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Prolactin and oleic acid synergistically stimulate b-cell proliferation and growth
in rat islets

Todd Clark Brelje, Nicholas V. Bhagroo , Laurence E. Stout, and Robert L. Sorenson

Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN, USA

ARTICLE HISTORY
Received 4 November 2016
Revised 8 May 2017
Accepted 9 May 2017

ABSTRACT
Islet adaptation to pregnancy is largely influenced by prolactin and placental lactogens. In addition
serum lipids are significantly increased. Here, we report the novel observation that prolactin and
oleic acid synergistically stimulate islet cell proliferation and islet growth. In neonatal rat islets,
prolactin increased proliferation 6-fold, oleic acid 3.5-fold, and their combination 15-fold. The
expression of insulin in these dividing cells establishes them as b-cells. Similar changes were seen in
islet growth. This synergy is restricted to monounsaturated fatty acids and does not occur with
other islet growth factors. Oleic acid increases prolactin-induced STAT5 phosphorylation, even
though by itself it is unable to induce STAT5 phosphorylation. Their effects on Erk1/2
phosphorylation are additive. Some of the synergy requires the formation of oleoyl CoA and/or its
metabolites. Unexpectedly, methyl oleic acid, a non-metabolizable analog of oleic acid, also shows
synergy with prolactin. In summary, prolactin and oleic acid synergistically stimulate islet cell
proliferation and islet growth in rat islets, oleic acid increases prolactin-induced STAT5 activation,
and requires both the metabolism of oleic acid and non-metabolized oleic acid. Since oleic acid is
the most abundant monounsaturated fatty acid in serum that is elevated during pregnancy, it may
contribute to increased b-cell proliferation seen during pregnancy.
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Introduction

During pregnancy, there is an increased need for insu-
lin to accommodate the developing insulin resistance
and growing fetal compartment. Pancreatic islets meet
this demand by increasing islet mass, insulin produc-
tion and secretion.1,2 We have shown activation of
prolactin receptors on b-cells induce these changes in
islet function.3-5 It mediates the actions of both pitui-
tary-derived prolactin and placental-derived lactogens.
The key role of prolactin receptors in this adaption
is shown in heterozygous prolactin receptor-null
(PrlrC/¡) mice. They have impaired insulin secretion
and fail to increase islet mass during pregnancy.6 In
addition, mRNA expression profiling of islets from
pregnant mice have a pattern identical to islets cul-
tured with placental lactogen.7

Serum lipids, triglycerides, and free fatty acids are
also significantly increased during pregnancy.8-10 These
elevations occur in rats between days 11–14 and peak

on the last 2 days of pregnancy. This increase in serum
lipids is interesting because of the complex interaction
between glucose and fatty acids in the regulation of
b-cell function.11-13 Thus, lipids may be involved in
the adaptation of b-cells in the latter half of pregnancy.

Because palmitic and oleic acids are the most abun-
dant fatty acids,8 we examined their influence on islets
cultured with prolactin.14 This simulates what islets
experience during late pregnancy. This study showed
elevated lipids may lead to enhanced insulin secretion
in late pregnancy that is increasingly dependent on
lipids and less sensitive to glucose. In addition, both
fatty acids increased b-cell proliferation. While the
effects of prolactin and palmitic acid were only addi-
tive, oleic acid was synergistic with prolactin.14

In this work, our goal was to investigate the synergy
between prolactin and oleic acid. To our knowledge
little information is currently available about oleic
acid, either alone or in combination with prolactin,
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aside from our previous experiment.14 In this study,
we characterized their effects on b-cell proliferation
and islet growth using rat islets.

Materials and methods

Hormones

Rat prolactin and growth hormone were provided by
the National Hormone and Pituitary Program
(AF Parlow, National Hormone and Pituitary Pro-
gram, Harbor-UCLA Medical Center, Torrance, CA).
Human IGF-1 and GLP-1 (Sigma-Aldrich, St. Louis,
MO) were purchased commercially.

