivation. We

reasoned that stress erythropoiesis in the adult, which resembles

fetal liver erythropoiesis [28–32], might shift the regulation of

Gata2 expression to a state mimicking that in the fetus. To establish

Figure 1. Generation of mice lacking the 21.8 kb site of the Gata2 locus. Diagram of GATA binding sites involved in the regulation of
hematopoietic expression of Gata2 from its two alternate first exons, 1S and 1G, and their functional categories as defined by GATA-factor binding in
G1E cells expressing only GATA2 and G1ER cells expressing only GATA1 (A). The region of the Gata2 locus targeted in generation of mouse strain
deficient for a palindromic GATA binding site 1.8 kb upstream of the Gata2 transcriptional start site, referred to as the D-1.8 allele (B). PCR genotyping
of mice deficient for the 21.8 GATA-binding site and littermate controls (C).
doi:10.1371/journal.pgen.1001103.g001
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stress erythropoietic conditions, peripheral anemia was induced

through phenylhydrazine-mediated red blood cell lysis. Examina-

tion of erythropoietic recovery in D-1.8 mice revealed no

differences in hematocrit, implying that there is no deficiency in

recovery from acute anemia in these mice (data not shown).

However, analysis of erythropoietic progenitor production in the

bone marrow during recovery revealed that the absolute num-

ber of Stage III erythroid progenitors was significantly increased in

D-1.8 mice (p#0.05) (Figure 4A), while the number of Stage IV

erythroid progenitors was similar, again indicating a block in the

transition from Stage III to Stage IV. The increased number of

Stage III cells is likely an indirect effect due to the increased

sensitivity of D-1.8 mice to stress-induced ineffective erythropoiesis

[27]. Expression analysis of sorted populations from the bone

marrow of these mice showed that Gata2 transcription is increased

significantly (p#0.05) in Stage IV cells from D-1.8 mice

Figure 2. Alterations in Gata2 expression in late erythroid development in D-1.8 mice. Representative FACS plots of E12.5 fetal liver cells
stained for CD71 and Ter119 from wild-type and D-1.8 embryos (A). Gata2 expression in Stage I through Stage IV sorted erythroid cells from wild-type
and D-1.8 embryos normalized to b-actin expression (B). Total fetal liver cellularity in wild-type and D-1.8 embryos (C). Absolute number of cells in
Stage I through Stage IV in fetal liver cells from wild-type (n = 4) and D-1.8 embryos (n = 3) (D). Percentage of Stage IV cells that are enucleated
(negative for Draq5 staining) from wild-type (n = 8) and D-1.8 (n = 8) embryos (E).
doi:10.1371/journal.pgen.1001103.g002
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(Figure 4B). These results mimic those obtained with E12.5 fetal

liver (Figure 2B,D), indicating that the 21.8 kb site controls Gata2

expression in both stress and fetal erythropoiesis.

D-1.8 cells possess altered nucleoprotein architecture of
the Gata2 locus

Gata2 is transcribed from two alternate promoters, termed 1S

and 1G, leading to two transcripts with different first exons [33].

To determine whether the loss of Gata2 repression in D-1.8

erythroid cells (Figure 5A) reflects increased transcripts derived

from one or both of the promoters, we used primers specific for

mature forms of the 1S and 1G transcripts. The majority of Gata2

transcripts expressed in Stage I were derived from the 1G

promoter and were repressed in Stage II–IV similarly in wild-type

and D-1.8 cells (Figure 5B). mRNA expression from the 1S

promoter was increased nearly 8-fold (p#0.05) in D-1.8 Stage IV

cells relative to Stage I cells. While wild-type cells exhibited

increased 1S-derived mRNA at Stage IV relative to Stage I, this

increase was significantly smaller (Figure 5C). Quantitation of

primary, unspliced transcripts derived from the 1S promoter

revealed an even more striking increase in 1S-derived transcript

from D-1.8 Stage IV cells (,10-fold relative to Stage I) compared

to wild-type cells from the same stage, which did not demonstrate

any appreciable increase (p#0.05) (Figure 5D). Together, these

results demonstrate that loss of the 21.8 kb site selectively

reactivates transcription from the 1S promoter in erythroid cells.

