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Abstract

Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage 

of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. 

Preclinical studies have shown that while porcine renal xenografts are broadly compatible 

physiologically, they provoke a complex rejection process involving preformed and elicited 

antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T 

cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to pro-

inflammatory and pro-coagulant stimuli is probably increased by cross-species molecular defects 

in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a 

unique tool to address particular rejection mechanisms and incompatibilities: genetic modification 

of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and 

on the significant genetic, pharmacological and technical progress that has been made to prolong 

xenograft survival.
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Introduction

Kidney transplantation, the best treatment for end-stage renal disease, is limited by the 

shortage of human donors. Although the donor pool has been expanded by strategies such as 

paired donation and the use of blood group-incompatible and non-heart-beating donors, it 

remains unlikely to meet the increasing demand in the foreseeable future. This has driven a 

search for alternative sources of donor kidneys. Much recent activity has focused on the 

generation of transplantable tissue from autologous stem cells, but the complexity of the 
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kidney makes this a long-term prospect at best (1). In contrast, xenotransplantation using 

pigs as donors has been studied for several decades (2, 3), and porcine cellular xenografts 

have already reached the stage of clinical trials (4). The pig is the animal donor of choice for 

a number of reasons including relatively similar organ size and physiology, high 

reproductive capacity, and the potential for genetic modification to prevent rejection and 

correct molecular incompatibilities. Preclinical studies indicate that pig kidney 

xenotransplantation is feasible, with renal xenografts supporting life for several weeks or 

months in non-human primate recipients (5-8). However, despite considerable progress in 

recent years, the immunological and pathophysiological barriers have not been completely 

overcome. The major challenge is to place renal xenografts on at least an equal footing with 

allografts i.e. with comparable survival rates under similar levels of immunosuppression. 

This is likely to require a combination of ‘humanized’ donors and clinically applicable 

immunosuppressive protocols. Herein we will review the mechanisms of porcine renal 

xenograft rejection and describe recent progress in moving kidney xenotransplantation to the 

clinic.

THE PIG-TO-PRIMATE PRECLINICAL MODEL

Current understanding of the function and immunobiology of pig renal xenografts is 

primarily drawn from studies using non-human primates (NHP) as recipients. The technical 

challenges of this model are significant, with a relatively high rate of failure from causes 

unrelated to rejection (7, 9-11), but it has provided invaluable information and insights.

Physiological compatibility

Although final proof must await clinical testing, extensive in vivo and ex vivo data indicate 

that pig kidneys will function adequately in humans (reviewed in (12)). The most 

comprehensive dataset on physiological compatibility comes from a study of 22 monkeys 

transplanted with human CD55-transgenic pig kidneys (survival: range 21-78 days, mean 41 

days, median 38 days) (13). During the period of stable xenograft function, most serum 

electrolytes (urea, sodium, chloride, potassium and calcium) remained within the normal 

range, while creatinine was modestly elevated but steady. Of some concern, phosphate and 

haemoglobin levels progressively fell and serum albumin was consistently low after 

transplantation. The cause of hypophosphatemia was not established, while anemia was 

postulated to be due to molecular incompatibility of porcine erythropoietin with the primate 

Epo receptor, and was treated using recombinant human erythropoietin (13). 

Hypoalbuminemia and mild to severe proteinuria have also been reported in baboon 

recipients (5, 7), although whether this phenomenon is due to rejection-associated injury or 

to an inherent physiological difference remains to be determined. In either case, the solution 

may be provided by further genetic modification of the donor pig and/or pharmacological 

intervention.

Immunological considerations

Like humans, Old World primates (e.g. macaques and baboons) possess preformed 

antibodies to galactose-α1,3-galactose (αGal), a xenoantigen that is abundantly expressed on 

the surface of most pig cells (14, 15) (see details in following section). This makes these 
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animals the preferred model recipients from an immunological perspective. However, two 

potential limitations should be noted. First, macaques appear to have a more 

‘hypercoaguable’ phenotype than humans (16), suggesting that coagulation disturbances 

may be exaggerated in this model. Second, macaques and baboons lack at least some types 

of anti-pig antibodies that are naturally present in humans. For example, humans develop 

antibodies to the carbohydrate N-glycolylneuraminic acid (also known as Neu5Gc or 

Hanganutziu-Deicher antigen), which is expressed in both pigs and NHP (17, 18). 

