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Abstract

Arterial growth and remodeling at the tissue level is driven by mechanobiological processes

at cellular and sub-cellular levels. Although it is widely accepted that cells seek to promote

tissue homeostasis in response to biochemical and biomechanical cues—such as increased

wall stress in hypertension—the ways by which these cues translate into tissue mainte-

nance, adaptation, or maladaptation are far from understood. In this paper, we present a

logic-based computational model for cell signaling within the arterial wall, aiming to predict

changes in extracellular matrix turnover and cell phenotype in response to pressure-induced

wall stress, flow-induced wall shear stress, and exogenous sources of angiotensin II, with

particular interest in mouse models of hypertension. We simulate a number of experiments

from the literature at both the cell and tissue level, involving single or combined inputs, and

achieve high qualitative agreement in most cases. Additionally, we demonstrate the utility of

this modeling approach for simulating alterations (in this case knockdowns) of individual

nodes within the signaling network. Continued modeling of cellular signaling will enable

improved mechanistic understanding of arterial growth and remodeling in health and dis-

ease, and will be crucial when considering potential pharmacological interventions.

Author summary

Biological soft tissues are characterized by continuous production and removal of mate-

rial, which endows them with a remarkable ability to adapt to changes in their biochemi-

cal and biomechanical environments. For arteries, mechanical stimuli result primarily

from changes in blood pressure or flow, and biochemical changes are induced by multiple

factors, including pharmacological intervention. In order to understand how arterial

properties are maintained in health, or how they adapt or fail to adapt in disease, we must

understand better how these diverse stimuli affect material turnover. Extracellular matrix

is tightly regulated by mechano-sensing and mechano-regulation, and therefore cell sig-

naling, thus we present a computational model of relevant signaling pathways within the

vascular wall, with the aim of predicting changes in wall composition and function in

response to three main inputs: pressure-induced wall stress, flow-induced wall shear

stress, and exogenous angiotensin II. We obtain qualitative agreement with a range of
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experimental studies from the literature, and provide illustrative examples demonstrating

how such models can be used to further our understanding of arterial remodeling.

Introduction

Central arteries actively maintain their geometry, composition, properties, and function over

long periods under normal conditions. Moreover, they often adapt well to altered mechanical

loading via the turnover of cells and extracellular matrix (ECM) in evolving configurations.

Both of these observations are consistent with mechanical homeostasis, which exists across

scales from sub-cellular to cellular to tissue levels [1]. Because of the complexity of such growth

and remodeling (G&R) processes, computational models have proven useful in quantifying

and comparing responses across both normal adaptations and disease conditions, often at the

tissue-level [2–5]. Although tissue-level models increase our understanding of the time-course

of certain homeostatic mechanisms, and their loss in cases of disease, and enable clinically rele-

vant predictions, they are yet limited because of the lack of consideration of the underlying cell

signaling pathways. There is, therefore, a pressing need for cell signaling models that affect

responses at the tissue level.

Detailed kinetic models of cell signaling networks require a comprehensive understanding

of both network structure and the underlying biochemistry. When known, a mathematical

description can be formulated as a system of coupled differential equations, where processes

such as phosphorylation and gene transcription are modeled by proposing appropriate func-

tional relations [6, 7]. One of the primary challenges to such modeling, however, is parameteri-

zation. This is particularly challenging when there is crosstalk within the network, which

makes isolating individual reactions and parameters difficult. These difficulties are manageable

for smaller systems through parameter estimation and qualitative parameter explorations. For

larger systems, or systems for which the precise nature of interactions are not well-understood,

logic-based models represent an alternative approach that can offer significant insight [8–10].

These models also use a network structure, but are typically built using qualitative relation-

ships between species, relying on more general observations such as ‘A upregulates B’ or ‘C

inhibits D’, as often reported in the literature on vascular biology. Such models comprise a dis-

crete set of rules together with an updating scheme for the state of each variable. Notably, pre-

cise functional forms and values of rate parameters for the interactions between species need

not be known.

In this paper, we propose a logic-based model for the arterial wall focusing on signaling

pathways that dominate responses to changes in mechanical loading at the tissue level as well

as exposure to exogenous angiotensin II (AngII). In particular, chronic infusion of AngII is

often used to induce hypertension in mouse models and we designed our computational

model to consider simultaneously the potential roles of altered wall stresses, wall shear stresses,

and AngII infusion on changes in intramural cell phenotype and turnover of ECM. Specifi-

cally, the network structure that defines the model is motivated by cell-level findings reported

in 72 complementary studies in the literature, then values of the model parameters are tuned

based on cell- and tissue-level findings from an additional, independent, set of 37 papers that

report qualitative outcomes in terms of single perturbed inputs. Finally, we simulate case study

experiments at both cell and tissue levels to enable qualitative validation studies using some of

the most complete data available; these studies consider multiple perturbed inputs and multi-

ple perturbation magnitudes.
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Results

Network structure

First, consider a first generation network appropriate for studying arterial G&R (Fig 1), with

input and output nodes relevant to arterial signaling in response to changes in mechanical

loading and a possible exogenous source of AngII. It is well established that both intramural

stress and wall shear stress (arising from blood pressure and flow, respectively) play important

biomechanical roles in regulating wall geometry, composition, properties, and contractile

function [11–13]. For example, intramural stress triggers medial smooth muscle cell (SMC)

and adventitial fibroblast (FB) signaling pathways mediated by integrins and stretch-activated

channels (SACs); it also affects the availability and activation of latent transforming growth

factor-β (TGFβ), AngII, and platelet-derived growth factor (PDGF) [14–16], among other

mediators. Wall shear stress is sensed primarily by endothelial cells (ECs); modestly decreased

or increased shear stress results in the production of endothelin-1 (ET1) or nitric oxide (NO),

