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Patient-tailored therapy based on tumor drivers is promising for lung cancer

treatment. For this, we combined in vitro tissue models with in silico analyses.

Using individual cell lines with specific mutations, we demonstrate a generic and

rapid stratification pipeline for targeted tumor therapy. We improve in vitromod-

els of tissue conditions by a biological matrix-based three-dimensional (3D) tissue

culture that allows in vitro drug testing: It correctly shows a strong drug response

upon gefitinib (Gef) treatment in a cell line harboring an EGFR-activating muta-

tion (HCC827), but no clear drug response upon treatment with the HSP90 inhi-

bitor 17AAG in two cell lines with KRAS mutations (H441, A549). In contrast,

2D testing implies wrongly KRAS as a biomarker for HSP90 inhibitor treatment,

although this fails in clinical studies. Signaling analysis by phospho-arrays

showed similar effects of EGFR inhibition by Gef in HCC827 cells, under both

2D and 3D conditions. Western blot analysis confirmed that for 3D conditions,

HSP90 inhibitor treatment implies different p53 regulation and decreased MET

inhibition in HCC827 and H441 cells. Using in vitro data (western, phospho-

kinase array, proliferation, and apoptosis), we generated cell line-specific in silico

topologies and condition-specific (2D, 3D) simulations of signaling correctly mir-

roring in vitro treatment responses. Networks predict drug targets considering

key interactions and individual cell line mutations using the Human Protein Ref-

erence Database and the COSMIC database. A signature of potential biomarkers

and matching drugs improve stratification and treatment in KRAS-mutated

tumors. In silico screening and dynamic simulation of drug actions resulted in

individual therapeutic suggestions, that is, targeting HIF1A in H441 and LKB1

in A549 cells. In conclusion, our in vitro tumor tissue model combined with an

in silico tool improves drug effect prediction and patient stratification. Our tool

is used in our comprehensive cancer center and is made now publicly available

for targeted therapy decisions.
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1. Introduction

In the highly mortal lung cancer, next-generation

sequencing (NGS) approaches successfully reveal dri-

ver mutations to stratify lung cancer patients for tar-

geted therapies (Buettner et al., 2013). Tyrosine kinase

inhibitor (TKI) treatment shows remarkable response

rates, exemplified by EGFR inhibitors in patients with

activating EGFR mutations (Ciardiello et al., 2004;

Paez et al., 2004; Russo et al., 2015). However, often

the therapy is only initially successful and then fol-

lowed by secondary resistance. Unfortunately, tumors

with KRAS mutations are primarily resistant to tar-

geted therapies and comprise about 30–40% of all

patients (Sequist et al., 2011).

Due to poor correlations of preclinical in vitro data

to drug efficacy in patients, particularly in the field of

cancer (Bhattacharjee, 2012), new 3D tumor models

arise, such as spheroids, microfluidic devices, orga-

noids, and matrix-based approaches (Alemany-Ribes

and Semino, 2014; Edmondson et al., 2014; Xu et al.,

2014). The generally high proliferation rate in 2D cell

cultures is one reason for false-positive predictions of

cytostatic compounds (Cree et al., 2010). Decreased

proliferation of tumor cells corresponding to clinical

specimens was demonstrated on our scaffold (G€ottlich

et al., 2016; Nietzer et al., 2016; Stratmann et al., 2014)

originating from the Biological Vascularized Scaffold

(BioVaSc�) (Linke et al., 2007; Schanz et al., 2010). It

maintains the extracellular matrix, including structures

of the basement membrane, enabling physiological

anchorage of epithelial cells. Earlier, we combined the

tissue-engineered lung tumor model with its in silico

representation to investigate tumor and, thereby, drug-

relevant dependencies – also in the context of resistance

(G€ottlich et al., 2016; Stratmann et al., 2014).

In this study, we introduce a patient stratification

tool according to tumor drivers as a promising deci-

sion tool for precision medicine in lung cancer. This is

exemplified here by studying individual in vitro cell

lines and their differing drug responses in 2D and 3D,

and by integrating these data in corresponding in silico

analyses for target predictions. The tool is generic and

provides a rapid stratification pipeline that can support

tumor boards to utilize more and more clinically avail-

able NGS data from individual patients.

We studied how a biological matrix-based 3D tissue

culture allows in vitro drug testing of relevant lung can-

cer subgroups. To unravel signal cascade outputs in

more detail, we investigated apoptosis and proliferation

as drug responses. Regarding the EGFR inhibition with

the TKI gefitinib (Gef) in a cell line carrying the

corresponding biomarker, we observed an enhancement

in apoptosis induction compared to 2D. Moreover, we

exemplified our stratification tool by looking at

responses of two further cell lines (A549, H441) harbor-

ing KRAS mutations to the HSP90 inhibitor 17AAG. In

contrast to the EGFR inhibition, in this setting only the

3D system could predict no drug efficiency in line with

clinical findings. Therefore, we analyzed differences in

signaling changes upon treatment between cell lines and

between 2D and 3D conditions. Using the experimental

data of the 3D tissue model, we created (a) in silico cell

line-specific topologies of the centrally involved proteins

including their logical connectivity. Based on these data,

(b) dynamic in silico simulations mirrored the differ-

ences in cellular responses apparent in the experiments.

Considering protein neighbors of central important sig-

naling cascades and cell-specific mutations from data-

bases resulted (c) in larger in silico networks which were

next screened in silico for individual therapeutic options

for each cell line. Resulting drug suggestions reflect clin-

ical experiences and include comprehensive FDA-

approved treatment options. In its unique combination,

the tool raises hopes of efficiently exploiting upcoming

sequence information of patient tumors in the near

future for targeted therapy.

2. Results

2.1. Analysis path

To exemplify the process of how a single patient’s

sequence could be integrated into our new preclinical

prediction tool, we chose three cell lines representing

different patient subgroups regarding KRAS mutation

(HCC827: KRAS wild-type; A549: KRAS mutant,

independent; H441: KRAS mutant, dependent) (Singh

et al., 2009).

To unravel the complex interdependent signaling

network in lung cancer in different mutational back-

grounds, we experimentally measured, in a global

approach using phospho-arrays signaling, changes to

Gef and 17-allylamino-17-demethoxygeldanamycin

(17AAG) treatment in our three different cell lines

(Figs 1–3; Table 1; Figs S1–S3; first simulation is in

S2; further in silico analyses in S4–S7). Firstly, we rec-

ognized that with the EGFR inhibitor Gef affected

proteins are roughly the same in HCC827 (EGFR

mutated) in 2D and 3D models (Table 1A, Fig. S1).

By analyzing signaling changes upon the HSP90 inhi-

bitor treatment by phospho-arrays and western blot in

all three cell lines in 2D and in 3D, it became obvious

that besides MET, changes between the 2D and the
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3D models concern mostly p53 and HSP60 (Table 1B;

Figs 4A and S3).

Regarding in silico analyses, we first set up cell line-

specific in silico topologies by integrating important

signaling nodes that distinguished the cell lines upon

Gef and 17AAG treatment into our basic in silico

topology (Table 2; Stratmann et al., 2014). The nodes

of this basic topology are marked in all newly gener-

ated topologies with bold printed borders. After the

generation of these cell line-specific in silico topologies,

we mirrored the in vitro treatment response of Gef and

17AAG, by applying semiquantitative Boolean simula-

tions using the software SQUAD (Stardardized Qualita-

tive Dynamical Modelling Suite). Based on the logical

connectivity of each cellular topology, this software

models the dynamic evolution of the included signaling

cascades using exponential functions (Di Cara et al.,

2007). Furthermore, different activation strengths for

each node of the signaling cascade are considered in

the simulations that were necessary to adapt the in sil-

ico simulation results to the in vitro results for differ-

ences of 3D and 2D cultures. Input into the topology

of Fig. 4B is listed in Table 3A and B for 3D

conditions (further network analyses in Tables S1–S3)
and in Box S2 for 2D conditions. Simulations’ output

of 3D conditions is presented in Figs 2D and S2 for

Gef and in Fig. 5 for 17AAG treatment. Simulation

results in 2D conditions of KRAS-mutated cell lines

are represented in Fig. S6 for Gef and in Fig. S7 for

17AAG treatment.