Nevertheless, the macaque and baboon models have been critical to unravelling the complex 

immune response to renal xenografts and testing new genetic and immunosuppressive 

strategies.

THE IMMUNE RESPONSE TO PIG KIDNEY XENOGRAFTS

The evolutionary distance between pigs and primates has resulted in carbohydrate and 

protein differences that not only promote immune recognition of porcine xenografts but also 

affect the function of immunoregulatory pathways. The most striking example of the 

importance of differential glycosylation is the αGal xenoantigen. Most mammalian species 

including pigs express α1,3-galactosyltransferase (GalT), an enzyme that synthesises the 

terminal carbohydrate moiety galactose-α1,3-galactose (αGal) on glycoproteins and 

glycolipids (15). Humans and other higher primates have lost αGal expression due to 

mutations in the coding region of the GalT gene GGTA1 (19), possibly as an evolutionary 

immune defence against microbial pathogens (20), and develop anti-αGal antibodies in 

response to gut bacteria (21). In humans, anti-αGal comprises about 80% of preformed 

(‘natural’) anti-pig IgM (22) and is the most abundant natural IgG (23). This has profound 

consequences for kidney xenotransplantation, as outlined below.

The innate immune response and hyperacute rejection (HAR)

Unmodified pig kidneys provoke a rapid and powerful innate immune response in primates, 

characterized by binding of natural anti-pig antibodies to the xenograft vascular endothelium 

and activation of the classical complement pathway and the coagulation cascade. The 

resulting congestion, oedema and massive interstitial haemorrhage are hallmark features of 

this ‘hyperacute’ rejection (HAR) (24), which occurs within hours of reperfusion (25) 

(Figure 1A). The pivotal role of αGal is evident from the fact that specific depletion of anti-

αGal antibodies prevented HAR of pig-to-macaque renal xenografts (26). Perhaps even 

more salient, elimination of αGal expression in the donor pig prevented HAR in the pig-to-

baboon model in the absence of any other treatment (27). It is conceivable that natural 

human ‘non-Gal’ anti-pig antibodies, including those recognising other carbohydrate 

antigens such as Neu5Gc, may be present at sufficient levels in some individuals to 

precipitate HAR. Such antibodies have been detected in human serum (28), and at least 

some of them can mediate complement-dependent lysis and antibody-dependent cellular 

cytotoxicity to pig cells (29). However, the natural anti-non-Gal titer varies considerably 

between individuals, and it should be possible to minimize the impact of these antibodies by 

careful pre-screening of recipients (30).

Differential glycosylation also contributes to direct recognition of pig cells by human NK 

cells and macrophages (31-33), leading to a response that may be further heightened by 
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cross-species molecular incompatibilities affecting particular cellular interactions (34). Gene 

sequence analysis suggests that swine leukocyte antigen (SLA) class I, the porcine 

equivalent of HLA class I, will not transmit an inhibitory signal to receptors on human NK 

cells (35). Similarly, although human SIRPα has been shown to bind porcine CD47 in vitro 

(36), this interaction does not send a negative signal and thus does not prevent human 

macrophages from phagocytosing pig cells (37). These defects in the regulation of innate 

immune cell activity are likely to be most problematic for cellular xenografts, but may also 

contribute to renal xenograft rejection.