Fig 1. Arterial wall signaling network constructed from the literature. The network structure corresponds to rule-based statements, derived from the

literature and shown (along with abbreviations) in S1 Appendix, containing 50 species and 82 reactions. Black solid lines denote activation and red

dotted lines inhibition. For clarity, inhibition is shown to affect a node directly; however, to implement this, an ‘AND NOT’ logic operation is used with

all incoming reactions to the node (see S1 Appendix). EC represents endothelial cells (the signaling for which is not considered in detail—see text) and

SMC/FB refers to a homogenized approach to modeling contributions by the intramural smooth muscle cells and fibroblasts. Given our interest in

AngII-induced hypertension, we focus on collagen production leading to fibrosis as revealed by murine experiments. Network visualization was

achieved using Cytoscape [19] and Netflux (https://github.com/saucermanlab/Netflux).

https://doi.org/10.1371/journal.pcbi.1008161.g001
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a vasoconstrictor and vasodilator, respectively [17, 18]. Of particular relevance to murine mod-

els of hypertension, aneurysms, and dissection, we additionally consider an exogenous supply

of AngII. In a commonly used murine model, AngII is infused chronically in vivo via an

implanted mini-osmotic pump; our inclusion of AngII as an independent external source thus

allows investigation of downstream signaling effects induced by different doses.

Based on these observations, we consider three main input species: intramural stress, wall

shear stress, and exogenous AngII. For the intermediate species, with specific pathways dis-

cussed below, we consider EC responses to flow, and intramural cell (SMC/FB) responses to

intramural stress and AngII. As illustrated in Fig 1, our EC component does not yet consider

the cell signaling pathways in detail. Its purpose, rather, is to model the production of NO and

ET1 that affect intramural cell signaling in general mechano-adaptations. Our simplifying

choice to begin by considering the intramural cells together is motivated by prior mechanical

models wherein mean (radially homogenized) wall mechanics are captured well using a single-

layered model [20], and prior mechanobiological models for G&R [21–23] wherein salient fea-

tures of arterial adaptations and maladaptations are captured using phenomenological models

of combined SMC and FB mechanobiology, which reside in the medial and adventitial layers,

respectively. This starting point is also convenient for future coupling of our signaling model

to such G&R models, which we address in more detail in the Discussion.

The edges in the network (Fig 1) were constructed from the literature, and a full list of net-

work relations and supporting references are provided in S1 Appendix. To formally define the

model, relations were formulated as a set of 82 logic statements (see Methods). Many vascular

diseases exhibit altered ECM and modified contractile function, thus our literature search

focused on pathways relevant to collagen deposition and degradation (via matrix metallopro-

teinases) by SMCs/FBs as well as SMC contractility and proliferation, namely the Smad,

MAPK (p38, ERK, JNK), PI3K, mTOR, and Rho/ROCK pathways. The majority of edges (62

of 82 relations) were deduced directly from experimental studies using vascular smooth muscle

cells, vascular endothelial cells, or vascular tissue samples (see S1 Appendix). Where possible,

we focused on murine studies. Some relations, such as the binding of a protein to its receptor,

are well established (14 of 82 relations), and we cite relevant reviews for these more general

phenomena. Additional relations were considered if there was evidence across multiple cell

types and if these relations had previously been proposed to hold in reviews of vascular biology

(5 of 82 relations). Finally, one edge (AngIIin) AngII) was a model specified reaction (1 of

82 relations) to allow both exogenous (e.g. via a mini-osmotic pump) and endogenous sources.

From this starting point, we envisage having to iteratively refine the network structure for

additional situations of interest and as new data become available; the present rule-based

approach provides a convenient means to do this.

Input–output relations

Consider, first, how the network model can match experimental bio-chemo-mechanical

input–output relations from the vascular literature. Most commonly in experiments, one vari-

able is perturbed at a time from a baseline value, then comparisons are made amongst the out-

puts at baseline and following the perturbation, as, for example, an increase in stretch, flow,

pressure, or an exogenous input such as AngII. In the model, we can also prescribe time-vary-

ing input values and measure corresponding changes in the outputs. To simulate such experi-

ments, initial conditions for the inputs were prescribed such that

yStress ¼
b baseline intramural stress;

bþ p perturbed from baseline;

(

ð1Þ
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yWss ¼
0:5 baseline wall shear stress;

0:5þ p perturbed from baseline;

(

ð2Þ

yAngIIin ¼
0 baseline infused AngII;

p perturbed from baseline;

(

ð3Þ

ySACs; Integrins ¼
n
b baseline cell receptors; ð4Þ

where b 2 [0, 1] is a normalized basal input value (to be prescribed) and p 2 [0, 1] is the magni-

tude of a normalized perturbation (also to be prescribed), which is added to the baseline level

of Stress, Wss, or AngIIin, one at any time. Note that an exogenous AngII input is only present

in certain experimental protocols, and is usually compared to controls with no AngII infusion.

We therefore set yAngIIin = 0 at baseline, rather than b, to represent our control state of the

artery. Exogenous AngII is then considered as a perturbation with respect to this control.