As expected, quantitative chromatin immunoprecipitation

(ChIP) analysis of E14.5 fetal liver cells demonstrated reduction

of GATA-1 occupancy at the 21.75 kb (used as a surrogate for

measuring occupancy at the deleted 21.8 kb site) and the 22.8 kb

sites (p = 0.057 and 0.058 respectively) and the proximal GATA-

binding regions at 23.9 kb, (p#0.01); occupancy was not

significantly altered at the distal 277 and +9.5 kb sites

(Figure 6A). ChIP analysis of Pol II demonstrated significantly

increased occupancy at all sites examined upon mutation of the

21.8 kb site, with notable increases at the 277 kb enhancer

(p#0.01), the 21.75 kb site (p#0.01) and the 1G promoter

(p#0.01) (Figure 6B). Importantly, Pol II occupancy of a distant

gene (RPII215) did not change upon loss of the 21.8 kb site

(Figure 6B), providing evidence for locus specificity. ChIP analysis

of GATA-2 occupancy yielded signals near background levels,

consistent with GATA-2 expression being below the limit of

detection in this assay (data not shown). Average preimmune

values for the wild-type and D-1.8 cells were 0.001860.00027 and

0.004160.0017, respectively.

To analyze histone modifications within the erythroid popula-

tions in which we observed an altered phenotype on removal of

the 21.8 kb site (Figure 2), we performed quantitative ChIP on

sorted fetal liver Stage III and IV cells. We quantitated dimeH3K4

and trimeH3K27, two marks shown to be associated with

repression at the Gata2 locus [17,21,34]. dimeH3K4 was

significantly reduced at the 21.75 kb site, neighboring proximal

regulatory regions, and the 1S promoter in both Stage III and

Stage IV D-1.8 cells (p#0.05) (Figure 7A). The repressive mark

trimeH3K27 was decreased to a small extent at the promoters in

Stage III D-1.8 cells (p#0.05) (Figure 7B). Preimmune values were

similar between wild-type and 21.8 samples (Figure 7C). These

results in primary erythroid progenitors provide direct evidence

Figure 3. Disrupted gene expression in D-1.8 erythroblasts. Relative expression of genes in Stage IV sorted erythroid cells from wild-type and
D-1.8 embryos; genes expressed in late erythropoiesis (A), globin genes (B), genes expressed in early erythropoiesis (C), and genes expressed in other
lineages (D).
doi:10.1371/journal.pgen.1001103.g003
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that the 21.8 kb cis element contributes to the maintenance of the

dimeH3K4 mark in erythroid cells.

Contribution of the dimethylH3K4 modification to transcrip-

tional regulation is incompletely understood [35–37]. By contrast,

the trimethylH3K4 mark is thought to play a critical role in

promoting gene activation [38,39]. Also, recent attention has been

focused on the monomethylH3K4 mark as an important regulator

of enhancer elements [38,40]. We reasoned that loss of

dimethylH3K4 might play an indirect role by providing a

substrate for increases in the mono- or trimethyl forms of

H3K4. However, ChIP using E14.5 whole fetal liver cells revealed

that the levels of trimeH3K4 were unchanged at all sites examined

(Figure S3A). Even more strikingly, the levels of monomeH3K4

were reduced at the 22.8 (p#0.05) and 21.75 kb sites (p#0.01),

as well as the 1G promoter (p#0.05) (Figure S3B), similar to the

reduction in dimeH3K4 observed in whole fetal liver cells (data

not shown) and in sorted cells (Figure 7). Total H3 and preimmune

values for ChIP using whole fetal liver cells were similar between

wild-type and D-1.8 samples (data not shown).

These data indicate that loss of GATA-1 binding at the deleted

21.8 kb cis element leads to decreased GATA-1 occupancy at sites

up to several kilobases away, reductions in dimeH3K4 and

monomeH4K4 marks in the regulatory regions, and increased

RNA Pol II occupancy. We propose a model in which this altered

nucleoprotein structure favors a transcriptionally active locus,

thereby permitting Gata2 reactivation.

CpG island methylation of the Gata2 1S promoter is
independent of the 21.8 site

The Gata2 locus contains four CpG islands [17] located at the

22.8 kb GATA-binding region, both the 1S and 1G promoters,

and an unclassified region between these promoters (Figure 8A).

Stable repression at loci characterized by CpG-rich promoters is

thought to depend, in part, upon methylation of these promoters

[4,41]. In addition, tissue specific gene silencing of Gata2 has been

correlated with promoter methylation in some tissues [42,43].