Dysregulated coagulation and inflammation

Dysregulated coagulation is a major barrier to the survival of pig kidney xenografts post-

HAR (38). Thrombotic microangiopathy is observed in rejected renal xenografts (39, 40), 

albeit less often than in cardiac xenografts (41, 42). Furthermore, recipients frequently 

develop a consumptive coagulopathy characterized by thrombocytopenia, declining 

fibrinogen levels, increased D-dimer and thrombin-antithrombin levels, and prolonged 

clotting time (25, 43-46). This condition can be fatal once established (46), and only 

resolves upon removal of the xenograft (44). While the cause is yet to be formally 

determined, it is likely that several factors converge to promote excessive coagulation and 

inflammation. First, xenograft endothelial cells are activated by a range of mechanisms 

including ischemia-reperfusion, complement, antibody binding, and interaction with 

recipient immune cells (47-50), and consequently express tissue factor, the primary 

physiological initiator of coagulation. Second, it has been proposed that recipient tissue 

factor, expressed by platelets and monocytes activated by inflammation and contact with 

xenograft endothelium (51), also plays a role (46), although whether human platelets express 

tissue factor is controversial (52). Third, pig endothelial cells express an enzyme that 

converts human prothrombin to thrombin in a tissue factor-independent manner (53). 

Expression and activity of this direct prothrombinase (fgl2) is induced by pro-inflammatory 

cytokines (53, 54). Rejected pig-to-baboon renal xenografts showed fgl2 expression in close 

association with fibrin deposition in small vessels and glomerular capillaries (53).

Finally, at least one key regulatory mechanism is compromised by molecular 

incompatibility. The thrombomodulin (TM) / protein C pathway is a critical regulator of 

coagulation and inflammation within the microvasculature (55). TM is an integral 

endothelial membrane protein that alters thrombin’s specificity from pro-coagulant and pro-

inflammatory substrates to protein C, which in its activated form inhibits coagulation and 

inflammation (55, 56). Pig TM binds human thrombin but is a poor cofactor for activation of 

human protein C, with only 1-10% of the activity of human TM (57-59). Molecular 

incompatibility may also promote clotting; human platelets spontaneously aggregate in vitro 

upon contact with pig von Willebrand factor (vWF) due to an aberrant interaction between 

human platelet glycoprotein Ib and the O-glycosylated A1 domain of pig vWF (60-62).

The adaptive immune response and acute humoral xenograft rejection (AHXR)

T cells play a major role in xenograft rejection (reviewed in (63)). Both the direct and 

indirect presentation pathways are involved (64), and there is an extensive range of potential 

xenoantigens (65). If HAR is prevented and conventional immunosuppression is used to 
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inhibit the T cell-mediated adaptive response, the survival of renal xenografts is prolonged 

for days to weeks before they are rejected by a second antibody-mediated process termed 

acute humoral xenograft rejection (AHXR), also known as acute vascular rejection or 

delayed xenograft rejection (66-68) (Figure 1B). AHXR is characterized by varying degrees 

of antibody and complement deposition, microvascular thrombosis, focal ischemic necrosis 

and interstitial haemorrhage, endothelial cell changes, and leukocytic infiltration (40, 69). In 

situations where anti-αGal has little or no role, AHXR is mediated by anti-non-Gal 

antibodies, either preformed (if present in sufficient titer) (11) or elicited (70, 71). Candidate 

non-Gal xenoantigens include carbohydrates (72-74) and proteins (75, 76) including 

important endothelial cell-protective regulators (77). It is reasonable to suggest that the 

susceptibility of renal xenografts to AHXR is increased by several of the factors described 

earlier, such as innate immune cell hyper-reactivity and defects in regulatory mechanisms; 

even low levels of anti-graft antibodies may trigger a vicious cycle of coagulation and 

inflammation.

Acute cellular and chronic xenograft rejection

Classical acute cellular rejection of organ xenografts is rarely observed, probably because it 

is usually preceded by AHXR. A histopathological analysis of pig-to-baboon renal biopsies 

showed increasing infiltration by T cells and macrophages, revealing cellular rejection when 

humoral rejection is avoided (40). However, most evidence suggests that the T cell response 

can be controlled by currently available immunosuppressive agents and may become less 

problematic as the innate immune response is better managed (see below). The frequency 

and characteristics of chronic xenograft rejection are unclear because few renal xenografts 

have survived long enough for this type of injury to develop, although one case of chronic 

glomerulopathy similar to that observed in allografts has been described (40).