Note, however, that this does not mean that there is no AngII signaling at baseline, for AngII is

also activated by intramural stress (Fig 1). The baseline value for wall shear stress (yWss = 0.5)

was a model choice due the desire to study increased and decreased wall shear stress equally,

based also on examination of the corresponding ET1 and NO steady states. This choice

ensured capture of known behaviors (e.g. of ET1 increasing below, and NO increasing above,

baseline wall shear stress).

Experimental results used to parameterize the model and to ensure qualitative validation

are shown in Fig 2A; they were collated from a set of 37 papers that report qualitative out-

comes in terms of single inputs. Again, note that these papers are separate from the literature

used to construct the network, which were focused on single reactions rather than network

level input–output relations. An increase or decrease of an output in response to an increased

input is represented by upward and downward pointing arrows respectively. In some cases,

conflicting results were found in the literature, in which case both arrows are shown. Cases

with no observed changes are shown by horizontal lines, and unknown relationships by

empty boxes. The values of b, p, and default network parameters were selected, as described

in Methods and S2 Appendix, as single values that provide the best match to these qualitative

relations (here, b = 0.2 and p = 0.3 in Eqs 1–4). Associated model input–output relations,

which correspond directly to the experimental results in Fig 2A, are shown in Fig 2B, where

absolute increases and decreases relative to baseline steady states are shown by orange and

blue respectively. Check marks and crosses denote agreement and disagreement, respec-

tively, between the model and experiments, excluding cases where opposing outcomes have

been reported in different studies. The goodness of this parameterization, and thus valida-

tion of the model, is revealed by the overall qualitative agreement with the (non-conflicting)

experimental findings in all but two cases, both in response to changes in wall shear stress:

the model did not predict the experimentally observed upregulation of TGFβ1 by wall shear

stress, whereas it predicted a small decrease in MMP9, which was reported not to change in

the literature. Note, for the purposes herein, cardiac output (flow) tends not to change appre-

ciably in many cases of hypertension.

We also considered the consistency of qualitative responses under changes in b and p (S2

Appendix), highlighting differential responses that are sensitive to inputs or levels of perturba-

tion. Examples include predicted changes in MMPs, actomyosin activity, and SMC prolifera-

tion in response to prescribed increases in stress or exogenous AngII, and predicted changes
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in TGFβ1 in response to prescribed exogenous AngII. For a subset of these cases, we illustrate

this dependence by plotting fold changes in steady state behavior relative to the baseline

(p = 0) case, as the parameters b and p vary, where p is a stress perturbation (S3 Appendix).

We find cases where increases (TGFβ1, TSP1, NO) and decreases (ET1) are found consistently

or where both increases and decreases (MMP1, MMP2) can be seen, which can be understood

when plotting the behavior in absolute (rather than fold-change) terms (S3 Appendix). We

found that the species exhibiting inconsistent qualitative responses exhibited non-monotonic

behavior as b and p increase. Qualitative conclusions thus depend on input level, that is, the

baseline or point of reference for the comparison, and the magnitude of the perturbation. This

Fig 2. Comparison of qualitative experimental input–output relations and model predictions. A. Experimental

input–output relations from the literature ([24–60]) used for qualitative model validation. Increases and decreases of

an output in response to each of three inputs are represented by upward and downward arrows respectively. In cases of

conflicting results, both are depicted. Cases with no observed changes are shown by horizontal lines, and unknown

relationships by empty boxes. For the supporting references, orange indicates upregulation, black indicates no

observed change, and blue indicates downregulation. B. Model predicted absolute differences in steady state species

activity when the inputs (intramural stress, wall shear stress (Wss), and AngII) are perturbed relative to baseline:

orange denotes an increase and blue a decrease relative to the original steady state (white). These simulations

correspond directly to the experimental findings, with model parameters tuned to achieve the best qualitative

agreement (see S2 Appendix). We denote agreement and disagreement between model and experiments by check

marks and crosses, respectively. Default uniform model parameters are n = 1.25, EC50 = 0.55, b = 0.2 and p = 0.3 (Eqs

1–4), with weights w = 1 (see Methods). TGFB: transforming growth factor-β, MMP: matrix metalloproteinase, TSP1:

thrombospondin-1, TIMP: tissue inhibitor of MMPs, NO: nitric oxide, and ET1: endothelin-1.

https://doi.org/10.1371/journal.pcbi.1008161.g002

PLOS COMPUTATIONAL BIOLOGY Computational cell signaling for arteries

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008161 August 24, 2020 6 / 22

https://doi.org/10.1371/journal.pcbi.1008161.g002
https://doi.org/10.1371/journal.pcbi.1008161


is also illustrated in a simple example (S4 Appendix) in which a non-monotonic input–output

relation between TGFβ1 and MMPs occurred due to TIMP inhibition.

Sensitivity analysis

The present rule-based modeling approach allows considerable control over each species and

reaction; interactions can easily be added, removed, or altered (by adding new edges or adjust-

ing the weight parameters) and species can be fully or partially removed via a scaling parame-

ter Ymax 2 [0, 1] (see Methods). This flexibility is extremely useful for understanding the

importance of particular nodes and pathways, and we can simulate downstream effects that

may result from abnormal signaling, mutations, or therapeutic interventions. Consider, there-

fore, a partial knockdown of interior nodes in the network (Fig 3). For each node in turn, we

calculate the absolute difference in steady state activity of each species as the value of Ymax for

that node is reduced from 1 to 0.1. Default parameters (w = 1, n = 1.25, EC50 = 0.55) and the

uniform initial conditions, y0 = 0.2 (the basal condition), were used for four of the inputs:

Stress, AngIIin, SACs, and Integrins, whereas Wss = 0.5 was used for the wall shear stress.