To reveal – in a systemic approach – further relevant

cell line-specific drug targets in KRAS-mutated condi-

tions in the 3D system, we reconstructed two larger

in silico networks for A549 and H441 cells. Therefore,

we searched in Human Protein Reference Database

(HPRD; Table S1) the interacting neighbors of the

nine upon 17AAG treatment between A549 and H441

differentially regulated proteins (DRPs) (Table 1B,

Fig. 6) and identified individual promising drug tar-

gets by mapping these to cell-specific mutations in

COSMIC (Catalogue Of Somatic Mutations In

Cancer) generating thereby two cell-specific networks

for A549 and H441 cells. From networks analyses, we

expanded the in this study created topology from

Fig. 4B (marked with olive gray background in

Fig. 7A,C) further with gain or loss of function

Fig. 1. Improved reflection of tumor characteristics by the 3D tissue-engineered lung tumor model. Tested tumor cell line populations

display more homogeneous marker expression in 3D as well as reduced proliferation correlating to tumors. (A) Cells cultured in 2D and 3D

conditions shown with immunofluorescence by double stain for E-cadherin and b-catenin. Green arrows indicate positive cells and white

arrows negative. Scale bars are 50 lm. (B) Paraffin-embedded adenocarcinoma from patient biopsy was immunofluorescence-double-

stained against E-cadherin and b-catenin. Scale bar is 100 lm. (C) The expression of the proliferation marker Ki67 was detected by

immunofluorescence staining of 2D and 3D cultured HCC827 cells, as well as in vivo tissue from a patient biopsy. Scale bar is 100 lm.
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Fig. 2. Biomarker-dependent response upon EGFR inhibition is improved in 3D and can also be simulated in silico. (A) Cells cultured in 3D

that were either treated with 1 lM Gef or used as untreated controls were paraffin-embedded and HE-stained. Scale bar is 100 lm. (B) The

proliferation rate (proliferative cells per total cell number) was determined by counting Ki67-positive cells from immunofluorescence staining

in 10 images per sample. Total cell number was quantified by DAPI counterstaining. ***P < 0.001, n ≥ 4. (C) Apoptosis was investigated by

M30 CytoDeathTM ELISA. Therefore, supernatants of treated and untreated samples were collected prior to and at 24, 48, and 72 h after

treatment. Concentrations of M30 in samples after treatment were normalized to T0 values from samples taken before treatment and

related to untreated samples (red line). ***P < 0.001, n ≥ 4. (D) In silico simulation of the Gef treatment (right, pink curve full on at 1.0)

shows reduced proliferation (right, black curve) only in HCC827 cells and higher apoptosis (right, gray curve), as compared to untreated cells

(left, pink curve switched off at 0.0). Figure S2A shows the in silico topology and Fig. S2B the simulations for A549 and H441. *P < 0.05,

**P < 0.01
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mutations and other important factors by adding acti-

vated or inhibited nodes. In subsequent simulations we

could predict optimal drug targets in a specific muta-

tional background of KRAS-mutated tumors. In

Table 3C, input into topologies and subsequent simu-

lations in Fig. 7 are given. Matching drugs were sug-

gested by screening of our DrumPID (Drug-minded

Protein Interaction Database) (Kunz et al., 2016)

screening tool for available target-specific test sub-

stances.

2.2. Tissue-engineered lung tumor models

resemble tumor specimens

Firstly, we looked at molecular markers for tumors

and tissue differentiation and their variances. We

observed homogenous E-cadherin/b-catenin localiza-

tion in fluorescence staining of 3D models as well as

tumor specimens, whereas 2D models showed high

variation ranging from strongly stained to completely

negative tumor cells (Fig. 1A,B). By comparison to 2D

models, we demonstrated with Ki67-staining the reduc-

tion in proliferation rate in 3D models to levels that

correlate to lung adenocarcinoma samples (Fig. 1C).

2.3. Enhanced biomarker-dependent drug

response to EGFR inhibition in the 3D model

As a test for clinically applied biomarker-guided anti-

EGFR therapy, we compared A549 and H441 (EGFR

wild-type) with HCC827 cells (activating EGFR muta-

tion). Responses upon 3 days of Gef treatment were bio-

marker-dependent, as represented by hematoxylin and

eosin staining (HE staining) in 3D models (Fig. 2A),

proliferation reduction (Fig. 2B), and apoptosis induc-

tion (Fig. 2C). Although the proliferation in 3D

Fig. 3. Effects of the HSP90 inhibitor 17AAG diminish in 3D and cannot be aligned to the biomarker KRAS (A549/H441). Strong treatment

responses regarding viability, proliferation, and apoptosis can be observed only in 2D conditions. (A) Cells cultured in 2D conditions were

treated with different concentrations of the HSP90 inhibitor 17AAG. Viability was determined after 3 days of treatment by a CellTiter-Glo�

Luminescent Cell Viability Assay. n ≥ 4. (B) 3D cultured cells were treated with 0.25 lM 17AAG, paraffin-embedded, and HE-stained. Scale

bar is 100 lm. (C) The proliferation rate in 2D and 3D was determined by counting Ki67-positive cells from immunofluorescence staining in

10 images per sample. Total cell number was quantified by DAPI counterstaining. *P < 0.05, n ≥ 4. (D) Apoptosis was investigated by M30

CytoDeathTM ELISA. Therefore, supernatants of treated and untreated samples were collected prior to and at 24, 48, and 72 h after

treatment. Concentrations of M30 in samples after treatment were normalized to T0 values from samples taken before treatment and

related to untreated samples (red line). *P < 0.05, ***P < 0.001, n ≥ 4. **P < 0.01.
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conditions was reduced to in vivo like rates (Stratmann

et al., 2014), treatment with Gef decreased the prolifera-

tion further by about 80%, as also observed in 2D.

However, biomarker-related apoptosis induction upon

Gef treatment in HCC827 was significantly enhanced in

3D conditions (about 3.5 to 6-fold increase), compared

to 2D conditions (about 2.5-fold increase), which sug-

gests better specificity for the 3D system. Signaling anal-

yses by receptor tyrosine kinase (RTK) and phospho-

kinase (PK) array experiments are provided for the 2D

and 3D systems (Fig. S1, Table 1A).

Complementing these biomarker-dependent drug

responses to Gef, we set up an in silico network of key

pathways for the proliferative and apoptotic response,

to model the observed in vitro responses of each of the

three cell lines. An in silico topology was previously

developed for HCC827 and A549 (Stratmann et al.,

2014). This was extended by those cell line-specific pro-

teins and pathways (Fig. S2A; previous network pro-

teins are in bold and with olive background) which

showed signaling changes upon the Gef treatment in the

experiments (Table 2). For the newly investigated H441

cell line, we used the A549 in silico topology as basis.

Specifically, we integrated the MET signal transduction

cascade for HCC827 and H441. We then applied the

SQUAD software to simulate the Gef treatment responses

for all cell lines, using initial node stimulations based on

the mutational background and the experimental results

on protein phosphorylation (prestimulation in

Table 3A; method in the Supporting information). Our

simulation of HCC827 with Gef treatment (Fig. 2D)

compared to untreated cells demonstrates, as for the

in vitro results, reduced proliferation and higher apop-

tosis over time. Results of the simulations for A549 and

H441 are represented in Fig. S2B.

2.4. Chemoresistance against HSP90 inhibition in

3D models align to clinical observations

2D models and animal experiments predict HSP90

inhibitor efficiency in KRAS-mutated tumors (Acqua-

viva et al., 2012; Sos et al., 2009). As known from 2D

in vitro screens, HCC827, A549, and H441 exhibit dif-

ferent sensitivities to the HSP90 inhibitor 17AAG

(Ciocca and Calderwood, 2005; Sos et al., 2009).

We observed that about 50% of the H441 cells died

from 0.25 lM 17AAG, which decreased the viability of

A549 to 5% and of HCC827 to 35%, as shown by the

cell viability assay CellTiter-Glo� in 2D (Fig. 3A).

However, the failure of HSP90 inhibitor treatment in a

clinical setting of KRAS-mutated tumors was reflected

in 3D tissue cultures. From HE staining of 3D tumor

models, after three days of 0.25 lM 17AAG treatment

only slight effects were visible in A549 and HCC827,

whereas H441 cells were completely unresponsive

(Fig. 3B). Proliferation analysis of the 2D systems pre-

dicts KRAS-mutated cells to be more responsive to

17AAG than KRAS wild-type HCC827 cells. This is

contrasted by only weak changes between both cell

types in 3D tissue culture (Fig. 3C). A strong apop-

totic response upon 17AAG is only observed in

KRAS-mutated A549 cells in 2D (4 to 6-fold) but not

in 3D models (1 to 2-fold) (Fig. 3D).