PREVENTING KIDNEY XENOGRAFT REJECTION

It is evident from the preceding section that the rejection of pig renal xenografts is a 

complex and powerful process that will likely require a combination of approaches to 

prevent.

Genetic modification of the donor

Perhaps the key advantage of xenotransplantation over allotransplantation is the ability to 

genetically modify the donor to protect grafts from the human immune system. The initial 

method of transgenesis by pronuclear microinjection (25, 78-80) has been superseded by 

somatic cell nuclear transfer (cloning), which can be used to delete porcine genes and / or 

add transgenes (reviewed in (81)). Recent technological advances allow precise engineering 

of the pig genome using zinc finger nucleases (ZFNs) (82) or transcription activator-like 

effector nucleases (TALENs) (83), and efficient co-expression of multiple transgenes using 

the 2A ‘ribosome skip’ signal (84). The main types of genetic modification that have been 

applied to pigs for the purpose of xenotransplantation are described below and summarized 

in Figure 2.
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Carbohydrate remodelling—The initial genetic approach to the αGal / α1,3-

galactosyltransferase problem was to transgenically express alternative glycosyltransferases. 

The level of αGal in pigs was reduced by expressing either human α1,2-fucosyltransferase 

(H-transferase or HT), which adds the non-antigenic blood group O to the substrate of α1,3-

galactosyltransferase (85), or N-acetylglucosaminyltransferase III (GnT-III), which 

downregulates both αGal and non-Gal xenoantigens by an unknown mechanism (86). 

However, the advent of cloning made it possible to eliminate αGal altogether (87-92). Renal 

xenografts from the resulting GalT knockout (Gal KO or GTKO) pigs were resistant to HAR 

(5, 10, 27), although one case of HAR of a GTKO heart in the pig-to-baboon model has 

been reported, presumably caused by non-Gal IgM (93). Deletion of αGal may also 

attenuate the innate cellular response, although this is yet to be examined in vivo.

With the αGal problem solved, attention has shifted to other potential carbohydrate targets, 

particularly Neu5Gc. Recently, ZFN technology was used in conjunction with cloning to 

simultaneously delete the porcine genes responsible for expression of αGal (GGTA1) and 

Neu5Gc (CMAH), in a process that took only 7 months (94). Peripheral blood mononuclear 

cells from the resulting ‘double-KO’ pigs showed significantly reduced binding of 

preformed antibodies in human sera compared to GTKO alone cells. This is very promising, 

although it will not be possible to test the impact of deleting Neu5Gc in the primate model 

because NHP express this carbohydrate and thus do not develop antibodies to it.

Regulation of complement activation—Complement activation within transplanted 

organs is controlled by the combined action of membrane-bound complement regulatory 

proteins (CRPs) on the donor organ and soluble factors of recipient origin. The former 

comprise CD46 (also known as membrane cofactor protein or MCP) and CD55 (decay 

accelerating factor or DAF), which regulate mid-pathway, and CD59, which inhibits 

formation of the membrane attack complex in the terminal pathway (95). Although it was 

once thought that pig CRPs may not efficiently inhibit primate complement, potentially 

contributing to the rejection of pig organ xenografts, this does not appear to be the case (96, 

97). Nonetheless, transgenic expression of one or more human (h)CRPs is generally 

effective in preventing HAR of renal xenografts (13, 25, 98-100), presumably by providing 

supraphysiological regulatory capacity. Evidence from the cardiac model suggests that the 

combination of transgenic hCRP expression and deletion of αGal provides greater protection 

to organ xenografts than either alone (93).