Such simulations can be studied further to see direct and indirect consequences when remov-

ing specific species, which could occur due to mutations, dysfunction or targeted interven-

tions, such as treatment with losartan, an AT1 receptor blocker. From Fig 3, we see that a

knockdown of the AT1 receptor (AT1R, marked by (1)) results in reductions in SMC prolifera-

tion and contractile proteins (RhoA, ROCK, MLCK), consistent with experimental studies

showing reduced SMC proliferation and contraction [61]. In contrast, an AT2 receptor knock-

down (AT2R, marked by (2)) results in upregulation of contractile proteins and SMC prolifer-

ation, consistent with experimental observations of its negative regulation of RhoA and ROCK

[62], and the opposing effects of this receptor on AT1 receptor signaling [63]. Note here the

apparent lack of changes in FAK, Cdc42, Arp2/3 and ActomyosinActivity, and their down-

stream nodes. These species had low basal values, and their absolute values were modulated

only slightly when enforcing Ymax = 0.1, to an extent not visible on this scale. We show this

subset of results in S1 Fig using a different scale.

We also examine downstream effects of reducing ET1 and NO in the model. In an experi-

mental study by Rizvi et al. [64], the vasoconstrictor ET1 was observed to stimulate SMC pro-

liferation and collagen type I synthesis but not collagen type III synthesis. Knockdown of ET1

in the present model reduced SMC proliferation and (to a small extent) collagen type I mRNA

expression, but not collagen type III mRNA expression. In the experiments, an ETA receptor

antagonist reduced collagen type I synthesis; in the model, knockdown of the ETAR node

(marked by (3)) similarly led to a slight reduction in collagen type I mRNA levels. Note that

the model shows a decrease in collagen at the mRNA level but not in the total protein due to

the concurrent decrease in MMPs and the way in which their interaction with collagen is mod-

eled. In the current formulation, MMPs directly inhibit the synthesis of functional collagen via

an ‘AND NOT’ operation (S1 Appendix) rather than more accurately degrading the protein

after its production; the net outcome is the same. More realistic turnover could be accounted

for by including additional species that distinguish between newly synthesized collagen and

degraded collagen, but was not considered here. An additional consideration is the weight

parameter associated with this degradation, which should be adjusted according to experimen-

tal data though not done here. Rizvi et al. also investigated the effect of the vasodilator NO

[60], finding that it inhibited SMC proliferation and collagen type I synthesis, but not collagen

type III synthesis. Consistent with these observations, an NO knockdown (i.e. the reverse sce-

nario) in the model (marked by (4)) led to increased SMC proliferation and slight increases in

collagen type I and III mRNA. The effect is larger in collagen type I mRNA than in collagen
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type III mRNA. We further observe that ERK signaling increased, and from the network dia-

gram (Fig 1), note that ERK activates Col1mRNA but not Col3mRNA.

Case studies

To mimic the experimental study of Ruddy et al. [39], we consider different combinations of

intramural stress (Eq 1), with values b (low), b + p (intermediate) and b + 2p (high) respec-

tively, and exogenous AngII (Eq 3), with values b (low) and b + 2p (high) respectively. Fig 4

shows outputs for different values of b 2 [0, 1] and p 2 [0, 1]. First, consider a low baseline

(left column): b = 0.1 and p = 0.1. In this case, AngII increases MMP activity for each level of

stress. In contrast, for intermediate baselines (middle column, b = 0.2, p = 0.2), MMP activity

decreases in the intermediate and high stress cases (shown by increasing, then decreasing

arrows). Finally, for higher baselines (right column, b = 0.4, p = 0.2), MMP activity decreases

for all three stress states (strictly decreasing arrows). These representative parameter choices

show the different possible qualitative outcomes, found in all three types of MMPs considered,

the second of which resembles observations in [39] in which MT1-MMP and MMP9 promoter

activity increase under low tension but decrease under high baseline tension with the addition

of AngII (Figs 1 and 3 in [39]). In their study, MMP2 promoter activity (Fig 2 in [39]) did not

show this conflicting behavior, but instead showed increased activity more akin to the low

Fig 3. Network sensitivity analysis as each node is perturbed. For a separate individual partial knockdown of each of

the 45 interior nodes (Ymax = 1 to Ymax = 0.1), we calculate absolute differences (knockdown–reference) in steady state

activity of every other species (y–axis). The marked cases (1)–(4) are discussed in the main text. In both the reference

and knockdown cases, uniform initial conditions, y0 = 0.2, are used for four of the inputs: Stress, AngIIin, SACs, and

Integrins, whereas Wss = 0.5.

https://doi.org/10.1371/journal.pcbi.1008161.g003
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baseline case (as in the left hand panels of Fig 4 for MMPs, with strictly increasing arrows).

Recall, however, that the model parameters were not tuned to fit these particular experimental

data or these differences, which could arise (for example) from different activation weights. It

is promising that we are able to observe both of these qualitative outcomes, and future quanti-

tative studies may help to capture these differences. Note, too, that not all species show dose

dependent behavior; TIMP shows only increasing or saturating behavior, meaning that it is

not as sensitive to baseline conditions. Strictly increasing behavior is also found for TSP1 (S2

Fig), and slight decreases, and therefore conflicts, can be seen in TGFβ1 with the addition of

AngII at high baseline stresses (S2 Fig), but this effect is not as apparent as in the MMPs (Fig

4). This result is likely related to the decrease in MMPs, since MMP2 and MMP9 cleave latent

TGFβ, and thereby regulate the active form.