Materials

Oleic, palmitic, palmitoleic, linoleic, and methyl oleic
acids, 5-bromo-2’-deoxyuridine (BrdU), etomoxir
(Sigma), CAY10587, bisindolylmaleimide-1 (Cayman
Chemical, Ann Arbor, MI), U0126 (Cell Signaling
Technology, Danvers, MA), PKCz myristolated
pseudo substrate (Enzo Life Science, Plymouth Meet-
ing, PA), triacsin C (Santa Cruz Biotechnology, Dallas,
Santa Cruz, CA), GO-6976 (Tocris Bioscience, Bristol,
UK) were purchased commercially.

Antibodies

Mouse anti-BrdU (Caltag Laboratories, San Francisco,
CA), mouse anti-Ki67 (Sigma), mouse anti-PCNA
(Abcam, Cambridge, MA), rabbit anti-phospho-
STAT5 (Tyr694), rabbit anti-phospho-Erk1/2
(Thr202/Tyr204; Cell Signaling Technology) antibod-
ies were purchased commercially. Anti-a-tubulin
(12G10) was obtained from the Developmental Stud-
ies Hybridoma Bank (NICHD and The University of
Iowa, Department of Biology Iowa City, IA).

Islets of Langerhans

Neonatal rat islets were isolated from 3–5-day-old
Sprague–Dawley rats (Sasco, Omaho, NE) by a non-
enzymatic culture method.15 After this initial culture,
groups of 30 islets were cultured free floating in 24-
well plates (Costar, Cambridge, MA) in 2 ml RPMI-
1640 with 10 mM glucose supplemented with 10%
horse serum (Gibco), 10 mM HEPES, 2 mM Gluta-
Max (Gibco), and 1% penicillin–streptomycin–fungi-
zone (PSF) antibiotic antimycotic (Sigma) at 37C with
5% CO2 in air. Most experiments were done with 10%

horse serum and less frequently in serum-free media.
Duplicate experiments show that relative differences
were similar in both media.

Adult rat islets were isolated from Sprague-Dawley,
200–250 g, rats (Sasco, Omaho, NE)16 and cultured as
described previously. All procedures using animals
were approved by the Animal Care and Use Commit-
tee of the University of Minnesota.

Fatty acid solutions

Fatty acids were prepared as follows.17 150 mM stock
solutions were prepared by dissolving sodium salts of
palmitic and oleic acids in 25% ethanol at 50 C. Ali-
quots of stock solutions were complexed with 10% fatty
acid free albumin (in culture media) by stirring for
1 hour at 37 C and then diluted with additional culture
media. The final albumin concentration was 1% with a
molar ratio of fatty acid:albumin of 5:1 or less. The
final ethanol concentration was � 0.06% (v:v).

The concentration of free fatty acids can be calculated
using the method of Richieri et al.18 0.6 mM oleic acid
bound to 1% fatty acid free albumin in 10% horse serum
(assuming 4.5% albumin in horse serum) results in
26.6 nM free fatty acids. Horse serum contributes a negli-
gible amount of fatty acids (0.05 nM, assuming 0.5 mM
free fatty acids in whole serum19). For experiments using
serum-free media, oleic acid was reduced to give a similar
concentration of free fatty acids. In the absence of horse
serum, 0.4 mM oleic acid bound to 1% fatty free albumin
results in 24.9 nM of free fatty acids.

Islet cell proliferation

Islet cell proliferation was assessed by examining BrdU
incorporation as described previously.4,14,20,21 10 mM
BrdU was added during the last 12 hr of culture. The
islets were fixed for 30 min in 4% paraformaldehyde and
DNA denatured for 30 min in 2 M HCl. Islets were dou-
ble labeled by incubation with a 1:600 dilution of amouse
anti-BrdU antibody and a 1:1000 dilution of a guinea pig
anti-insulin antibody. For secondary antibodies, a 1:200
dilution of FITC-conjugated donkey anti-guinea pig IgG
and 1:600 CY3.18-conjugated donkey anti-rabbit IgG
were used. Glass beads were included in the mounting
media (Prolong Gold anti-fade reagent; Life Technolo-
gies, Grand Island, NY) to support the coverslips and pre-
vent excessive deformation of the islets. As described
previously,4,14,20,21 the number of BrdU-labeled nuclei/
islet was determined by direct observation using a
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conventional fluorescence microscope. The scattered
BrdU-labeled nuclei (typically, 0 to 50) are counted while
focusing through intact islets. A minimum of 75–100
islets were examined per treatment. Slides were coded so
that the evaluator was unware of the treatment groups.