Thus, we tested whether methylation of the 1S promoter is

important for stable repression in erythroid cells and whether the

21.8 kb cis element maintains repression through such a

mechanism. Bisulfite sequencing was utilized to quantitate

promoter methylation of a 39 section of the 1S CpG island within

sorted populations of Stage II–IV erythroid progenitors from wild-

type and mutant mice. In wild-type mice, the CpG island located

at the Gata2 1S promoter was largely unmethylated in Stage II,

Stage III, and Stage IV progenitors, with an average methylation

of 5.2%, 8.9%, and 7.1%, respectively (Figure 8B). As no specific

residues were hypermethylated (Figure S3C), these data imply that

methylation of the 1S CpG island is not important for

maintenance of repression in these cells. In D-1.8 mice, the 1S

CpG island displayed similar levels of methylation in Stage II,

Stage III, and Stage IV progenitors (5.9%, 8.2%, and 7.1%,

respectively, Figure 8B). Thus, the stable repression of Gata2 does

not require DNA methylation of the 1S CpG island, and the

21.8 kb site maintains repression in Stage IV erythroblasts

through other mechanisms including regulation of transcription

factor occupancy, histone modifications, and Pol II access.

Discussion

We have described a loss of function strategy in mice to establish

definitively whether one of the cis elements previously implicated

in the control of Gata2 [17,19,21] functions independently or

collectively with other cis elements to regulate Gata2 transcription

in vivo. Unexpectedly, the endogenous 21.8 kb site is dispensable

for activation of Gata2 and the initiation of repression, but instead

selectively maintains Gata2 repression in terminally differentiating

cells. Deletion of the 21.8 kb site reactivates Gata2 expression

resulting in an erythroid maturation block, likely due to improper

regulation of the reciprocally controlled Gata1, genes involved in

globin synthesis, genes expressed earlier in erythropoiesis, and

genes associated with other hematopoietic lineages.

While one or more additional GATA-binding sites in the locus

must contribute to the initiation of repression, we propose that

maintenance of repression is mediated through GATA-1 binding

at the 21.8 kb site of the Gata2 1S promoter. In a wild-type

setting, transcription factor binding and histone modifications lead

to Pol II expulsion in a locus-wide manner to establish stable

repression (Figure 8C). In the absence of the 21.8 kb cis element,

GATA-1 occupancy is lost at this site. Our results demonstrate

that locus-wide Pol II expulsion requires maximal GATA-binding

at the 59 proximal regulatory regions, highlighting a critical role

for the 21.8 kb site in regulating Pol II occupancy. The loss of

GATA-1 occupancy in the absence of the 21.8 kb site results in a

reduction in one of the marks associated with repression at this

locus, dimeH3K4, while having minimal effects on another

repressive mark, trimeH3K27. Intriguingly, dimeH3K4 decreases

in a manner consistent with expectations from studies in cultured

cells [17,21]. While this mark is commonly associated with

Figure 4. Gata2 dysregulation during stress erythropoiesis in D-
1.8 mice. Total number of erythroid progenitors in the bone marrow of
wild-type (n = 4) and D-1.8 (n = 6) mice 4 days post-phenylhydrazine
injection (A). Gata2 expression in Stage III and Stage IV erythroid cells
sorted from the bone marrow of phenylhydrazine-treated wild-type and
D-1.8 mice (B).
doi:10.1371/journal.pgen.1001103.g004
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Figure 5. Promoter usage in D-1.8 Gata2 dysregulation. Total Gata2 mRNA (A), mRNA selectively arising from the 1G (B) or the 1S (C) promoter,
and primary, unspliced transcript arising from the 1S promoter (D) in Stage I through Stage IV sorted erythroid cells from wild-type and D-1.8
embryos at E14.5.
doi:10.1371/journal.pgen.1001103.g005

Figure 6. Loss of the 21.8 kb site leads to increased RNA Pol II occupancy of the Gata2 locus. Quantitative ChIP analysis across the Gata2
locus using antibodies to GATA-1 (A) and RNA Pol II (B) in whole fetal liver cells from wild-type and D-1.8 embryos at E14.5. Calculations were derived
using percentage of input and were normalized using relative units which were determined by defining 9% input sample as 1.0.
doi:10.1371/journal.pgen.1001103.g006
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activation in most contexts, recent genome-wide analysis studies

have implicated this mark in both activation and repression

[38,39], and therefore our understanding of the functional

consequences of this mark seems incomplete [35–37]. Two

possibilities may account for the similarity of the dimethylH3K4

level in D-1.8 cells between repressed (III) and reactivated (IV)

stages. First, dimethylH3K4 may not be the critical modification

mediating maintenance of repression. Alternatively, other stage-

specific factors in the nuclear milieu may lead to differential

sensitivities to dimethylH3K4 between the repressed (III) and

reactivated (IV) stages.