These different responses can be characterized fully by plotting steady state outputs as a

function of the two inputs, stress and AngII (Fig 5A); we present these as dose-response sur-

faces. Similar to the cases with one input (S3 Appendix), non-monotonic behavior is seen for

all types of MMPs. Namely, as the baseline levels of stress increase, decreasing MMP activity

relative to baseline can be expected after further perturbations, which we show by considering

Fig 4. Species responses to exogenous AngII under three levels of baseline stress. We show model outputs (relative

to the baseline case, Stress = AngII = b) for four species of interest in response to three levels of stress, σ: low (b),

intermediate (b + p), and high (b + 2p), as well as low (b) and high (b + 2p) AngII inputs. Arrows show general trends,

with the MMPs exhibiting three different qualitative behaviors, the first two of which were similar to those observed in

Figs 1–3 in [39].

https://doi.org/10.1371/journal.pcbi.1008161.g004
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the cross-section of the MMP9 surface at AngII = 0 (Fig 5B). Similarly, AngII perturbations

can lead to either increased or decreased MMP activity, the latter more prevalent at higher lev-

els of stress, although this also depends on the magnitude of the perturbation, as shown by

considering cross-sections for an intermediate and high baseline stress (Fig 5C). The experi-

mental study of Ruddy et al. [39] can be thought of as sampling from these dose-response

surfaces, and this experimental design is therefore more useful than single-dose studies for

understanding possible non-monotonic input–output responses, though more combinations

could be helpful. When moving to quantitative studies, this information could be used to help

identify the reference point on the surface, which is currently unknown, and to identify key

parameter values, which will affect the shape.

To mimic the experimental study of Wu et al. [52], which focuses on matrix production by

murine aortic fibroblasts, we examine collagen mRNA levels in the model under three differ-

ent levels of stress (yStress = {0.2, 0.3, 0.4}) with and without Ang II (yAngIIin = {0, 0.2}) (Fig 6).

In qualitative agreement with data in [52] (shown here by filled circles, when numerical values

were available), stress increases mRNA expression of collagen types I and III in a dose-depen-

dent manner, which is increased further by exogenous AngII. Finally, we simulate a knock-

down of p38 MAPK (to 10% maximal activity, Ymax = 0.1), to mimic the use of the inhibitor

SB203580 (Fig 5D,E in [52]). This knockdown attenuates the increased expression of mRNA

for Col1 and Col3 induced by stress. In addition to fold changes, we show the corresponding

time-courses in S3 Fig. Interestingly, although the fold-change response to AngII was larger

in collagen type III mRNA, the absolute differences are similar. In the model, this occurs sim-

ply due to a lower basal value of collagen type III mRNA. The response to the p38MAPK

Fig 5. Model dose-response surfaces to Stress and AngII and consequences of non-monotonicity. A. Output steady

states of 6 species of interest as a function of Stress and AngII inputs, yielding dose-response surfaces. B. Cross-section

of the MMP9 surface showing how MMP activity can first increase and then decrease in response to Stress, here with

AngII = 0. C. Cross-section of the MMP9 surface showing that intermediate and high baseline Stress can lead to either

initial increases or decreases in MMP activity as AngII is applied.

https://doi.org/10.1371/journal.pcbi.1008161.g005
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knockdown is, however, more pronounced (in both relative and absolute terms) in collagen

type III mRNA, as observed in the experiment (Fig 5D,E in [52]).

Discussion

Many different models focusing on different conditions have been proposed to study arterial

growth and remodeling [65–70]. Among others, we have found phenomenological models to

be useful in generating and testing diverse hypotheses fundamental to arterial adaptations [5,

22], in studying arterial disease progression [71, 72], and in the design of tissue engineered

constructs and their clinical usage [73, 74]. Nevertheless, tissue-level manifestations arise from

molecular and cellular level changes [75–78]. There is, therefore, a pressing need for models

that enable one to examine changes in cell phenotype and ECM turnover in terms of cell sig-

naling pathways. As noted above, both kinetic and logic-based models offer considerable

promise in this regard. Some models coupling tissue mechanics to cell signaling have been

developed using kinetic formulations [4, 79], and provide illustrative examples through

parameter studies. Biochemical species—primarily growth factors and proteases—were mod-

eled using either a system of ODEs [4, 80] or reaction–diffusion PDEs [79]. Yet, with time-

course data for these species lacking, parameterization and quantitative verification remains a

challenge, particularly if more detailed signaling is to be considered in the future.