Tissue sections

To identify the cells containing BrdU-labeled nuclei, tis-
sue sections were prepared from groups of neonatal and
adult islets. Sections were double labeled for BrdU and
insulin as described previously and mounted in Prolong
Gold anti-fade reagent. The proportion of cells with
BrdU-labeled nuclei and express insulin was determined.

Islet volumes

The growth rate of individual islets was determined by
culturing individual islets in 96 well plates. Each well
contained 250 ml of media of which half was changed
every other day. Ten islets were used for each treat-
ment. The attachment of islets is discouraged by the
culture conditions (non-adherent multiwall plates)
and agitation from media changes/handling. No indi-
cation of attachment or flattening was observed. Each
islet was imaged on alternate days for 14 d. From these
profiles, the volume of islets were calculated as
described previously.15

Western blot analysis

Western blots were prepared from isolated islets as
described previously.22 An equivalent amount of islet
protein was loaded in each lane for electrophoresis.
The probing antibodies were used at a dilution of
1:2000. Bound antibodies were detected using a
1:30,000 dilution of alkaline phosphatase-conjugated
donkey secondary antibodies (Jackson ImmunoRe-
search Laboratories) and the chemiluminescent sub-
strate CPD-Star (Applied Biosystems, Foster City,
CA). A Bio-Rad GS-700 (Bio-Rad) was used for quan-
titative densitometry with the volume density of bands
calculated as O.D. x mm2 after correction for tubulin
as a loading control.

Expression of data and statistics

Data represent means § SEM of multiple independent
experiments. Statistical analysis was performed using
Student’s paired t-test or analysis of variance with Neu-
man-Keuls post-hoc test for multiple comparisons.

Results

Synergy between prolactin and oleic acid

To investigate the effects of prolactin and oleic acid on
islet cell proliferation, islets were cultured with prolac-
tin, oleic acid, or the combination of prolactin and
oleic acid. Dividing cells were detected by adding
BrdU during the last 12 hr (Fig. 1A). As expected, pro-
lactin induced a 6.1-fold increase in BrdU-labeled
nuclei/islet. Oleic acid had a smaller 3.5-fold increase.
Remarkably, prolactin and oleic acid synergistically
stimulated islet cell proliferation. A 15.6-fold increase
was seen. This was significantly greater than the sum
of their individual responses. Tissue sections were pre-
pared from groups of islets for each treatment and
double labeled for BrdU and insulin. More than 95%
of the cells with BrdU-labeled nuclei were also stained
for insulin. Thus, these dividing cells are b-cells.

To verify that BrdU incorporation reflects changes
in cell division rather than other cellular processes (e.
g., DNA damage and repair), islet cell proliferation
was assessed using other cellular markers of prolifera-
tion. Similar increases in proliferation were also seen
with Ki-67 and PCNA (Supplementary Fig. 1A and B).

A notable observation is that fatty acid free albu-
min, used to solubilize the oleic acid, affects islet cell
proliferation. BrdU incorporation was significantly
reduced when fatty acid free albumin was added by
itself to culture media (Supplementary Fig. 1C). How-
ever, the relative increase with prolactin (»6-fold) is
the same in the absence or presence of fatty acid free
albumin. This may reflect depletion of nutrients and/
or growth factors from the serum by binding to the
fatty acid free albumin. A similar phenomenon occurs
with fatty acid-free albumin and insulin secretion.23

Synergy between prolactin and oleic acid occurs
across a broad range of glucose and oleic acid concen-
trations. Because saturated fatty acids reduce insulin
production and b-cell viability, especially when high
glucose is present,11-13 it was important to examine
whether oleic acid exhibited similar toxicity. However,
synergy is seen across all glucose concentrations (2.8
to 16.7 mM; Supplementary Figs. 2A and 2B). This
implies it is not toxic at high glucose concentrations.
BrdU incorporation was also increased with concen-
trations as low as 0.1 mM oleic acid (Supplementary
Fig. 2C). Thus, circulating levels of oleic acid during
pregnancy (0.4 to 0.6 mM)8-10 are sufficient to exhibit
synergy with prolactin.
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Synergy between prolactin and other fatty acids