Substantial reduction in both dimeH3K4 and mono-

methylH3K4 were observed upon loss of the 21.8 kb site without

a concomitant increase in trimethylH3K4. These findings suggest

that the methylation states of H3K4 are regulated independently

and locally through complexes recruited to the 21.8 kb GATA-

Figure 7. Loss of the 21.8 kb site alters dimeH3K4 and trimeH3K27 marks in Stage III and IV erythroblasts. Quantitative ChIP analysis
across the Gata2 locus using antibodies to dimeH3K4 (A) and trimeH3K27 (B) and preimmune (C) in Stage III and Stage IV cells sorted from wild-type
and D-1.8 embryos at E14.5. Calculations were derived using percentage of input and were normalized using relative units which were determined by
defining 9% input sample as 1.0.
doi:10.1371/journal.pgen.1001103.g007
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binding site. These observations are in accordance with the finding

that dimeH3K4 positive, trimethylH3K4 negative, marks are

present at a subset of developmentally regulated hematopoietic

genes [44]. Thus, our data highlight a potential role for these

H3K4 marks in regulating transcription. It is interesting to note

that the trimethylK27 mark, associated with GATA-1-mediated

repression of the Gata2 locus [34], is not affected by the 21.8 kb

GATA-binding site. In addition, reduction of H3K27 trimethyla-

tion, widely accepted as a repressive mark [45], does not appear to

be required to reactivate gene expression at the Gata2 locus,

perhaps indicating that it is involved selectively in the initiation of

repression. Recent genome-wide analysis has also shown that

H3K27 methylation is not merely present or absent, but rather

increases quantitatively as the activity of the gene decreases

[38,40], suggesting that the level of transcriptional reactivation

observed is within the range allowed by the H3K27 methylation

level at this locus. Finally, in many cases, CpG rich promoters

require hypermethylation of associated CpG islands for stable

repression [4,37]. We find that the CpG island at the Gata2 1S

promoter lacks high levels of methylation during stable repression,

and that loss of the 21.8 site does not affect methylation levels.

This data further supports a model in which 21.8 kb site-

dependent histone marks maintain stable repression.

We propose therefore that loss of GATA-1 binding and key

repressive marks, including dimethyl- and monomethyl-H3K4,

result in a locus permissive for Pol II occupancy and reactivation of

transcription. This model predicts that a specific protein or

proteins are recruited by GATA-1 to the 21.8 kb site to maintain

repressive chromatin structure. GATA-1 is known to interact with

CBP [46], HDACs 1 and 2 [47,48], LSD1 [49], BRG1 [50], and

polycomb repressive complex 2 (PRC2) [34]. As no GATA-1-

interacting proteins have been reported that possess the requisite

methyltransferase activity to establish the dimeH3K4 histone mark

that is lost in the 21.8 kb mutant, novel GATA-1-containing

complexes may be required to maintain the 21.8 kb site-

dependent histone marks. Ongoing genetic ablation studies

examining the contribution of the other known GATA-binding

regions to Gata2 regulation and local chromatin architecture will

be important for understanding the control of this complex locus.

Studies in multiple systems have led to a model of sequential

gene repression during development [4], separable into distinct

phases. Reversible repression is replaced by epigenetic mecha-

nisms that alter the chromatin structure at the locus though

modifications of histones, and in some cases DNA, to maintain

stable repression. The results described herein support such a

model and characterize molecular mechanisms associated with the

Figure 8. Gata2 promoter methylation does not require the 21.8 kb site. CpG island locations within the Gata2 locus (A). Percentage of CpG
methylation within the 39 region of the 1S promoter in Stage II, III and IV erythroid cells from E14.5 wild-type and D-1.8 fetal liver (B). A model of the
maintenance of Gata2 locus repression, mediated through maximal GATA-1 binding, repressive histone marks (purple), and complete Pol II expulsion.
In the absence of the 21.8 kb site, GATA-1 binding is diminished, leading to a reduction in repressive histone marks (transparent) and allowing Pol II
occupancy (C).
doi:10.1371/journal.pgen.1001103.g008
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selective maintenance of repression of an endogenous target gene

by an individual cis element to confer normal developmental

control.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and the appropriate committee approved all

animal work.