Here, we implemented a logic-based model building on prior successes in modeling cardiac

remodeling [10, 81–83]. This is, to our knowledge, the first such implementation for arterial

signaling, with a focus on processes relevant to hypertensive growth and remodeling. Although

there is a pressing need for consistent data for particular situations of interest—for example,

angiotensin-induced hypertensive remodeling of the murine aorta—we were able to identify

72 papers in the literature that allowed construction of a general network topology (model)

and 37 additional papers that allowed the parameter values to be tuned, when assumed to be

uniform (i.e. taking identical values for all reactions). We then focused on arterial responses to

three stimuli (inputs): changes in intramural stress, changes in wall shear stress, and changes

in AngII stimulation. Overall, model predictions were qualitatively consistent with findings

reported in 83% of the cases (and up to 92% of cases when considering only papers with

Fig 6. Model-predicted collagen mRNA expression for control, AngII, and p38 MAPK knockdowns as wall stress

increases. We show fold-change expressions of collagen type I and collagen type III mRNA with three levels of stress

(yStress = σ = {0.2, 0.3, 0.4}), with and without AngII (yAngIIin = {0, 0.2}). Bars are model outputs, and filled circles

correspond to data from [52]. In the absence of AngII, we also simulate a p38 MAPK inhibitor (via a knockdown to

10% maximal activity), which corresponds to findings in Fig 5D,E in [52]. Note that the default Hill parameters were

not refined to achieve quantitative agreement, which was considerable nonetheless.

https://doi.org/10.1371/journal.pcbi.1008161.g006
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consistent findings), similar to that reported for cardiac models [81, 83]. This level of qualita-

tive agreement allows the model to be used with some confidence to investigate effects of vari-

ous knockdowns of particular nodes or perturbations in various inputs, namely stress and

exogenous AngII.

We then focused on two papers of particular relevance to our goal—the paper by Wu et al.
[52] that investigated intramural cell (adventitial fibroblast) level responses to cyclic stretching

with and without AngII stimulation and the paper by Ruddy et al. [39] that investigated tissue

(whole wall, homogenized transmurally) level responses to different applied loads (in a tension

ring test) and AngII simultaneously. In both cases, our model predictions were largely consis-

tent with the experimental findings despite our not attempting to refine the parameter values

for these specific studies. Specifically, for different combined doses of intramural stress and

AngII, the model predicted, in agreement with [52], that stress increased mRNA expression of

collagen types I and III. As in the experimental findings, this effect was dose-dependent, fur-

ther increased by the addition of AngII, and mediated, in part, by p38 MAPK (Fig 6). Also

consistent with the experimental data, the effect of a p38 MAPK knockdown was more

pronounced on collagen type III. As studied in [39], we also considered MMP activity for dif-

ferent levels of the stress and AngII inputs, and found different possible qualitative results

depending on the baseline level of stress (Fig 4). These model findings appear to result from

non-monotonicity, resulting from inhibition reactions, which was demonstrated by analyzing

the equations for a simpler illustrative example (S4 Appendix). Similar results were seen in

[39] for MT1-MMP and MMP9 promoter activity under low and high baseline tension, but

not for MMP2. In addition to this example, non-monotonic input–output relations could

explain conflicting experimental findings in the literature, which often only consider single

doses and baselines. We emphasize that further data from studies considering consistent base-

line conditions, multiple doses, and multiple combined inputs will be essential to characteriz-

ing system behaviors further, and for identifying dose-response surfaces, as in Fig 5. These

studies would also be essential for determining relative contributions of the different inputs on

shared pathways, thereby allowing improved parameterization of the model. In addition to

these considerations, future collection of time-course data, which is currently lacking, will

prove useful. The model includes a decay timescale, τ, for each species (see S4 Appendix or

[84]), which was not adjusted here (similarly to previous works [82–85]) due to lack of tempo-

ral data. This is a significant simplification and, whilst order of magnitude estimates have been

considered [81], time-course data will help in these parameterization efforts.

Inherent to logic-based approaches is the normalization of species activity to the range

[0, 1], meaning that conclusions focus on qualitative rather than quantitative trends. This is

often the level of detail that is available from the many different biological assays available,

which are based on fold-change responses. Whilst kinetic models may eventually become

appropriate as detailed quantitative data become available, tuning to quantitative results can

be achieved with logic-based models by adjusting reaction weights and Hill parameters, as

demonstrated in the initial formulation for cardiac signaling [84], where comparisons were

made to an existing kinetic model. A considerable challenge, however, will be parameter iden-

tifiability, due to the numerous pathways with similar functional forms; comprehensive data-

sets will be needed before such parameter fits can reliably take place. Nevertheless, there is still

much insight to be gained from qualitative simulations, even under the simplifying assump-

tions made here. The flexibility to refine and test different network structures is extremely use-

ful, and qualitative observations can guide and motivate experimental studies. Of particular

note are the contradictory experimental results in Fig 2A. Although many possible factors

could give rise to these contradictions, our qualitative prediction of non-monotonic responses

to input perturbations provides one potential explanation; fold-changes become sensitive to
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baseline conditions and perturbation magnitudes (S3 Appendix). Conflicting qualitative

results were also seen within a single study by Ruddy et al. [39], when AngII was perturbed

under varying levels of baseline tension, also consistent with our view on non-monotonicity

and the importance of baseline conditions (Figs 4 and 5). This possibility can be tested further

via studies with controlled baselines and multiple perturbation magnitudes; more generally,

though, this highlights the need for more of these types of studies if fold-change data are to be

reliably understood.