All phosphorylation data from arrays and western

blot experiments are summarized and compared in 2D

and 3D models in Table 1 for Gef (A) and 17AAG

(B) treatment. Protein nodes for in silico topology

which were applied later are given in Table 2.

2.5. Differences in signaling between 2D and 3D

conditions upon HSP90 inhibitor treatment as a

basis for in silico analyses

Signaling responses upon application of the HSP90

inhibitor 17AAG were analyzed by comparing 2D and

Table 1. Comparison of the phosphorylation data showing different

regulation between the cell lines in the 2D and 3D system for Gef

and 17AAG.

HCC827 A549 H441

2D 3D 2D 3D 2D 3D

(A) Gef treatmenta

pEGFR ↓ ↓ 0 0 const. const.

pErbB2 ↓ 0 0 0 0 0

pMET ↓ ↓ 0 0 const. const.

(B) 17AAG treatmentb

pEGFR ↓ ↓ 0 0 ↓↓↓ ↓↓
pErbB2 ↓ ↓ 0 0 ↓ ↓
pErbB3 ↓ ↓ 0 0 ↓ ↓
pMET ↓↓ ↓ 0 0 ↓↓↓ ↓
pc-Ret ↓ ↓ 0 0 ↓ ↓
pVEGFR2 0 0 0 0 ↓ ↓
pFGFR3 0 0 0 0 0 ↓
p-p53 (S46) ↑↑↑ const. 0 0 const. ↑↑↑
HSP60 const. const. ↑ ↑↑ ↑ const.

a Based on the RTK array data, this is a qualitative summary of all

proteins measured, showing a phosphorylation difference in at

least one cell line upon Gef treatment (0 reflects no activation, and

const. means no activation change after treatment). Experimental

data are shown in Fig. S1.
b Based on the western blots (semiquantitative, more than one

arrow possible) and RTK array data (qualitative, only one arrow pos-

sible), this is a summary of all proteins measured, showing a phos-

phorylation difference in at least one cell line upon 17AAG

treatment (detailed experimental data shown in Figs 4A and S3A; 0

reflects no activation, const. means no activation change after

treatment).
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3D conditions. Protein activation as observed by RTK

arrays was confirmed by western blot (Fig. 4A) and

quantified (Fig. S3B). Data indicated an inhibition of

the EGFR and of MET in HCC827 and in H441 in

2D as well as 3D conditions. In western blot analysis,

inhibition of MET was weaker in 3D than in 2D cul-

tures in both cell lines. Interestingly, p53 (S46) was

activated in HCC827 with 17AAG treatment in 2D,

but stayed constant in 3D conditions. Vice versa, in

H441 p53 was activated only in 3D conditions and

remained unchanged in the 2D culture. Furthermore,

HSP60 was clearly upregulated only in A549 cells

under 3D conditions upon 17AAG application. Regu-

lated proteins identified in 3D conditions upon

17AAG treatment include EGFR, ErbB2, ErbB3,

MET, c-Ret, VEGFR2, FGFR3, p53, and HSP60

(Table 1B, Figs 4A, and S3A). Similar to the Gef

treatment, we extended our in silico network and

topology adding these experimentally measured cell-

specific proteins (Fig. 4B). Particularly, we included

for mirroring 17AAG treatment effects – next to the

MET protein – ErbB2, ErbB3, and c-RET cascade in

HCC827 and H441, and also in all three cell line-speci-

fic in silico topologies p53, HSP60, HIF1A, and

HSP90, as part of the 17AAG treatment cascade

(Table 2). For H441, we included further VEGFR2

and FGFR3, as they were downregulated in the arrays

in the 3D model upon treatment with 17AAG, in con-

trast to the other two cell lines (Fig. S3A, Table 1B).

We show only responses for key proteins of all three

cells, but we simulated the complete network responses

looking at all proteins of the topology. Important

aspects of the 3D tissue model upon 17AAG applica-

tion (red curve at 1) are reflected by in silico simula-

tions (Fig. 5): (a) In HCC827 (top), cell proliferation

is unchanged and apoptosis is slightly induced com-

pared to the untreated control, (b) in A549 (middle),

proliferation is regarded as unchanged and apoptosis

is only slightly induced in 3D conditions, and (c) in

H441 (bottom), proliferation is unchanged and apop-

tosis is not induced. Notably, HSP60 is exclusively

induced in A549, whereas p53 is upregulated only in

H441. Moreover, based on the in silico topology con-

nectivity, in our in silico simulation we found that

beside p53 HIF1A is also upregulated in H441.

For comparison, the in silico simulations can also be

modified to appropriately reflect results of 2D culture.

To illustrate this, we focused on the A549 and H441

cell lines and applied the same topology as for 3D, but

adjusted activation levels for Gef and 17AAG treat-

ment according to the 2D in vitro conditions (Fig. 4B

and S2A; Table 1; Box S2): Essentially, we elevated

the value of Raf to simulate higher basic proliferation

in 2D, and furthermore, we changed FLIP for the

higher apoptotic response in 2D upon 17AAG as this

is reported to be important for higher apoptotic resis-

tance when cells grow on collagen (Philippi et al.,

2009). Whereas Gef treatment simulation resulted in

both KRAS-mutated cells in no change of proliferation

and apoptosis over time (Fig. S6), HSP90 inhibition

simulation of 2D conditions revealed in contrast to 3D

a lower proliferation and an induced apoptosis over

time in A549 (Fig. S7).

However, the established tool allows us now to test

and screen in silico in a systems perspective for tai-

lored therapies according to the cell line-specific muta-

tional profile and tumor drivers, as detailed in the

following section.

2.6. Generation of in silico protein–protein
interaction networks for cell-specific drug target

predictions in KRAS-mutated cells

Next, as we observed signaling differences between the

KRAS-mutated A549 and H441 cell lines, we sought

to identify a KRAS complementing signature of fur-

ther potential biomarkers and resultant drug targets

for each cell line. For this purpose, we combined

experimental data and the cell line-specific mutational

backgrounds with integrated systems biology analysis

(Kunz et al., 2017; Naseem et al., 2014), considering

direct interacting proteins and available drugs to mod-

ulate this extended network.

We generated a network around KRAS by consider-

ing the DRPs of both KRAS-mutated cell lines (A549

and H441) upon 17AAG treatment (Table 1B) in the

3D system and included their direct interacting proteins

according to the genomewide HPRD. The resulting

KRAS interaction network includes 556 proteins (=
nodes) and 680 protein–protein interactions (= edges)

around the nine experimentally DRPs (EGFR, ErbB2,

ErbB3, MET, FGFR3, c-Ret, VEGFR2, p53, and

HSP60; Fig. S4A). Comparing all cell line-specific

mutations known from the genomewide COSMIC data-

base (573 for H441, blue circle, and 361 for A549, yel-

low circle; Table S2; Fig. 6A) with this KRAS

interaction network, we could match 18 H441-specific

mutations and nine A549-specific mutations, as parts of

our KRAS interaction network (Table S3). The two

reconstructed cell-specific KRAS interaction networks

for A549 and H441 included these specific mutations,

HSP90 as a target of 17AAG, and their direct interac-

tion partners from HPRD (Fig. S4B–D), which were

then analyzed for functional clusters. In the A549-

specific network (322 proteins and 371 protein–protein

interactions, Fig. S4B; extended network with 795
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nodes and 1034 interactions in Fig. S4C), we found two

functional protein clusters with a strong network effect

(so-called hubs) around proteins VEGFR2, MET (ex-

perimental measurements) and CBL (mutated), and p53

(experimental) and ARID3A (mutated; Fig. S5A). Simi-

larly, for the H441-specific network (903 proteins and

1119 protein–protein interactions; Fig. S4D), we found

two clusters around the proteins PRKACA (mutated)

and p53 (experimental and mutated) as well as

HSP90AA1, ACTA, and HIF1A (mutated; Fig. S5B).