Regulation of coagulation, inflammation and thrombosis—Inflammation and 

coagulation are tightly interlinked. The vascular lining of organ xenografts is the focus of 

antibody binding, complement activation and immune cell activity, leading to endothelial 

cell activation and downregulation or shedding of key protective molecules (101-103). Most 

genetic approaches have therefore targeted transgenic expression of anticoagulant / anti-

inflammatory / anti-platelet molecules to the vascular endothelium. Mouse studies have 

demonstrated proof of concept for the benefits of expressing human TM and tissue factor 

pathway inhibitor (104, 105). Both molecules have been expressed in pigs (106-109) but 

efficacy in an in vivo transplant setting has not yet been reported. The ectonucleotidase 

CD39 has also been utilized because of its broad vasculoprotective functions (degradation of 
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extracellular ATP and ADP, and promotion of adenosine generation) (110). Transgenic 

expression of human CD39 protected mouse hearts and kidneys from transplant-related and 

other vascular injury (111-114), and protected pig hearts from myocardial ischemia-

reperfusion injury (115). However, renal expression of the CD39 transgene in this line of 

pigs appeared to be insufficient to prolong kidney xenograft survival in the pig-to-baboon 

model (116).

Hemoxygenase-1 (HO-1) has been widely studied in the transplant context because of its 

anti-inflammatory, antioxidant and cytoprotective properties (117). The potential benefits of 

human HO-1 expression in transgenic pigs have been demonstrated in vitro and ex vivo 

(118, 119), although in vivo efficacy has not been reported. Other promising candidate anti-

inflammatory molecules that have reached a similar stage include human A20 (120) and 

soluble human TNF receptor 1 (shTNFR1) (121).

Regulation of innate immune cell activity—Genetic modification has been used to 

tackle the molecular incompatibilities affecting the heightened reactivity of human NK cells 

and macrophages to porcine targets. Endothelial cells from transgenic pigs expressing the 

non-classical human MHC class I molecule HLA-E were partially protected from human 

NK cell-mediated cytotoxicity in vitro (122). Expression of human CD47 on a pig 

lymphoblastoid cell line inhibited phagocytosis of the cells by human macrophages in vitro 

(37) and protected them from rejection in a mouse tumour model (123). Intuitively, these 

approaches would seem to be most applicable to cellular xenografts, and it remains to be 

seen whether they have any relevance to renal xenotransplantation.

Regulation of adaptive immunity—Several molecules have been expressed in 

transgenic pigs in attempts to block the T cell-mediated adaptive response. These include 

human TNF-related apoptosis-inducing ligand (TRAIL), an approach designed to kill 

xenograft-infiltrating T cells (124); pig dominant-negative class II transactivator (CIITA-

DN), to inhibit upregulation of pig SLA class II (125); human CTLA4-Ig or its high-affinity 

variant LEA29Y (belatacept), to block costimulation of T cells associated with indirect 

antigen presentation (126, 127); and pig CTLA4-Ig, to block costimulation of T cells by 

direct antigen presentation (128). While in vitro analyses and limited cellular transplant 

studies in mice have produced promising results, no data are yet available from the pig-to-

NHP model, and adverse health effects have been associated with one of the transgenes 

(128).

Immunosuppression and other pharmacological treatments

Therapies directed at T and B cells—Most groups studying preclinical pig-to-NHP 

organ xenotransplantation have incorporated a T cell-depleting agent, most commonly anti-

thymocyte globulin (ATG), in their induction regimens. An anti-human CD2 monoclonal 

antibody (mAb) and an anti-monkey CD3 recombinant immunotoxin (anti-CD3 rIT) have 

also been shown to effectively deplete T cells in the pig-to-baboon renal model (129). 

However, the anti-CD2 mAb did not prolong xenograft survival, and the anti-CD3 rIT-

treated recipients died from complications before efficacy could be determined (129). 

Treatment with the specific B cell-depleting agent rituximab (anti-CD20 mAb) was 
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beneficial in cardiac xenotransplantation (130, 131), but rituximab has not yet been tested in 

the renal model. Pan-lymphocyte depletion using the anti-human CD52 mAb alemtuzumab 

also remains untested in NHP models because CD52 is expressed on red blood cells in all 

NHP except cynomolgus monkeys of Indonesian origin (132). Interestingly, induction with 

cyclophosphamide has been more successful than T/B cell-specific therapies in prolonging 

renal xenograft survival (6), although this agent is rarely used today in solid organ 

transplantation.