In this first generation model, intramural cells are considered together, representing

homogenized or bulk responses. This choice is motivated by three observations: first, a long

history of modeling the mechanics of elastic arteries via radial homogenizations, whereby

mean wall mechanics are captured well using single-layered models [21]; second, by mechano-

biological models for arterial G&R [22, 23], where arterial adaptations and maladaptations are

captured well using phenomenological models of combined intramural cell mechanosensing;

and third, the overwhelming availability of bulk biological data, including qPCR, western blot-

ting, and bulk RNAseq that come from homogenates from the arterial wall, particularly in

murine studies wherein it is difficult to separate the three structural layers of the wall. There-

fore, whilst still a first order approximation, our model is in a convenient form to be coupled

to data-informed G&R models. In future refinements, however, more detailed signaling net-

works should be considered for each of the three key cell types within the arterial wall: endo-

thelial cells, smooth muscle cells, and fibroblasts, which reside in the intima, media, and

adventitia, respectively. The importance of paracrine signaling can then be studied (requiring

also a wider collection of co-culture data), and this could then be coupled to multi-layered

models of arterial G&R [5]. Indeed, with increasingly more detailed data, there will be a need

for further delineation of cellular contributions to wall growth and remodeling; we know, for

example, that macrophages and T-cells contribute to fibrotic remodeling in hypertension [86,

87] and both resident and bone marrow derived progenitor cells often contribute, the latter

including fibrocytes [87]. Similarly, there are many other species of ECM not considered here:

glycoproteins, GAGs, additional MMP subtypes, and ADAMTS, for example, that can and

should be added in future models. Of course, the more complex the model, the more difficult

its validation, and extensions should take the available data into account.

Arterial remodeling is inherently multiscale, with feedback between cell-level signaling

events and slower tissue-level responses, which leads to changes in mechanical stresses over

time. In order to capture this feedback, an important future extension is the coupling of net-

work models to tissue-level mechanical descriptions of the arterial wall. Of note, the frame-

work used here is compatible with previous constrained mixture models for G&R [21–23],

where the normalized outputs from our network model can directly inform, via appropriate

scalings, constituent mass production and removal functions and altered contractility, which

were previously modeled using phenomenological functions of intramural and wall shear

stress. Similarly, intramural and wall shear stresses calculated from such a G&R formulation

will inform the changing inputs to the network. It is critical that this feedback between net-

work outputs and network inputs comes from such a tissue-level model, which includes mass

and momentum balance, rather than being included directly in the logic-based model, as only

then we can understand the role of material parameters, composition, and other key determi-

nants such as collagen fiber alignment in the modulation of the stresses. Development of a cou-

pled, multiscale, framework will significantly extend the scope of the current model, allowing

us to simulate long-term consequences of disrupted signaling, which cannot be captured in a

signaling model alone. Similarly, the effect of sustained changes in inputs, arising in hyperten-

sion, for example, can then be considered.
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In summary, we developed a model that predicts changes in cell phenotype and ECM turn-

over in response to prescribed changes in three fundamental inputs in arterial mechanobiol-

ogy, namely tissue-scale intramural stress, wall shear stress, and exogenous AngII. These

inputs are particularly important in cases of induced hypertensive aortic remodeling and our

preliminary studies show good consistency with available data. Whereas we considered some

of the key cells, ECM constituents, and signaling pathways (Smad, MAPK, mTOR, PI3K/Akt,

and Rho/ROCK), there is a need to consider additional cellular contributors, matrix constitu-

ents, and pathways as well. Most importantly, there is a need to couple the current cell-signal-

ing based model with tissue-level models that include equilibrium solutions that define the

evolving states of intramural stress as well as hemodynamic models that define the evolving

states of wall shear stress. In this way, we can achieve a coupled fluid-solid-growth model hav-

ing multi-scale capability and feedback consistent with tissue homeostasis (S4 Fig), with the

eventual goal of examining how particular mutations or targeted pharmacological interven-

tions can affect the overall wall mechanics and thus (patho)physiological function. Continued

collection of data across scales will enable such modeling and should be given highest

attention.

Methods

We use a graph representation to describe signaling events within the arterial wall, where

nodes correspond to species of interest and edges depict relationships between them such as

activation and inhibition. To implement a graph-based model, we must understand (i) the

components involved and (ii) the way they interact (i.e. activation vs inhibition). We con-

structed a network (Fig 1) from an extensive curation of the literature, and formulated the rela-

tions as a set of logic statements (S1 Appendix).

Logic-based governing equations

Starting from a list of logic statements, we use an approach developed by Kraeutler et al. [84],

which utilizes weighted normalized Hill functions in a system of nonlinear ordinary differen-

tial equations (ODEs), details of which are in S1 Appendix. This method, in which a continu-

ous model is built from a discrete set of rules, builds on prior theoretical work [88] and has

since been implemented for several other large-scale signaling studies [81–83, 85]. The method

extends concepts from Boolean algebra in which each of N species is represented by a discrete

activity level, either ‘on’ (1) or ‘off’ (0). In the normalized Hill ODE approach, these activity

levels can take any real value within the interval [0, 1]. As with traditional logic frameworks,

conditional update rules are supported through the use of three basic operators: conjunction,

disjunction, and negation (^, _, ¬), also known as ‘AND’, ‘OR’ and ‘NOT’ logic gates, which

allow key features of signaling networks, such as activation and inhibition involving multiple

components, to be simulated.

In the context of cell signaling, the two elementary processes are activation and inhibition.

Sigmoidal activation by a single variable, X 2 [0, 1], is modeled by a normalized Hill function

of the form

FðXÞ ¼
BXn

Kn þ Xn
; ð5Þ

where n is the Hill coefficient, controlling the steepness of the function (note: Eq 5 approaches

a step function as n!1). The constants B and K enforce the constraints

Fð0Þ ¼ 0; Fð1Þ ¼ 1 and FðEC50Þ ¼ 0:5; ð6Þ
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where EC50 is the value of X at which a half-maximal activation occurs, namely,

B ¼
EC50

n � 1

2EC50

n � 1
and K ¼ ðB � 1Þ

1=n
: ð7Þ

As typical of logic-based models, inhibition is modeled by negation, that is 1 − F(X).