We compared potential targets in the two cell line-speci-

fic KRAS networks, in terms of their distance and use-

fulness to modulate cell-specific signaling cascades. This

yielded a highly connected network between interesting

tumor drivers (Fig. 6B for A549, driver mutations in

yellow; Fig. 6C for H441, driver mutations in blue),

and cell-specific biomarker signatures (Table 4,

Box S1). Other cell-specific mutations close to the

Fig. 4. Signaling changes after HSP90 inhibition differ between 2D and 3D and between the different cell lines and are integrated into

in silico topologies. (A) Cells cultured in 2D and 3D were treated with 0.25 lM 17AAG for 24 h (2D) or 72 h (3D). The signaling changes of

different phospho-proteins were analyzed by western blot. The same lysates were used for the pEGFR and ph-p53(S46) blots of all three

cell lines in 2D and 3D HCC827 and for ph-p53(S46) and pMET blots in 3D H441; thus, the same b-actin loading control is shown below

these phospho-proteins. (B) DRPs from the in vitro 3D system are connected in silico to the central tumor signaling cascade. Here, we

show the topology shared between all three cell lines. Colors reflect important input (treatment), signaling proteins, and cellular output

(proliferation and apoptosis). Proteins (‘nodes’) from the topology of Stratmann et al. (2014) are bold rimmed and have an olive background;

proteins added specifically to the in silico topology are presented as simple boxes; protein node colors are as in the simulation curves; cell

line-specific proteins (‘nodes’) appear as plus (+). Specific topologies and simulation results for each cell line are given in the Supporting

information.
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central cascade are indicated by cyan (neighbors of

neighbors), and unmutated interactors in lavender cir-

cles for A549 and H441, respectively. Regarding rank-

ing of drug targets for potential clinical application, we

considered proteins and connections and assigned the

priority to direct neighbors, if they could be targeted

easily by existing medical drugs, for example, AMPK

for A549 and HIF1A for H441. All targets are ranked

in Box S1. This drug-search strategy was made possible

by applying our DrumPID (Kunz et al., 2016).

2.7. AMPK and HIF1A targeting in cell-specific

in silico simulations for A549 and H441 cells

Subsequently, we investigated in silico the potential

therapeutic effect of AMPK as a relevant target for

A549 and HIF1A as a target for H441. For this, we

integrated the LKB1 cascade for A549 into the cell-

specific in silico topology that simulated the 17AAG

therapy (Fig. 7A), and further considered the connec-

tivity of HIF1A in H441 (Fig. 7C). Proteins in the net-

work that correspond to the basic topology of

Stratmann et al. (2014) are bold rimmed and proteins

that match to the topology from Fig. 4B have an olive

background (Fig. 7A,C). From our drug screening

(Box S1), we identified 5-aminoimidazole-4-carboxa-

mide ribonucleotide (AICAR) in A549 as the potential

activator of AMPK that is directly modulated by its

interactor LKB1, which is specifically mutated in A549

(synonym: STK11; see DrumPID pathway ko04152).

Similarly, we found PX-478 as a selective HIF1A inhi-

bitor for the H441 cell line. Based on this, we simu-

lated their potential therapeutic effect by applying the

SQUAD algorithm (Fig. 7B,D; prestimulations in

Table 3C). For in silico simulations of AMPK activa-

tion and inhibition of HIF1A, we found induced apop-

tosis and reduced proliferation in each cell line over

time as a desirable drug effect.

3. Discussion

3.1. Motivation

Personalized treatment strategies have to cope with

highly redundant tumor pathways resulting in resis-

tance, whereas combination therapies often show severe

toxic side effects (Tannock and Hickman, 2016). There-

fore, it is necessary to reconsider the design of clinical

studies with targeted anticancer approaches. It is critical

to understand the underlying dependencies in signaling

networks, and to provide tools for exploiting now fre-

quently available sequencing data from patients.

Moreover, in the field of oncology, the success rate

of preclinical testing is at under 5%, generating enor-

mous financial costs (Bhattacharjee, 2012). Even

though animal models predict toxicity quite convinc-

ingly, they tend to fail in efficacy testing (Greaves

et al., 2004; Kubinyi, 2003). In particular, for signaling

analyses, mice are not adequate models due to inap-

propriate ligands to some centrally connected human

receptors, such as MET (Francone et al., 2007). Next

to ethical concerns, these aspects underline the urgent

need to develop novel human tumor test systems.

Here, we introduce a new concept of in vitro tissue

tumor models and in silico analyses to design and test

individual biomarker profiles and intervention strate-

gies. This prepares the floor for patient-tailored clinical

studies, required for personalized cancer medicine

(Tannock and Hickman, 2016). As our main aim is to

develop a powerful tool that can be implemented into

the clinic by analyzing the patient’s sequence data, we

investigate as proof of concept in this work three indi-

vidual lung cancer cell lines with known genome

sequence information. However, here we show only

exemplary data and not a large validation series. We

are aware that exact quantitative estimates require a

higher number of experiments and more cell lines with

similar driver mutations. Exploring its clinical imple-

mentation, currently our in silico tool advises on a

case-by-case basis the molecular tumor board in our

comprehensive cancer center. In particular it supports

Table 2. Cell line-specific proteins introduced in addition to the

original topology.a

Cell line Gef 17AAG

HCC827 (3D) MET cascade+ MET cascade+; Erb2 cascade+;

Erb3 cascade+; c-RET cascade+;

HSP90; HSP60; HIF1A; p53

A549 (3D) – HSP90; HSP60

HIF1A; p53

H441 (3D) MET cascade+ MET cascade+; HSP90; HSP60;

HIF1A; p53; Erb2 cascade+;

VEGF2 cascade+; Erb3

cascade+; c-RET cascade+;

FGFR3 cascade+

a Listed are the proteins extending the network of Stratmann et al.

(2014) that responds upon Gef or 17AAG treatment and which

were measured in arrays and western blots. According to interac-

tion analysis p53, HSP60, HIF1A and HSP90 are added as cascades

around 17AAG. A plus (+) indicates cell line-specific protein nodes

added according to the experimental data. Further cell line-specific

protein nodes according to COSMIC and relevant to our in silico

network as being close to or in our signaling cascades are listed in

Table S3 (9 in A549, 18 in H441). Cell-specific mutations analyzed

in detail are shown in Figs 6 and 7. A complete list of all cell line-

specific mutations known is given in Table S2.
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Table 3. Different activation strengths for each node for in silico simulations. Cell line-specific differences in pathway activities on (A) Gefa

and (B) 17AAGa and (C) AMPK activator and HIF1A inhibitorb

Cell line Parameter (�) gef (+) gef

(A)

HCC827 (3D) MET 0.22 0.15

EGFR 0.22 0.12

EGF-EGFR 0.22 0.12

FLIP 0.6 0.5

A549 (3D) KRASc 0.413 0.413

FLIP 0.6 0.6

H441 (3D) KRASc 0.43 0.43

EGFR 0.205 0.205

MET 0.205 0.205

FLIP 0.4 0.4

Cell line Parameter (�) 17AAG (+) 17AAG

(B)

HCC827 (3D) EGFR 0.25 0.2

MET 0.25 0.2

Stress 0.6 0.6

HSP60 0.4 0.4

FLIP 0.7 0.6

p53 0.4 0.4

(Erb2/Erb3/c-RET) 0.07 0.07

Erb2/Erb3/c-RET 0.1 0.07

(EGF-EGFR) 0.1935 0.1935

(MET) 0.1935 0.1935

A549 (3D) KRASc 0.352 0.352

Stress 0.5 0.5

FLIP 0.7 0.33

p53 0.0 0.0

HSP60-act 0.4 0.4

H441 (3D) KRASc 0.43 0.43

EGFR 0.05 0.01

Erb2/Erb3/c-RET/

FGFR3

0.04 0.03

MET 0.05 0.02

Stress 0.7 0.7

p53-act 0.65 0.65

HIF1-act 0.65 0.65

HSP60-act 0.05 0.05

VEGFR2 0.35 0.33

FLIP 0.75 0.75

PTEN 0.41 0.41

Cell line Parameter (�) AICAR (+) AICAR (�) PX-478 (+) PX-478

(C)

A549 (3D) KRASc 0.345 0.345

Stress 0.5 0.5

FLIP 0.6 0.2

p53 0.0 –

p53-act – 0.1

low glucose 0.3 0.3

HIF1-act 0.8 0.8
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to identify alternative protein targets when resistance

to treatment occurs.