While the combination of conventional maintenance immunosuppression (e.g. tacrolimus 

and rapamycin) with T and B cell depletion has produced encouraging results, there has 

been increasing interest in costimulation blockade using agents such as anti-CD154 mAb. 

Following induction with ATG ± rituximab, anti-CD154 therapy extended GTKO cardiac 

xenograft survival to up to 6-8 months in the pig-to-baboon model (131, 133). Anti-CD154 

has been less successful in the renal xenograft model, but this was related to the relatively 

rapid onset of consumptive coagulopathy rather than failure to block T-cell mediated 

rejection or the elicited antibody response (46). With the co-transplantation of donor thymic 

tissue, anti-CD154 has contributed to significant prolongation of GTKO renal xenograft 

survival in baboons (5, 7) (see below). However, the anti-CD154 mAb employed in these 

studies is unlikely to be used clinically because of its thrombogenic properties (134-136). 

This has prompted an exploration of alternative costimulation blockade agents such as 

belatacept and anti-CD40 mAb, which have shown efficacy in the pig-to-macaque islet 

xenograft model (137).

Overall, the current experimental data suggest that costimulation blockade may be the 

preferred immunosuppressive therapy, but this would need to include blockade of both the 

CD40/CD154 and CD28/B7 pathways. It is conceivable, however, that conventional 

pharmacologic immunosuppressive therapy with agents such as tacrolimus and rapamycin 

may suffice, particularly if the pig has been genetically engineered to prevent or reduce 

activation of xenograft endothelial cells.

Anti-inflammatory / anti-coagulant treatments—The best prospect for control of 

inflammation and coagulation is likely to be genetic manipulation of the donor pig, as 

discussed earlier. However, there may still be a need for treatment with anti-inflammatory 

agents. In addition to corticosteroids, there is evidence that high-dose statin therapy not only 

reduces the inflammatory response and platelet activation (138), but also downregulates the 

primate cellular response to pig antigens (139).

Similarly, judicious treatment with anti-coagulant and/or anti-platelet agents may be 

beneficial even when genetically modified donor pigs are used. Some groups routinely 

administer continuous heparin to baboon recipients of pig renal (42) and cardiac (140, 141) 

xenografts, although it is difficult to assess the efficacy of this treatment. Administration of 

recombinant human antithrombin was clearly protective in the first week after pig-to-baboon 

renal xenotransplantation (98), but had no apparent long-term benefit in the pig-to-macaque 

renal model (142), even when combined with human activated protein C (143). Other 

reagents have also produced mixed results, and it would be reasonable to conclude that both 
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genetic modification and pharmacotherapy will be necessary to fully control inflammation 

and coagulation in renal xenotransplantation (144).

Induction of tolerance

As in allotransplantation, the induction of tolerance is the ultimate goal of those involved in 

xenotransplantation research, although it should be noted that tolerance is a long-term 

prospect at best and is not a prerequisite for clinical renal xenotransplantation. Prolonged 

kidney xenograft survival under clinically acceptable chronic immunosuppression remains 

the initial goal. The hurdles for tolerance in xenotransplantation are in some respects greater 

than those in allotransplantation, but there are also some advantages. The prior identification 

of the donor pig will allow pre-transplant preparation of the recipient, which is not possible 

with transplantation using organs from deceased human donors. Furthermore, the donor pig 

may be able to be genetically modified to facilitate the induction of tolerance. Efforts to 

induce tolerance to a xenograft have largely been confined to three major approaches: mixed 

chimerism, co-transplantation of donor thymic tissue, and cellular therapy with regulatory T 

cells (Tregs) or mesenchymal stem cells (MSCs).