To determine whether other fatty acids exhibit syn-
ergy with prolactin, islets were cultured with prolactin
and other saturated and unsaturated fatty acids, indi-
vidually or in combination (Fig. 1B). Prolactin
induced a 6-fold increase in proliferation, while the
fatty acids by themselves had less than 3-fold
increases. Synergy was only seen with monounsatu-
rated fatty acids, 20-fold for both oleic acid (C18) and
palmitoleic acid (C16:1). In contrast, the saturated
fatty acid, palmitic acid (C16), and polyunsaturated

fatty acid, linoleic acid (C18:2), produced smaller
increase, less than 12-fold. These fatty acids are ele-
vated during pregnancy.8-10 Thus multiple monoun-
saturated fatty acids may exhibit synergy with
prolactin during pregnancy.

Absence of synergy between other growth factors
and oleic acid

We examined whether oleic acid exhibits synergy with
other islet growth factors. Unlike the synergy with
prolactin, oleic acid was only additive with growth

Figure 1. Synergy between prolactin (PRL) and oleic acid (OLE) on islet cell proliferation. Neonatal rat islets were cultured for 4 d with
PRL (500 ng/ml), OLE (0.6 mM) or the combination of PRL and OLE in 10% horse serum. (A) PRL is synergistic with OLE on BrdU incorpo-
ration. All groups are different from the controls (n D 24, p < 0.001). �p < 0.001 for the difference between prolactin alone or in combi-
nation with OLE (n D 24). (B) Neonatal rat islets were cultured for 4 d with prolactin (PRL; 500 ng/ml), the indicated fatty acid (0.4 mM)
or the combination of PRL and each fatty acid in 1% BSA. The largest synergy with PRL occurs with the monounsaturated fatty acids,
OLE and palmetoleic acid. All fatty acids by themselves or with PRL increase BrdU incorporation. �p < 0.05 for differences between pro-
lactin alone or in combination with each fatty acid (n D 6). (C) Neonatal rat islets were cultured for 4 d with the following growth fac-
tors: PRL (500 ng/ml), GH (500 ng/ml), GLP-1 (100 nM), and IGF-1 (15 nM) or the combination of each growth factor and OLE (0.4 mM)
in 1% BSA. Only PRL shows synergy with OLE. The effects of GH, GLP-I and IGF-I were only additive with OLE. �p < 0.05 for the differ-
ence between prolactin alone or in combination with OLE (n D 3).
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hormone, GLP-1 and IGF-1 (Fig. 1C) making the syn-
ergy between prolactin and oleic acid rather unique.

Prolactin receptor induced JAK2/STAT5 activation

Prolactin binding to the prolactin receptor activates
JAK2 which then activates downstream signaling path-
ways including STAT5 phosphorylation, the Ras-MEK-
Erk pathway, and the PI3K-Akt pathway, among others.
To examine the role of JAK2 activation, it was inhibited
using a high concentration of GO-6976 (Fig. 2A). BrdU
incorporation with prolactin was dramatically reduced,
while it was not affected by oleic acid. The combination
of prolactin and oleic acid was similarly reduced. Thus,
the actions of prolactin are JAK2 dependent, while those
of oleic acid are JAK2 independent.

The transcription factor STAT5 is the critical effec-
tor of prolactin receptor activation. The effect of pro-
lactin and oleic acid, individually or in combination,
on the tyrosine phosphorylation of STAT5 was exam-
ined (Fig. 2C). As expected, prolactin caused robust
phosphorylation of STAT5. None was seen with oleic
acid. Unexpectedly, oleic acid increased the amount of
prolactin-induced STAT5 phosphorylation by an
additional 50%. This increased JAK2-STAT5 signaling
likely contributes to their synergy.

Prolactin receptor induced Erk1/2 activation

Many growth factors require the activation of the Ras-
MEK-ERK pathway to induce b-cell proliferation. The
prolactin receptor and free fatty acid receptor 1
(FFA1) activate this pathway in b-cells.24,25 A MEK1/
2 inhibitor (U0126) reduces BrdU incorporation by
35% in all groups (Fig. 2B). Their effects on Erk1/2
phosphorylation was also examined (Fig. 2D). Prolac-
tin and oleic acid by themselves increased Erk1/2
phosphorylation. In combination, they did not further
augment Erk1/2 phosphorylation beyond that seen
when the individual responses were summed.