To consider multivariable activation or inhibition, these functions must be extended by

using conditional logic. The conditional ‘AND’, ‘OR’ and ‘AND NOT’ operators are defined as

ðaÞ X ^ Y ¼ FðXÞFðYÞ; ð8Þ

ðbÞ X _ Y ¼ FðXÞ þ FðYÞ � FðXÞFðYÞ; ð9Þ

ðcÞ X ^ :Y ¼ FðXÞð1 � FðYÞÞ: ð10Þ

Additionally, these operators can be used recursively to construct more complex regulatory

statements, involving more than two components.

Reaction weights can be introduced into the normalized Hill ODE formulation to better fit

quantitative experimental data; the governing equations become more similar (though differ-

ent in underlying assumptions) to kinetic models, since edge weights can be tuned as more

information becomes known about individual reactions [84]. Weighted reactions are also use-

ful for exploring different network topologies: edges can be modeled as defective or removed

by lowering or setting reaction weights to zero. Additionally, each node has a decay timescale τ
and a maximal activity level, Ymax 2 [0, 1], as discussed fully in [84]; we also provide a detailed

example of model construction, governing equations, and solutions for an illustrative reduced

system in S4 Appendix. By default, Ymax = 1; however, external interventions such as full or

partial knockdowns of a species can be simulated by lowering this value.

The precise form of the weighted normalized Hill ODEs depends on the set of rules govern-

ing each variable, but are built in a modular fashion using Eq 5 for activation, its negation for

inhibition, and the conditional logic operations in Eqs 8–10. In general, each reaction is then

scaled by a weight parameter, w. This can be seen for our illustrative system in S4 Appendix.

Default parameters. In this first implementation of the model, we assumed that the reac-

tion weights and Hill parameters (w, n, EC50) are uniform across the network (i.e. they take

identical values for all reactions), consistent with demonstrated successes by others using this

assumption [81–85]. Additionally, let w = 1 for each reaction and τ = 1 for each species. The

strength and functional forms for activation and inhibition are therefore identical for each

reaction, as in Boolean models, and we associate each species with the same decay timescale.

These assumptions were able to capture well the qualitative network behaviors reported in pre-

vious experimental studies, suggesting that the basic model structure reflects well the arterial

wall under the conditions of interest. These simplifying assumptions will nevertheless need to

be adjusted when there is increased access to quantitative data, including time-courses. To

tune the model parameters using input–output simulations (Fig 2B), we conducted a parame-

ter sweep to find the baseline values and perturbation magnitudes of the inputs, denoted by b
and p, respectively (Eqs 1–4), and the Hill parameters (n and EC50), that provided the best

agreement with experimental input–output relations (Fig 2A). For each parameter set, we

quantified the percentage of input–output relations that qualitatively matched between model

and experiment and, based on this analysis, shown in more detail in S2 Appendix, we selected

n = 1.25, EC50 = 0.55, b = 0.2 and p = 0.3 as default parameters.
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Implementation

The open-source code ‘Netflux’ (https://github.com/saucermanlab/Netflux) provides an auto-

mated means of converting rule-based descriptions into weighted Hill ODEs of the type

described above and formulated in [84]. The code can be implemented and modified in

MATLAB. It was used here for two purposes: (i) to generate the initial system of ODEs for the

full network (Fig 1) from our list of logic statements (S1 Appendix) and (ii) to generate an .

xgmml file which allows network visualization in Cytoscape [19]. Modifications to the code

allowed manual control over input variables (as described below), and our codes for simulat-

ing, plotting, and analyzing our model system are available at https://github.com/irons-l/

arterialsignaling.

Supporting information

S1 Fig. Sensitivity analysis for perturbed nodes. A subset of results from Fig 3, with a differ-

ent scale for improved visualization of small changes.

(PDF)

S2 Fig. Additional species’ responses to AngII. TSP1 and TGFB1 responses to exogenous

AngII under three levels of baseline stress, corresponding to Fig 4 in the main text.

(PDF)

S3 Fig. Time-courses of collagen mRNA levels. An additional figure showing time-courses

associated with the steady state model results in Fig 6.

(PDF)

S4 Fig. Vascular homeostasis. An illustrative schematic of the bio-chemo-mechanical feed-

back system for tissue homeostasis.

(PDF)

S1 Appendix. Logic statements and supporting literature. Species abbreviations, logic state-

ments, and supporting references used in constructing the network structure shown in Fig 1.

(PDF)

S2 Appendix. Selection of default parameters. Description and supporting figures for the

process of selecting the optimal default Hill parameters.

(PDF)

S3 Appendix. Sensitivity of fold-change responses to baseline conditions. Fold-change

responses and absolute activity of several species of interest as baseline and perturbation mag-

nitudes vary. We show that non-monotonic responses to inputs underlie conflicting fold-

change responses.

(PDF)

S4 Appendix. Simple illustrative model. An illustrative model used to demonstrate the pro-

cess of formulating logic statements, generating the corresponding system of normalized Hill

ODEs, and calculating the system steady states. In this example, we show that inhibition can

lead to a non-monotonic input–output relation, and we illustrate how conflicting fold-change

measurements can result.

(PDF)

S5 Appendix. Sensitivity to Hill parameters. We demonstrate the role of Hill parameters in

signal propagation, focusing on a linear cascade. We show how the choice of EC50 can either
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