Our human 3D tumor model generated by tissue

engineering technologies should reduce preclinical fail-

ure, as it reflects tumor characteristics better and

shows higher predictive accuracy than conventional

2D cultures: it retains the tissue architecture, extracel-

lular matrix components and structures of the base-

ment membrane as unique features for cellular

interactions. These are important modifiers of cellular

responses (Linke et al., 2007; Philippi et al., 2009;

Schanz et al., 2010). In detail, we observed (a) more

homogenous staining of E-cadherin/b-catenin and

lower proliferation rates according to tumor speci-

mens, (b) a biomarker-dependent apoptosis induction

and proliferation reduction by the EGFR inhibitor

Gef, and (c) in contrast to other preclinical findings, a

reduced response upon HSP90 inhibitor treatment in

KRAS-mutated tumor cells, which matches observa-

tions from clinical studies. Thus, we believe that our

in vitro model resolves interpathway dependencies

more reliably than 2D or animal models.

Individual KRAS in silico networks were established

by integrating relevant proteins from in vitro experi-

ments and their interaction partners from HPRD. Our

simulations start from a general in silico network for

lung cancer, which is refined here to reveal the most

relevant protein clusters. By matching cell line-specific

mutations from the COSMIC database, we derived

individual drug targets and by screening our custom-

made, protein–drug interaction database DrumPID

appropriate drugs (Kunz et al., 2016).

Table 3. (Continued).

Cell line Parameter (�) AICAR (+) AICAR (�) PX-478 (+) PX-478

mTOR-act 0.65 0.65

H441 (3D) KRASc 0.43 0.43

EGFR 0.05 0.05

Erb2/Erb3/c-RET/FGFR3 0.04 0.04

MET 0.05 0.05

Stress 0.7 0.7

p53-act 0.65 0.65

HIF1-act 0.65 0.65

HSP60-act 0.05 0.05

VEGFR2 0.35 0.05

FLIP 0.75 –

casp3-act – 0.75

PTEN 0.41 0.41

a Cell line-specific receptor or pathway activity of proteins according to the experimentally determined differences in response behavior

(apoptosis, proliferation, RTK, and western blot data); all other proteins were simulated with no specific activation. (�) Treatment activation

at stage 0; (+) treatment activation at stage 1. b For the simulation of the AMPK activator AICAR in A549 and the HIF1A inhibitor PX-478 in

H441, we used the cell line-specific activity from the untreated cells of the 17AAG treatment (Table 3C); all other proteins were simulated

with no specific activation. (�) Treatment activation at stage 0; (+) treatment activation at stage 1. cConstant activation, as there is a KRAS

mutation in these cell lines.

Table 4. Overview of potential predictive markers and new therapeutic targets for the KRAS-mutated cell linesa

Mutational background (new predictive marker and therapeutic targets)

HIF1A IKBKE NOS1 LKB1 BRG1 CBL CSNK2A1 NR3C1

A549 wt wt wt U U U U U

H441 U U U wt wt wt U U

aBy applying integrated systems biology analysis by considering the experimental data and the mutational background, we identified several

cell line-specific predictive markers and new therapeutic targets for the A549 and H441 cell lines. The table represents a signature of impor-

tant markers and drug targets, as a part of the functional cluster and/or connected to HSP90 (cell line-specific mutational status is in blue;

unknown mutational status in orange; wt = wild-type). These proteins suggest promising predictive markers for a 17AAG treatment and

alternative therapeutic drug targets. Abbreviations: hypoxia-inducible factor 1-alpha (HIF1A); inhibitor of kappa light polypeptide gene enhan-

cer in B cells, kinase epsilon (IKBKE); nitric oxide synthase 1 (NOS1), liver kinase B1 (LKB1; serine/threonine kinase 11 (STK11)); BRM/

SWI2-related gene 1 (BRG1); SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4; synonym:

SMARCA4); Casitas B-lineage lymphoma (CBL); casein kinase 2, alpha 1 polypeptide (CSNK2A1); nuclear receptor subfamily 3, group C,

member 1 (NR3C1). For more details, see drug screening in the Box S1.
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3.2. HSP90 inhibition in KRAS-mutated tumors

and correlation of our 3D tissue models and

other preclinical models to clinical findings

In a previous study of a lung cancer model, we were

able to demonstrate a stronger apoptosis induction in

the 3D model by Gef, compared to conventional 2D

culture (Stratmann et al., 2014). After setting up stan-

dard operating procedures (G€ottlich et al., 2016), we

could predict the clinical failure of HSP90 inhibitor

treatment in the context of KRAS mutation, in con-

trast to other in vitro and in vivo models (Acquaviva

et al., 2012; Sos et al., 2009). Heat shock proteins have

gained attention in recent years as therapeutic tools, as

they are involved in tumor cell proliferation, invasion,

and cell death. Their high expression was observed in

several cancer entities in clinical settings (Ciocca and

Calderwood, 2005). Specifically, HSP90 belongs to a

family of chaperons important for the function of rele-

vant oncogenic drivers in lung adenocarcinomas. From

a genomewide screening of 84 cell lines, KRAS muta-

tion was identified to confer sensitivity to HSP90 inhi-

bition that could also be verified in murine models

(Sos et al., 2009). In this screening, the geldanamycin

derivatives 17AAG, and 17-dimethylaminoethylamino-

17-demethoxygeldanamycin in mice experiments were

Fig. 5. Cell line-specific in silico simulations for 17AAG treatment according to data from the 3D system. Simulations of the 17AAG

treatment reflect the in vitro data. Coloring of the curves is according to the network node colors shared for all three cell lines shown in

Fig. 4B. Cell line-specific pathway differences included are given in Table 2. Top: Simulation of the 17AAG treatment in HCC827 cells (right,

red curve at full activation) results in slightly induced apoptosis (gray curve at 0.2) and unchanged proliferation (black curve), as compared to

untreated cells (left, red curve at 0.0, no treatment). Middle: The in silico simulation of the 17AAG treatment for A549 shows only low

apoptosis induction (0.2); we see no therapeutic effect on proliferation (black curve, dots) compared to untreated cells. However, HSP60

(black curve, squares) is induced after 17AAG treatment, similar to the in vitro data. Bottom: In H441 cells, apoptosis is not elevated over

time and no effect on proliferation can be obtained. p53 (pink curve) is induced after 17AAG treatment and correlates with the in vitro data.
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Fig. 6. KRAS signature development and individual target predictions by generation of HPRD networks. We generated a network around KRAS,

according to the experimentally validated DRPs between both KRAS-mutated cell lines (H441, A549) in the 3D system (Table 1B; 17AAG

treatment), and included their direct protein interaction partners using the genomewide HPRD. The resulting larger KRAS interaction network

includes 556 proteins (= nodes) and 680 protein–protein interactions (= edges), around nine strongly DRPs (EGFR, ErbB2, ErbB3, MET, FGFR3, c-

Ret, VEGFR2, p53, and HSP60). (A) A Venn diagram compares cell line-specific mutations. Mapping of cell line-specific protein mutations (573 for

H441 (blue) and 361 for A549 (yellow) from the COSMIC database) against the 556 proteins from the network around KRAS results in 18 H441-

specific mutations and in nine A549-specific mutations which were included in each cell line-specific in silico topology to yield the network. Details

are given in the Supporting information, and key network differences are shown in B and C. (B) A549-specific network: represents neighbor

proteins that we could target if we consider the experimental data and directly interacting protein neighbors (from HPRD; functional clusters in

Fig. S5A). As drug targets do not appear for these small modules from key signaling proteins, we considered experimental derived proteins (red)

with all first-degree neighbors, HSP90 (orange rectangle), and additionally direct neighbors to cell line-specific mutations (in yellow, suspected

‘driver mutations’). Direct neighbor proteins are labeled in lavender, in cyan are neighbors from neighbors, which are also mutated. The black

square (AMPK, interactor of p53 and LKB1) indicates a promising drug target (screening procedure given in Box S1). (C) H441-specific network:

shows neighbor proteins that we could target, if we consider the experimental data, HSP90 (orange rectangle) and directly interacting protein

neighbors from HPRD (functional clusters in Fig. S5B). Directly interacting neighbors are shown (lavender, labeling binary interactions). As drug

targets do not appear for these small modules from key signaling proteins, we considered all experimental determined nodes (red) with all first-

degree neighbors integrating cell line-specific H441 mutations (in blue, suspected ‘driver mutations’; EGFR and p53 labeled in red with blue circles

as they are array nodes and mutated). Protein interactors according to HPRD are labeled in lavender; in cyan are neighbors from driver mutations,

also showing a mutation in H441. The square (HIF1A) indicates a promising drug target (screening procedure given in Box S1).
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applied for HSP90 inhibition. However, geldanamycin

and its derivates turned out to have safety and phar-

macological limitations (Jhaveri and Modi, 2015).