Role of fatty acid metabolism

We examined whether metabolism of oleic acid is
required for synergy with prolactin. The first step in
fatty acid metabolism is the conversion of long-chain
fatty acids into themetabolically active CoA esters. Inhi-
bition of long-chain fatty acyl CoA synthetase reduces
the effects of prolactin and oleic acid on BrdU incorpo-
ration (Fig. 3A). A 15% inhibition was seen in the

controls and 40–50% inhibition with prolactin, oleic
acid, and their combination. This shows that the conver-
sion of oleic acid to oleoyl CoA and/or its metabolites
contributes to synergy with prolactin. However, it does
not require mitochondrial oxidation of oleic acid
(Fig. 3B).

The effect of a non-metabolizable analog of oleic
acid was also examined. Methyl oleic acid contains an
alkyl group that blocks the carboxylate group required
for esterification to oleoyl CoA.26-28 This renders the
molecule inert. BrdU incorporation was increased 8.5-
fold by prolactin, while methyl oleic acid was only
increased 2.2-fold (Fig. 3C). Surprisingly, methyl oleic
acid was synergistic with prolactin. However, the 17-
fold increase was less than the 27-fold seen with the
combination of prolactin and oleic acid. Thus, the
presence of oleic acid molecules themselves is respon-
sible for up to half of the synergy with prolactin.

Other oleic acid induced signaling pathways

Several other pathways are known to be activated by
oleic acid. A well-recognized pathway is the activation
of protein kinase C (PKC) by long-chain acyl CoA.29

However, inhibition of various PKC isoforms had no
effect (Supplementary Fig. 3A). The atypical isoform
PKCz is critical for growth factor induced cell division
in b-cells.30 PKCz inhibition caused a similar 40%
reduction in all groups (Supplementary Fig. 3B). FFA1
is a G protein-coupled cell surface receptor for long-
chain fatty acids that stimulates proliferation in some
cell types.31 FFA1 also mediates its positive effects on
insulin secretion.25 Although a FFA1 agonist
(CAY10587) modestly increases BrdU incorporation,
it did not show synergy with prolactin (Supplementary
Fig. 3C). Similarly, a FFA1 antagonist (GW1100) did
not block the synergy (Supplementary Fig. 3D). Thus,
oleic acid-induced-PKC activation or binding to FFA1
is unlikely to contribute to the synergy.

Prolactin and oleic acid stimulate growth
of neonatal rat islets

To examine the effects of prolactin and oleic acid
on islet mass, individual islets were cultured for 14
d with prolactin and oleic acid, individually and in
combination. Each islet was imaged on alternate
days and changes in the volume of individual islets
determined. This removes the effects of variability
in islet size and permits the detection of much
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Figure 2. Synergy between prolactin (PRL) and oleic acid (OLE) on JAK2/STAT5B activation. Neonatal rat islets were cultured for 4 d with
PRL (500 ng/ml), OLE (0.6 mM) or the combination of PRL and OLE in 10% horse serum. (A) JAK2 inhibition by Go-6976 (1 mM) reduced
BrdU incorporation by 90% with PRL and 70% with PRL/OLE. �p < 0.001 for differences between prolactin alone or in combination with
OLE in the absence or presence of Go-6976 (n D 3). There was no effect on OLE-induced BrdU incorporation. (B) MEK inhibition by
U0126 (10 mM) reduced BrdU incorporation by 35% with PRL, OLE, and PRL/OLE. �p < 0.05 for the differences between prolactin alone
or in combination with OLE in the absence or presence of U0126 (n D 7). (C) Densitometric analysis of western blots examining STAT5
phosphorylation. PRL increased phospho-STAT5. Although OLE had no effect on phospho-STAT5, it increased the amount of PRL-
induced phospho-STAT5. �p < 0.01 for the difference between prolactin alone or in combination with OLE (n D 7). (D) Densitometric
analysis of western blots show that both PRL and OLE induce phospho-Erk1/2 and that their effects are additive. �p< 0.05 for the differ-
ence between prolactin alone or in combination with OLE (n D 3).
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smaller changes in islet growth. Fig. 4A shows a
typical experiment, while Fig. 4B is the average of
multiple experiments. Prolactin increased islet vol-
ume by 60%, while oleic acid yielded a smaller 15%

increase. Similar to islet cell proliferation, prolactin
and oleic acid showed synergy with a 210%
increase in islet volume. This was considerably
larger than the sum of their individual responses.