Mixed chimerism—Based on a successful approach in human renal allotransplantation 

(145), great efforts have been made to induce mixed chimerism in NHP by the infusion of 

pig hematopoietic stem cells (146). However, phagocytosis of pig cells by human 

macrophages, probably as a result of the failure of pig CD47 to transmit a negative signal to 

human SIRPα, may be a major barrier to the development of mixed chimerism (147). In 

vitro (37) and small animal models (148) suggest that transgenic expression of human CD47 

in pigs may be the solution to this problem.

Co-transplantation of donor thymic tissue—This concept is based on the depletion 

of mature T cells before the combined transplantation of the organ xenograft and donor 

thymic tissue, thus allowing new T cells to recognize pig antigens as self, and T cells 

directed to pig antigenic specificities to be deleted. After recipient pre-treatment, 

transplantation of donor-specific pig thymus tissue with a kidney graft, either in the form of 

a previously-prepared ‘thymokidney’ or as a thymic lobe transplant, extended graft survival 

to almost three months (5, 7). Antibody-mediated rejection remained problematic, though 

most baboons died from the effects of the intensive immunosuppressive therapy rather than 

from graft failure. Whether T cell tolerance will be precluded by the additional barriers to 

xenotransplantation remains uncertain. It may be necessary to overcome the innate immune 

response and coagulation dysregulation through other means before T cell tolerance can be 

achieved.

Cellular therapy—Although no studies of expanded Tregs or MSCs have been carried out 

in pig-to-NHP organ transplantation models, there have been several in vitro studies 

(149-152), and some experience of MSC therapy in pig-to-baboon islet transplantation 

(153). Tregs have effects on both the direct and indirect T cell response, and inhibition of 

the CD40/CD154 pathway seems to be particularly beneficial in enhancing Treg activity 

(154, 155). MSCs have received considerable attention in recent years for their 

immunomodulatory, anti-inflammatory and regenerative effects. MSCs function across 
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species barriers (156), and pig MSCs suppress the human T cell response to pig tissues (157, 

158). Pig MSCs have the advantage that they can be obtained in very large numbers from 

adipose tissue or bone marrow, and therefore require less expansion in vitro before infusion 

into the xenograft recipient. In addition, the same donor can be used for the MSCs and the 

xenograft, avoiding allogeneic differences.

MANAGING INFECTIOUS RISK

Transplantation carries the possibility of transmission of infectious agents from the donor 

organ to the immunocompromised recipient. In xenotransplantation, this potential risk is 

compounded by fears of a wider risk to the community posed by human-to-human 

transmission of novel pig-derived pathogens, such as porcine endogenous retrovirus 

(PERV). While the degree of risk associated with renal xenotransplantation remains 

unknown in the absence of clinical trials, preclinical data and the limited data from human 

trials indicate that infectious transmission will occur rarely, if at all (159). Nevertheless, 

clinical trial guidelines have been established to manage infectious risk (160), with basic 

principles including national and global oversight, routine screening and maintenance of 

source pigs in specific or defined pathogen-free facilities, pre-and post-transplant screening 

of recipients, and long-term archiving of animal and patient samples. Those readers 

interested in learning more about this topic are directed to a recent review (161). Another 

cross-species aspect that has received less attention is the possibility of ‘reverse’ infection: 

viral transmission from the recipient to the xenograft. Several human viruses are capable of 

productively infecting pig cells (162). However, it is likely that this potential problem will 

be manageable by careful monitoring and management.

One of the difficulties in extrapolating from the NHP model to predict infectious risk in the 

clinical setting is the markedly different environment of NHP and human recipients, both 

pre-and post-transplant. The recent availability of specific pathogen-free primates may help 

in this regard, although this option would add significantly to the cost of this already 

expensive model.