Another in vitro study showed the effectiveness of

HSP90 inhibition in several KRAS-mutated non-small

cell lung cancer (NSCLC) lines by ganetespib – a non-

geldanamycin analog with less toxic side effects

(Acquaviva et al., 2012). However, single agent HSP90

inhibition by ganetespib failed in NSCLC patients with

KRAS-mutated tumors. Combination therapy trials

with docetaxel (GALAXY 1 and 2) led to better out-

comes in patients with adenocarcinomas, than doc-

etaxel single agent therapy, but not in the subgroup of

KRAS-mutated tumors (Bhattacharya et al., 2015).

Recently, ALK, ROS1, and RET kinase gene rear-

rangements have been suggested to predict efficacy by

targeting HSP90 (Rothschild, 2015; Sang et al., 2013;

Socinski et al., 2013).

3.3. In silico simulations of cell responses and

development of a predictive KRAS signature

In this study, in silico analyses for KRAS signature

development are executed in three steps:

1 Set up of cell-specific in silico topology with logical

Boolean connectivity (software tool CELLDESIGNER;

http://www.celldesigner.org; Funahashi et al., 2008)

2 Cell-specific dynamic in silico simulations of tumor

cell responses (software tool SQUAD)

3 For systematic drug-target identification we generate

larger cell-specific protein–protein interaction net-

works considering neighbors of the central cascades

(using data from HPRD) and cell line-specific muta-

tions (using data from COSMIC). For drug sugges-

tions we apply the database tool DrumPID.

In detail, we explain here the three above mentioned

distinct types of in silico analyses:

1 With the term ‘in silico topology’, we considered a

previously published knowledge-based network

which focuses mainly on kinase cascades (Stratmann

et al., 2014) and integrated here cell-specific differ-

ences as additional nodes (proteins) derived from

experimental data to specifically mirror the effects of

Gef treatment and HSP90 inhibition. For this, we

measured by phospho-arrays and western blot signal-

ing changes as drug responses as well as differences

in proliferation and apoptosis in the different cell

lines in 2D and 3D conditions. Missing parts of the

cascade or modulatory crosstalk are filled in accord-

ing to expert knowledge and public databases. These

represent only the key parts of the signaling cascades.

We used the tool ‘CellDesigner’ to set up the in silico

topologies and to bring them into a machine-readable

format as done before for other cell types (Schlatter

et al., 2012).

2 ‘in silico simulations’ with the SQUAD tool predict

the systemic response of a tumor cell upon a specific

treatment which depends on the tumor cell topology

and the activation/inactivation of its integrated

nodes. As input the activation level of certain nodes

can be set between zero as an inhibitory effect (inacti-

vation) and one as an activating effect (activation).

Furthermore, mutations can be integrated that stay

independent from upstream signaling events at a cer-

tain value in case of gain or loss of function muta-

tions. Also differences in 2D and 3D conditions can

be simulated by adjusting the nodes’ values to experi-

mentally measured levels, that is, phosphorylation

determined by western blot. Some of the nodes sum-

marize also global cellular responses, for example,

‘stress’. Importantly, also the drug responses prolifer-

ation and apoptosis are integrated in the topology as

nodes. Values of the other nodes must be adjusted

until the level of proliferation and apoptosis comply

with the in vitro observations. Traditionally, differen-

tial equations for detailed kinetic modeling look at

biological responses (Di Cara et al., 2007; Dwivedi

et al., 2015; Robubi et al., 2005). However, this

requires then detailed kinetic information on individ-

ual kinases. This is not necessary in our approach,

as the SQUAD modeling software interpolates automat-

ically exponential functions between our protein net-

work nodes fitting signal transmission and logical

connectivity (Di Cara et al., 2007). We previously

applied this combination to study cancer (G€ottlich

et al., 2016; Stratmann et al., 2014), infection biology

(Audretsch et al., 2013; Naseem et al., 2012), and dif-

ferent tissues (Brietz et al., 2016; Czakai et al., 2017;

Philippi et al., 2009).

3 For drug targeting, we looked systematically at larger

protein–protein interaction networks; in particular,

we collected all neighbors of upon 17AAG treatment

between DRPs of both KRAS-mutated cell lines. To

this network, we matched cell-specific mutations from

the COSMIC database. These larger networks we

term here ‘in silico networks’. The cell-specific net-

works were then scrutinized to identify most promis-

ing treatment targets considering their relation to

highly connected proteins in the network that are

called ‘hubs’. A robust drug prediction algorithm col-

lates information from several large-scale databanks

including chemical information according to Simpli-

fied Molecular Input Line Entry Specification

(SMILES) notation and basic drug pharmacokinetics

ADME (absorption, distribution, metabolism, excre-

tion) rules (DrumPID, Kunz et al., 2016). We used
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our reconstructed cell-specific networks (Fig. 6B,C)

and screened which drugs according to DrumPID

(Kunz et al., 2016) influence apoptosis and prolifera-

tion in a cell-specific manner. Targets are ranked by

the effect strength, closeness to central cascades and

druggability (Box S1). Subsequently, we simulated

the potential therapeutic effect on apoptosis and pro-

liferation focusing on AICAR (AMPK activator) and

PX-478 (HIF1A inhibitor) as top candidates and inte-

grated their specific connectivity to the central cas-

cades in the in silico topology. However, other drug

target candidates can also be simulated, but for each

simulation the individual targets and side targets of

the drug has to be considered. Further testing of pre-

dictions is required to confirm suggested targets

regarding clinical relevance. So far, neither HCC827,

nor A549, nor H441 lung cancer cell lines have been

analyzed by such a comprehensive in silico approach.

3.4. Experimentally measured differences

between the 2D and 3D system and in silico

analyses

Besides a higher chemoresistance in the case of HSP90

inhibitor treatment, we observed in 3D lower reduc-

tion of MET upon 17AAG treatment and an inverse

regulation of p53, when compared to 2D conditions.

Next to semiquantitatively evaluated western blot

experiments, we present data from two phospho-array

screens (RTK, PK) as a starting point for further anal-

yses (Figs S1 and S3A).

Importantly, in our 3D experiments we observed in

contrast to 2D conditions upon 17AAG treatment an

upregulation of HSP60 exclusively in A549, and an

activation of p53 only in H441, which we were able to

achieve also in our in silico simulations. However, the

literature reports HSP60 inhibition by HSP90 and p53

inactivation by HSP60 (Ghosh et al., 2008), which

would explain our experimental observations in A549

and H441. The reason why HSP60 upregulation and a

lack of p53 expression in A549 has a small effect on

apoptosis in this setting, could be due to reduced

HIF1A activation upon 17AAG treatment, as pre-

dicted by our in silico simulation. This reduced activa-

tion could stem from the inhibition of HSP90. HIF1A

is not completely silenced in the simulation, due to its

connection to LKB1 via mTOR in the in silico topol-

ogy, as according to the COSMIC database, in A549

LKB1 carries a loss of function mutation. Further-

more, our in silico topology illustrates that this LKB1

mutation should lead to reduced AMPK activation

and, thereby, also reflects the nonproliferative effect of

17AAG treatment via the mTOR signaling pathway.

On the other hand, apoptosis induction is also blocked

in H441. Induction of p53 upon inhibition of HSP90

should have no apoptotic effect due to the loss of func-

tion mutation of p53 identified in the COSMIC data-

base. Furthermore, in our simulation we can see that

HIF1A is still activated in H441 following HSP90 inhi-

bition. This could be due to a mutation inside this gene

that leads to an inhibitory effect on apoptosis and

favors proliferation. Box S2 shows that we can use the

same topology to simulate 2D results in silico, but dif-

ferences in protein activation have to be taken into

account to appropriately simulate the stronger apop-

totic as well as proliferative responses upon 17AAG

treatment observed in 2D cultures. As we could cor-

rectly simulate the observed responses upon Gef and

17AAG treatment for 2D and 3D conditions we could

support that nodes in our topology are so far con-

nected correctly.

The in silico screen can reveal new dependencies, as

high quality databases consider cancer-subtype-specific

mutations and their interacting proteins along with all

available drugs to directly attack the mutated protein

or one of its neighbor.

AICAR and PX-478 are given as attractive examples

(top ranked; see Supporting information) and their

therapeutic effect on apoptosis and proliferation is

simulated. However, other drugs can also be used by

integrating other drug target candidates by considering

its individual targets and side targets.