Figure 3. Fatty acid metabolism is involved in the synergy between prolactin (PRL) and oleic acid (OLE) on islet cell proliferation. Neona-
tal rat islets were cultured for 4 d with PRL (500 ng/ml), OLE (0.4 mM) or the combination of PRL and OLE in 1% BSA. (A) Triacsin C (0.5
mg/ml) inhibits long chain fatty acyl CoA synthetase and reduced BrdU incorporation by 40–50% with PRL, OLE, and PRL/OLE.
�p < 0.05 for differences in the absence or presence of triacsin C (n D 6). (B) Etomoxir (1 mM) inhibits fatty acid oxidation and had no
effect on BrdU incorporation in any group (n D 3, ns). (C) Methyl oleic acid (met-OLE) is a metabolically inert analog of OLE. Neonatal
rat islets were cultured with PRL (500 ng/ml), met-OLE (0.4 mM) or the combination of PRL and met-OLE in 1% BSA for 4 d. Met-OLE by
itself increased BrdU incorporation. Met-OLE/PRL also showed synergy with the increase being about half of that for PRL/OLE. �p < 0.05
for differences between prolactin alone or in combination with either OLE or Met-OLE (n D 5).
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Example images of an individual islet before and
after 14 d are shown (Fig. 4C).

Prolactin and oleic acid stimulate growth of adult rat
islets

Since most of our experiments used neonatal rat
islets, it was important to confirm our observations
with adult rat islets. Adult rat islets were cultured
with prolactin and oleic acid, individually or in

combination (Fig. 5A). Prolactin induced a 3.3-fold
increase in BrdU incorporation, while oleic acid
had a lower 2.6-fold increase. Similar to neonatal
rat islets, islet cell proliferation shows synergy with
prolactin and oleic acid. The 12.9-fold increase was
more than twice the sum of their individual
responses.

To determine whether similar changes in islet mass
occur in adults, isolated adult islets were followed in
growth experiments as described previously (Fig. 5B).

Figure 4. Prolactin (PRL) and oleic acid (OLE) stimulate the growth of neonatal rat islets. Individual neonatal rat islets were cultured for
14 d with PRL (500 ng/ml), OLE (0.6 mM) or the combination of PRL and OLE in 10% horse serum. Each group contained 10 Islets cul-
tured in individual wells. Each islet was photographed every 2 d and its volume calculated. (A) An example experiment showing the
growth of individual islets. OLE enhances PRL-induced islet growth. (B) The results are shown from 7 experiments. PRL and OLE alone
increased islet volumes, while the combination was synergistic. �p < 0.01 for the difference between prolactin alone or in combination
with OLE (n D 7). (C) Images of the same islets at the start of the experiment and after culture with PRL, OLE, and PRL/OLE for 14 d. The
percent indicates the calculated increase in islet volume at the end of the experiment for each of the islets.
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Prolactin increased islet volume by 20%, while oleic
acid had a smaller 12% increase. Similar to neonatal
rat islets, islet mass showed synergy with prolactin
and oleic acid with the 60% increase about twice the
sum of their individual responses.

Discussion

Prolactin/oleic acid synergy

This is the first study to investigate and characterize
the effect of oleic acid, individually or in combination
with prolactin, on islet cell proliferation and islet
growth. The expression of insulin in more than 95%
of the cells containing BrdU-labeled nuclei clearly
established them as b-cells. Synergy was seen between
prolactin and oleic acid. Previously, prolactin by itself
has always shown the greatest effect on b-cell growth
and in combination with other growth factors has
been, at best, additive.32

Prolactin/JAK2/STAT5 activation

Oleic and linoleic acids have been reported to induce
STAT5 activation in breast cancer cells.33 The

canonical JAK2/STAT5 signaling pathway is not
involved. STAT5 activation requires phospholipase C,
cycloxygenase-2, lipoxygenases, and Src activities. The
tyrosine kinase responsible for STAT5 phosphoryla-
tion was not identified. The authors suggest FFA1
may initiate this alternate pathway because it is
required for oleic acid-induced proliferation of breast
cells.31 However, oleic acid did not induce STAT5
phosphorylation in b-cells.