Generation of mice containing Gata2 D-1.8 knock-in
allele

Briefly, to generate the 21.8 kb knock-in allele, we replaced the

palindromic GATA sites (AGATAAGGCTTATCA) with two SalI

sites in order to clone in a Neo resistance cassette flanked by loxP

sites. Once the neo cassette is removed, the locus contains a single

loxP site flanked by SalI sites. The new sequence does not contain

any binding motifs known to be involved in hematopoietic

development. In more detail, we first inserted a HpaI site into

pBSK between NotI and SacI with an oligo. Then, we cloned a

27.2 kb to intron 1S fragment of the Gata2 locus into pBSK with

KpnI and HpaI. We then replaced the two palindromic WGATAR

sites with a Sal I site via PCR and replaced the wild-type XbaI to

NdeI fragment with this mutated version. Then, we cloned HSV-

TK cloned into the SacII site of pBSK. Following this, we cloned a

second SalI site into the XbaI site of pflox21 with an oligo and used

the flanking SalI sites to clone this loxP-PGKneo-loxP cassette into

the SalI site of the Gata2-containing pBSK (Figure S1A). We

screened targeted CJ7 ES clones by PCR and confirmed correct

targeting by Southern blotting. We used standard blastocyst

injection techniques to generate chimeric mice and screened F1

pups for germline transmission using Southern blotting (Figure

S1B,C). In some mice, the loxP-neomycin resistance gene was

deleted by crossing with Gata1-Cre mice, which were of CD1/

Swiss-Webster background. We confirmed Cre-mediated excision

of neo from these mice using PCR and all further genotyping was

performed by PCR (Figure 1C). Mice were backcrossed onto a

C57/Bl6 background for a minimum of 6 generations and were

housed in a specific pathogen-free animal facility.

Fetal liver and bone marrow sampling
Fetal liver cells were obtained from embryos at E12.5 and E14.5

after timed matings. Mouse bone marrow cells were obtained from

8- to 12-week-old animals by crushing femurs and tibias with

either Iscove modified Dulbecco medium (IMDM) or Phosphate

Buffered Saline (PBS) supplemented with 2% fetal calf serum

(Mediatech, Herndon, VA). Single cell suspensions of fetal livers

and spleens were made by passage through 70 micron nylon mesh

(Sefar America, Kansas City, MO) in PBS supplemented 2% fetal

calf serum (Mediatech, Herndon, VA). Cells were kept on ice until

use and counts were performed using a Beckman Coulter AcT10

hematological analyzer.

Real-time reverse-transcriptase PCR
RNA was prepared from the described populations using the

Trizol Kit (Invitrogen, San Diego, CA), DNAseI treated by RQ1

RNase-Free DNase (Promega, Madison, WI) and quantified.

cDNA was synthesized using 1 mg of RNA with the iScript cDNA

Synthesis Kit (Biorad, Hercules, CA). Typically, 1 ml of cDNA was

then used as a template for quantitative PCR using the iQ SYBR

Green Supermix (Biorad, Hercules, CA) in an iCycler thermo-

cycler (Biorad, Hercules, CA). Primer sequences can be found in

Text S1. Triplicate data sets were generated and results were

normalized to b-actin reactions run in parallel.

Complete blood count
Whole PB was analyzed on a Beckman Coulter AcT10

hematological analyzer. White blood cell and progenitor subsets

were analyzed from peripheral blood by staining with Gr-1 and

Mac1 or CD3 and B220 after red blood cell lysis using ACK

(NH4Cl) lysis buffer.

Flow-cytometric analysis and cell sorting
All antibodies for FACS were obtained from Pharmingen (San

Diego, CA) or eBiosciences (San Diego, CA), and the following

clones were used; Ly-76 (Ter-119), CD71 (C2), CD117 (2B8).

Antibodies to surface markers of interest were used at 1:60 dilution

and after 30–60 minutes unbound antibody was washed away. In

the case of biotinylated antibodies, streptavidin conjugated to

various fluorochromes was added for the last 15–30 minutes of

antibody incubation at 1:100 dilution. For cell sorting experiments

of erythroid progenitor subsets, fetal liver cells were stained

with antibodies to CD71 and Ter119, and 7AAD was added to

allow for exclusion of dead cells during sorting. For examination

of enucleation, cells were stained with CD71 and Ter119 as

above and incubated with Draq5 (Biostatus Limited, Leicester-

shire,United Kingdom) as per manufacturers instructions before

analysis.