Fig. 7. In silico topologies and simulations of AMPK and HIF1A treatment. Cell-specific network extensions according to the experimental

data (Table 2) are mapped into the shared topology (bold nodes from basic topology from Stratmann et al. (2014), olive shade for topology

nodes from Fig. 4B). Furthermore, AMPK as a relevant target for A549 (network in (A)) and HIF1A as a target for H441 (topology in (C)) are

included (nodes equivalent to the 17AAG treatment are deposited in olive, protein node colors are the same as in the simulation curves).

Both protein targets were integrated with their direct interacting protein neighbors in the cell-specific networks to mirror in silico individual

therapy. In (B) and (D), the cell-specific topologies are next simulated dynamically, and selected trajectories of protein node activities were

plotted, showing the effects of the potential drug candidate AICAR as an AMPK activator for A549 (B), and the HIF1A inhibitor PX-478 for

H441 in (D) to illustrate the in silico screen of different drugs in the two cell line-specific topologies. (B) Simulation of AMPK activation in

A549 cells (right, red curve at stage 1) results in higher apoptosis (pink curve) and reduced proliferation (salmon curve), as compared to

untreated cells (left, red curve at 0.0, no activation). (D) The in silico simulation of the HIF1A inhibition for H441 (right, olive curve at full

activation) shows higher apoptosis (black curve) and reduced proliferation (salmon curve), as compared to untreated cells (left, olive curve at

0.0, no activation).
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Subsequently, the targets and drugs can be inte-

grated in the in silico topology by considering its speci-

fic connectivity to the central cascades and further

in silico simulated with SQUAD.

3.5. Exemplified target and drug candidate

prediction for A549 cells

From the newly established KRAS network, based on

proteins that exhibit changes in signaling between A549

and H441 in 3D conditions and cell-specific mutations,

the for A549 unique mutation LKB1 stands out. Our

drug–protein interaction database DrumPID (Kunz

et al., 2016) identifies drugs that modulate the query

protein directly, or one of its directly interacting neigh-

bor proteins. This database tool identifies AMPK in our

analyses as a potential drug target in A549 cells which

can be modulated by the drug AICAR. AMPK protein

is a direct interaction partner of LKB1 (Fig. 6B) (Fay

et al., 2009; Rattan et al., 2005; Tang et al., 2011).

AMPK activation using the drug AICAR, an analog of

AMP, leads to tumor growth arrest in our in silico simu-

lation for A549 cells (Fig. 7A,B; nodes from first topol-

ogy are olive-shaded in 7A). Moreover, AICAR shows

promising results in the clinical phase 1/2 for chronic

lymphatic leukemia (Van Den Neste et al., 2013). In

addition, the approved anticancer agent pemetrexed is

known to indirectly activate AMPK by the accumula-

tion of ZMP in LKB1-null lung cancer (Rothbart et al.,

2010).

3.6. Exemplified target and drug candidate

prediction for H441 cells

Regarding H441 cells, we also screened the H441 pro-

tein interaction network around the KRAS signature

for potential drugs targeting either the protein or its

direct neighbor. HIF1A was the highest-ranked target

(Box S1), as it is altered in H441 cells according to COS-

MIC data and is involved in a signaling loop (Greijer

and van der Wall, 2004) (Fig. 6C). Inhibition of HIF1A

using PX-478 shows an antitumor effect in our in silico

simulations (Fig. 7C,D; nodes from first topology are

olive-shaded in 7C). Studies demonstrated that inhibi-

tion of HIF1A shows promising therapeutic effects in

human xenograft models (Welsh et al., 2004).

3.7. Application of the combined in vitro/in silico

tool

For clinical application, patient tumors have to be

sequenced first, or at least tested by PCR or microar-

rays, to confirm that the driver mutation profile

matches those in our cell lines. Notably, primary

tumor cell culture is still challenging and has to be

optimized for its utilization in routine personalized

approaches.

4. Conclusion

Predictive gene signatures were identified in a combined,

tissue-engineered, 3D lung tumor model with improved

clinical correlation and a Boolean in silico approach

that integrated measured cell-specific differences in drug

responses. We established cell line-specific networks that

depend on individual mutation patterns. This enabled

better understanding of the interdependencies between

single signaling cascades to prevent treatment resistance.

Exemplified by the KRAS-mutated cell lines A549 and

H441, we demonstrated how our analysis tool could

lead to individual signature development, based on

in vitro/in silico investigations on signaling, interaction

partners from the HPRD, and sequence data from COS-

MIC. The limited number of direct interference points

with the proliferative and/or apoptosis signaling cascade

suggests and ranks best cell line-specific targets, imply-

ing future therapies according to NGS data, tailored to

the individual cancer mutation profile. Translated into

clinical application, our lung cancer cell line-specific

examples suggest for patient stratification to determine

not only the KRAS mutation status, but also to test for

LKB1, p53, and HIF1A. Such cancer-specific prescreen-

ing could distinguish among individual mutational sub-

groups to improve patient stratification and the design

of clinical studies.

5. Materials and methods

5.1. Cell culture

HCC827 and A549 cell lines were purchased from

DSMZ (Braunschweig, Germany), H441 from ATCC

(LGC Standards GmbH – Germany Office, Wesel,

Germany). A549 and H441 cells were cultured in

RPMI + 10% FBS, HCC827 cells in RPMI + 20%

FBS. Cells were monitored for pathogen infections at

regular intervals. For a 2D culture, cells were either

grown on glass coverslips in well plates until they had

reached a confluency of about 70% or were cultured

for 5 days in 12-well plates or 6-cm petri dishes. For a

3D culture, 1 9 105 tumor cells were grown for

14 days on the SISmuc (see Section 5.3) that was fixed

between two metal rings, as described in the literature

(G€ottlich et al., 2016; Moll et al., 2013; Stratmann

et al., 2014). Both 2D and 3D cultures were performed

under standard conditions (37 °C, 5% CO2).
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5.2. Treatment with Gef and 17AAG

After 1 day in a 2D and 11 days in a 3D culture, cells

were treated with either 1 lM Gef (IressaTM, AstraZeneca,

Wedel, Germany; Selleckchem) or 0.01, 0.05, 0.1, 0.25,

0.5 or 1 lM 17AAG (17-N-allylamino-17-demethoxygel-

danamycin, Tanespimycin; Selleckchem) for 72 h, with a

medium change after the first 48 h of treatment.

5.3. Porcine material

The SISmuc consisting of porcine small intestine sub-

mucosa (SIS) and mucosa (muc) was used as a scaffold

for all 3D culture experiments. It was prepared from the

BioVaSc� as described in the literature (Linke et al.,

2007; Schanz et al., 2010). All explantations were in

compliance with the German Animal Protection Laws

(§4(3), supervised by the institute’s animal protection

officer, all animals received proper care according to the

National Institute of Health standards (NIH publica-

tion no. 85e23, revised 1996)), and as approved by the

institutional animal protection board.

5.4. Human material

Human lung tumor tissue was provided by the Depart-

ment of Thoracic Surgery of the University Hospital of

Wuerzburg (local ethics approval: 182/10, 25.11.2015).

5.5. Histology and immunofluorescence

Cells cultured on glass slides in 2D were fixed in 4%

paraformaldehyde for 10 min, cells in a 3D culture for

2 h, and the human lung tumor tissue overnight at 4 °C.
The SISmuc samples, as well as the tumor tissue, were

embedded in paraffin and sectioned at 3 lm thickness

for hematoxylin–eosin (HE) and immunofluorescence

staining. The primary antibodies E-cadherin (#610181;

BD Transduction Laboratories, Heidelberg, Germany),

b-catenin (#ab32572; Abcam, Cambridge, UK), and

Ki67 (#ab16667; Abcam) were diluted 1 : 100 and incu-

bated overnight at 4 °C. Secondary antibodies conju-

gated with fluorescent dyes Alexa 555 or 647 were

diluted 1 : 400 and incubated for 1 h at room tempera-

ture. Nuclei were counterstained by DAPI dissolved in a

Mowiol embedding solution. Pictures were taken with a

digital microscope (BZ-9000; Keyence Deutschland

GmbH, Neu-Isenburg, Germany).

5.6. Cell proliferation

To determine the proliferation rate, cells cultured in 2D

and 3D were stained against Ki67. Ten nonoverlapping

images of 3D sections and five nonoverlapping images

of 2D cultures were taken. Quantification of the prolif-

eration rate was performed as described in the literature

(G€ottlich et al., 2016).