CONCLUSIONS AND PERSPECTIVE

Advancing kidney xenotransplantation to the clinic is a daunting challenge. The 

glycosylation and protein differences between pigs and humans provoke a powerful humoral 

and cellular immune response to porcine xenografts that cannot be controlled by 

conventional immunosuppression. Progress in the difficult pig-to-NHP preclinical model has 

been painstaking and slow, with maximum graft survival currently limited to about 3 

months. However, few would disagree that the reward for success – elimination of the donor 

kidney shortage – warrants continued effort. The key goal is to overcome the humoral, 

coagulation and inflammatory responses by genetic modification of the donor pig. While 

clinical application is probably still several years away, the increasingly sophisticated tools 

for precise manipulation of the pig genome, along with the development of novel 

immunosuppressive agents and tolerance-inducing protocols, bode well for the future.
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Several questions remain. First, what level of preclinical success would justify moving to the 

next stage? We suggest that the consistent demonstration of life-supporting renal function 

for at least 5-6 months in the pig-to-NHP model, with clinically applicable 

immunosuppression and no evidence of infection, would be sufficient. Second, which 

potential recipient group would be most appropriate for the first clinical trials? Highly 

allosensitized patients with broadly reactive preformed alloantibodies are the obvious 

choice; they are less unlikely than other patients on the waiting list to receive a human 

kidney graft, and in vitro analyses indicate that they are at no greater risk of xenoreactivity 

to porcine tissue (163). Third, will renal xenotransplantation result in sensitization to 

alloantigens, and thus potentially jeopardize subsequent allotransplantation? The answer to 

this question is less clear, although the demonstration that baboons sensitized to pig antigens 

did not develop increased humoral or cellular alloreactivity (164) is encouraging. Finally, 

what is the best way to move the field forward and efficiently address the many issues still 

facing the pig-to-NHP model? Ideas and technologies are not lacking, but stable funding 

support is difficult to obtain and the intellectual property landscape is far from clear. Real 

progress is likely to require expanded collaboration between groups working on different 

organs and tissues, including the sharing of new genetically modified pigs.
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Abbreviations

APC activated protein C

AHXR acute humoral xenograft rejection

CIITA-DN dominant-negative class II transactivator

CRP complement regulatory protein

EPCR endothelial protein C receptor

GnT-III N-acetylglucosaminyltransferase III

GTKO GalT knockout

HAR hyperacute rejection

HO-1 hemoxygenase-1

HT α1,2-fucosyltransferase or H-transferase

mAb monoclonal antibody

MSCs mesenchymal stem cells

Neu5Gc N-glycolylneuraminic acid

NHP non-human primate
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PERV porcine endogenous retrovirus

SLA swine leukocyte antigen

shTNFR1 soluble human TNF receptor 1

TFPI tissue factor pathway inhibitor

TM thrombomodulin

TRAIL TNF-related human apoptosis-inducing ligand

Tregs regulatory T cells

vWF von Willebrand factor
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Figure 1. Phases of kidney xenograft rejection
A, Several factors contribute to hyperacute rejection of wild-type xenografts, but the key 

events are the binding of preformed anti-αGal antibodies (Ab) to xenograft vascular 

endothelial cells and subsequent activation of complement. HAR occurs within hours and 

can be prevented by deletion of αGal (GTKO) or transgenic expression of human 

complement-regulatory proteins (hCRPs). B, Acute humoral rejection of GTKO xenografts 

is also mediated by antibodies, in this case anti-non-Gal, but is a more prolonged process 

(days to weeks) which appears to involve the gradual development of a chronic pro-

coagulant and pro-inflammatory vascular environment.
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Figure 2. Donor genetic modification to prevent kidney xenograft rejection
The targets of genetic modification are shown as filled boxes. Abbreviations: CIITA-DN, 

dominant-negative class II transactivator; CRP, complement regulatory protein; GnT-III, N-

acetylglucosaminyltransferase III; GTKO, GalT knockout; h: human; HO-1, 

hemoxygenase-1; HT, H-transferase; Neu5Gc-KO, N-glycolylneuraminic acid knockout; 

HLA, human leukocyte antigen; p: pig; shTNFR1, soluble human TNF receptor 1; Tg: 

transgenic; TFPI, tissue factor pathway inhibitor; TM, thrombomodulin; TRAIL, TNF-

related human apoptosis-inducing ligand.
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