Quantitative chromatin immunoprecipitation (ChIP)
assay

Rabbit anti-GATA-1 and anti-GATA-2 polyclonal antibodies

have been described previously [16,21,51]. Rabbit anti-Pol II (N-

20, sc-899) was from Santa Cruz Biotech. Rabbit anti-acetyl-

histone H3 (#06-599), anti-trimethyl-histone H3 (Lys 9) (#07-

442), anti-trimethyl-histone H3 (Lys 27) (#07-449) and anti-

dimethyl-histone H3 (Lys 4) (#07-030) were from Millipore. Real-

time-PCR-based quantitative chromatin immunoprecipitation

(ChIP) analysis was conducted as described [52]. Single-cell

suspensions were isolated from E14.5 wild-type and D-1.8 fetal

liver cells, respectively, and crosslinked with 1% formaldehyde.

Samples were analyzed by real-time PCR (ABI Prism 7000) using

primers designed by PrimerExpressTM 1.0 software (PE Applied

Biosystems) to amplify regions of 75–150 bp that overlap with the

appropriate motif. Product was measured by SYBR Green

fluorescence in 20 ml reactions, and the amount of product was

determined relative to a standard curve generated from titration of

input chromatin. Calculations were derived using percentage of

input and were normalized using relative units which were

determined by defining 9% input sample as 1.0. Analysis of

dissociation-curves post-amplification showed that primer pairs

generated single products.

Bisulfite sequencing
Bisulfite treatment of genomic DNA was performed as

previously described using the Qiagen EpiTect Bisulfite Kit as

per the manufacter’s instructions. Sequence-specific PCR of the

bisulfite-treated DNA was performed using primers specific to the

murine Gata2 1S promoter (outside primers: F, 59- TTGTGTGG-

TGAGGGTGTAG-39, R, 59- CAAATTTCTTTCCCTAT-

TTTCT-39; inside primers: F, 59- TAGGTGGGGGAGAGTG-

TAG -39, R, 59- CAAATTTCTTTCCCTATTTTCT -39. The

PCR fragments were sub-cloned into the pCRH2.1-TOPOH
vector (Invitrogen) and transformed into DH5a E. coli cells.

Miniprep plasmid DNA was verified by EcoRI digestion and
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positive clones were sequenced using M13 forward (220) or

reverse primers.

Statistical analysis
Data are presented as mean 6 SEM. Statistical significance was

assessed by two-sided Student’s t-test.

Supporting Information

Figure S1 D-1.8 targeting construct generation. Graphical

representation of the generation of the targeting construct to

replace the palindromic GATA-binding site 21.8 kb upstream of

the 1S transcriptional start site with a loxP-flanked PGK-neomycin

cassette (A). Southern blot strategy outlining the HindIII/SalI

digested fragment sizes for the wild-type and targeted alleles, and

probe hybridization sites (B). Southern blot of D-1.8 germline mice

and wild-type (WT) littermates from tail tip genomic DNA (C).

Found at: doi:10.1371/journal.pgen.1001103.s001 (0.27 MB PDF)

Figure S2 E12.5 hematopoiesis in D-1.8 mice. Representative

E12.5 wildtype (WT) and D-1.8 embryos (A). Cytospins of

embryonic peripheral blood and fetal liver cells from E12.5 WT

and D-1.8 embryos (B). Number of CFU-GEMM, CFU-GM,

BFU-E, and CFU-E colonies per 104 wild-type and D-1.8 E12.5

fetal liver cells (C). FACS histograms showing the proportion of

enucleated cells from Stage IV erythroblasts within representative

wild-type and D-1.8 fetal livers (D).

Found at: doi:10.1371/journal.pgen.1001103.s002 (0.99 MB PDF)

Figure S3 Loss of the 21.8 kb site leads to altered nucleoprotein

architecture of the Gata2 locus. Quantitative ChIP analysis across

the Gata2 locus using antibodies to trimethylH3K4 (A) and

monomethylH3K4 (B) in whole fetal liver cells from wild-type and

D-1.8 embryos at E14.5. Calculations were derived as above.

Bisulfite sequencing of the 39 region of the Gata2 1S promoter

CpG island in WT and D-1.8 Stage II, Stage III, and Stage IV

erythroid progenitors. Each line represents an individual se-

quenced clone; white circles denote unmethylated CpG dinucle-

otides, black circles denote methylated CpGs (C).

Found at: doi:10.1371/journal.pgen.1001103.s003 (0.49 MB PDF)

Text S1 Supporting Materials and Methods.

Found at: doi:10.1371/journal.pgen.1001103.s004 (0.05 MB

DOC)
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