5.7. M30-elisa

Apoptosis was determined from supernatants taken

from untreated and treated tumor models during the

last 4 days of the culture. M30 CytoDeathTM ELISA

(Peviva) was performed according to the manufac-

turer’s instructions. All samples were measured in

duplicates.

5.8. Western blot and phospho-RTK and PK

arrays

Cells were lysed in modified RIPA buffer (137 mM

NaCl, 50 mM NaF, 20 mM Tris/HCl pH 8.0, 2 mM

EDTA, 10% (v/v) glycerol, 1% (v/v) NP-40, 0.5% (w/

v) DCA, 0.1% (w/v) SDS, 1 mM Na3VO4, and 19

protease inhibitor cocktail (Sigma-Aldrich, Darmstadt,

Germany)), or in the provided lysis buffers of the

respective array kit. For western blot analysis, protein

samples (27 lg per lane) were separated electrophoret-

ically in a 10% SDS/gel and blotted on a 0.2-lm
nitrocellulose membrane (Whatman, Fisher Scientific

GmbH, Schwerte, Germany). The primary antibodies

pEGFR (#ab32430; Abcam), pMet (#3077; Cell Sig-

naling Technology, Frankfurt a. Main, Germany),

phospho-p53 (S46) (#2521; Cell Signaling Technol-

ogy), HSP60 (#ab46798; Abcam), and b-actin (#3700;

Cell Signaling Technology) were incubated in NFDM

or a 1% BSA overnight at 4 °C. Secondary anti-

mouse or anti-rabbit IgG antibodies conjugated to

horseradish peroxidase (#JAC-111035144 or #JAC-

115035146; Jackson ImmunoResearch, Cambridge-

shire, UK) were incubated for 1 h at room tempera-

ture. Bands were visualized using the Pierce ECL

Western Blotting kit (Thermo Scientific, Breda, Neth-

erlands). Phospho-RTK and PK arrays were per-

formed according to the manufacturer’s instructions.

Western blot and array membranes were imaged at

the imaging station FluorChem Q (Biozym Scientific,

Hessisch Oldendorf, Germany). Gray values were

determined with the related image acquisition and

analysis software ALPHAVIEW (version 3.2.2.0; Protein-

simple, San Jose, CA, USA).

5.9. Statistical analysis of the experimental data

The nonparametric Kruskal–Wallis test and post hoc

Wilcoxon rank-sum test were used for statistical
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analysis of proliferation and apoptosis results.

P < 0.05 was considered as significant. Statistical anal-

ysis was carried out with the open-source software R

(The Comprehensive R Archive Network).

5.10. Bioinformatics analysis

5.10.1. Network analysis

Bioinformatics analyses combined cell culture array and

western blot data for the Gef and 17AAG treatment in

the 3D system with information from databases to build

up an individual network for each cell line. We extended

the original in silico topology (Stratmann et al., 2014)

by integrating proteins listed in Table 2.

5.10.2. Dynamic simulation

For the 3D in vitro system, we simulated the Gef and

17AAG treatment using the SQUAD software (Di Cara

et al., 2007), by taking the pathway activity differences

into account (Table 2) while running the simulation

(prestimulations in Table 3). For the 2D system we

focused on the A549 and H441 cell lines (prestimula-

tions in Box S2). SQUAD represents the network topol-

ogy (activation, inhibition) using logical Boolean

operator (AND, OR, NOT) and interpolates them by

applying mathematical e-functions. The resulting net-

work effects are visualized in a graph as changes of state

over an arbitrary time, allowing in silico simulations of

different network scenarios. Simulation protocols were

written using the SQUAD function ‘perturbator’ (pres-

timulation option in the simulation menu of the soft-

ware), in which the value for the drug Gef and 17AAG

were set to an initial state of 0 and 1 (reflecting either no

treatment or standard treatment, respectively), and

experimental nodes and mutations were adjusted

(Table 3 and Box S2). All parameters for the proteins

(‘nodes’) in the network without experimental or muta-

tional regulation were set as an active node pulse

(state = 0 and time = 0) that changes, depending on

interconnectivity in the cell-specific network.

5.10.3. Software for visualization

To set up the silico topology we used the CELLDESIGNER

software tool. For visualizing the network, we used

CYTOSCAPE version 2.8.3 (Shannon et al., 2003). The

CYTOSCAPE software is an open-source platform for visu-

alization and analysis of biological networks using sev-

eral plug-ins (Saito et al., 2012; Shannon et al., 2003).

We analyzed the reconstructed cell line-specific net-

works for functional modules (‘clusters’) using the

Cytoscape plug-in MCODE (Bader and Hogue, 2003).

Potentially available drugs were selected using our pre-

viously developed DrumPID (Kunz et al., 2016).

The following methods were applied, as detailed

below:

An in silico signaling network is invariably a simpli-

fied view of the biological complexity. We focus here

on the major cascades relevant for the output. The

bioinformatics analysis combined the cell culture

array and western blot data with the systems biology

network analysis approaches and information from

databases. The robustness of the simplified networks

of central tumor cascades in cell-specific in silico net-

works was also verified by considering removing and

adding protein nodes at the rim of the network. This

did not affect signaling responses, whereas changing

central hub protein nodes strongly affected the

results. Cell compartmentalization (e.g., divergent

cytosolic and mitochondrial processes), multiphos-

phorylation processes and complex formations were

not included. This limits such approaches to semi-

quantitative descriptions of the sequential order,

strength, and respective duration of events (Brietz

et al., 2016; G€ottlich et al., 2016). However, the sim-

ulations allow an in silico overview of the lung tumor

topology and important drug responses, such as

changes in individual cell line-specific responses.

5.10.4. Cell line-specific network reconstruction

For establishing cell line-specific signaling networks,

we always used the same central cascades based on

our previously published in silico topology (G€ottlich

et al., 2016; Stratmann et al., 2014) for HCC827 and

A549 cell lines. In contrast, we extended the in silico

network for the additionally introduced KRAS-

mutated H441 cell line.

5.10.5. Simulation protocol

For dynamic simulation, we first looked at the effects of

Gef and next 17AAG treatment in the tissue in vitro sys-

tem, revealed by phospho-RTK arrays and western

blots. As the model is semiquantitative, weaker or stron-

ger biological activation has to be taken into account

with values between 0 (reflects no activation) and 1 (re-

flects full activation) to model key input. We fitted

parameters to the results obtained from experiments

(data-driven modeling) and optimized the fit in iterative

cycles of new simulations and new experiments. This

included prestimulations according to mutations known

from their pharmacological behavior. We hence simu-

lated the proteins as network nodes with the parameters

given in Table 3 and Box S2.
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Additional information on the details of the bioin-

formatics analysis is given in the Doc. S1 and the Sup-

porting information figures and boxes.
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Fig. S1. Signaling is unchanged in gefitinib responsive

HCC827 cells in 2D and 3D.

Fig. S2. In silico model and simulation for the gefitinib

treatment in A549 and H441.

Fig. S3. Signaling changes in 2D and 3D after treat-

ment of different cell lines with the HSP90 inhibitor

17AAG.

Fig. S4. Biological network analyses on the KRAS-

mutated cell lines for 17AAG in the 3D system.

Fig. S5. Functional cluster analyses of the cell line-spe-

cific networks.

Fig. S6. Cell line-specific in silico simulations for gefi-

tinib treatment in A549 and H441 according to data

from the 2D system.

Fig. S7. In silico simulations for 17AAG treatment in

A549 and H441 according to data from the 2D sys-

tem.

Box S1. Ranking and comparison of all cell-specific

mutations for KRAS signature development and indi-

vidual target predictions.

Box S2. Cell line-specific differences modeled in 2D.

Doc. S1. Additional information for the bioinformatics

analyses

Table S1. For the generation of networks we down-

loaded the HPRD which contains 9620 protein nodes

and 39185 protein–protein interaction edges (release 9

from April 13, 2010).

Table S2. For the identification of a KRAS signature

of potential markers we downloaded cell line-specific

mutations from the COSMIC database (A549: Sample

Name: A549, Sample ID: 905949; H441: Sample

Name: NCI-H441, Sample ID: 908460).

Table S3. Mapping of the COSMIC mutations to the

KRAS-mutated network results in 18 H441- and 9

A549-specific overlapping proteins (nodes).
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