We found that oleic acid enhances prolactin-
induced STAT5 phosphorylation. Previously, mono-
unsaturated fatty acids have not been reported to
influence JAK2/STAT5 signaling pathway. Among its
target genes, STAT5 activation increases cyclin D2
transcription, inducing higher b-cell proliferation.34,35

This higher STAT5 activation should contribute to the
synergy between prolactin and oleic acid. Similarly,
synergy in STAT5 activation is seen between growth
hormone (GH) and IGF-1 in b-cells.36 IGF-1 enhan-
ces GH-induced STAT5 phosphorylation, but by itself
has no effect on STAT5 activation.36 Unlike prolactin
and oleic acid, b-cell proliferation with GH and IGF-1
is additive.36 However, a constitutively active STAT5b
induces only a 6-fold increase in b-cell proliferation.35

Figure 5. Prolactin (PRL) and oleic acid (OLE) stimulate the growth of adult rat islets. (A) Adult rat islets were cultured for 6 d with PRL
(500 ng/ml), OLE (0.6 mM) or the combination of PRL and OLE in 10% horse serum. PRL, OLE, and PRL/OLE increased BrdU incorporation
(n D 9, p < 0.05). PRL and OLE synergistically increased cell division. �P < 0.05 for the difference between prolactin alone or in combi-
nation with OLE (n D 7). (B) Individual adult rat islets were cultured for 14 d with PRL, OLE, or the combination of PRL and OLE in 10%
horse serum. Each group contained 10 Islets cultured in individual wells. Each islet was photographed every 2 d and its volume calcu-
lated. The results are shown from 7 experiments. PRL, OLE, and PRL/OLE increased islet volumes (n D 7, p < 0.05). PRL and OLE syner-
gistically increase islet growth. �p < 0.05 for the difference between prolactin alone or in combination with OLE (n D 7).
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The much larger increase with prolactin and oleic acid
suggests oleic acid has additional effects that contrib-
ute to its synergy with prolactin.

How oleic acid enhances prolactin-induced STAT5
activation, while alone has no effect on STAT5 activa-
tion, is unclear. However, some recent studies do pro-
vide insight. The protein tyrosine phosphatase-1B
(PTP1B) inactivates many tyrosine-kinase receptors
and soluble tyrosine kinases, including the insulin,
IGF-1 receptors and JAK2 among others.37-39 PTP1B
has a 70-fold preference for tandem phosphotyrosines
in JAK2 over mono-phosphotyrosines such as in
STAT5.38 PTP1B is also a negative regulator of prolac-
tin-induced STAT5 activation in breast cells.40 Knock-
down of PTP1B prolongs JAK2 phosphorylation
allowing the production of more phosphorylated
STAT5. Conversely, overexpression of PTP1B dimin-
ishes JAK2 phosphorylation and reduces STAT5
phosphorylation. In addition oleic acid enhances insu-
lin receptor signaling in adipocytes.41 PTP1B inhibits
insulin signaling by dephosphorylating the insulin
receptor.38 More interesting is the observation that
unsaturated fatty acids (especially oleic acid) have
been identified as potent inhibitors of PTP1B.39,41

PTP1B inhibition by oleic acid prevents the inactiva-
tion of the insulin receptor, thereby increasing insulin
receptor signaling. Thus, oleic acid may inhibit PTP1B
activation, slowing JAK2 inactivation, allowing more
STAT5 phosphorylation.

Erk1/2

Activation of the Ras-MEK-Erk1/2 pathway is
required for enhanced b-cell proliferation during
pregnancy.42 Among the hormones/nutrients elevated
during pregnancy, prolactin24 and FFA125 receptors
can activate this pathway in b-cells. MEK inhibition
reduces BrdU incorporation to the same extent with
prolactin alone and in combination with oleic acid.
The absence of greater inhibition with the combina-
tion implies this pathway may not contribute to the
synergy between prolactin and oleic acid. However,
this is difficult to reconcile with their additive effects
on Erk1/2 phosphorylation. The absence of synergy is
surprising considering synergy is seen with other com-
binations of growth factors. For example, prolactin
and PDGF synergize Erk1/2 activation (but not
STAT5 or Akt) in human breast cancer cells.43 Simi-
larly growth hormone and EGF synergize ERK1/2

activation (but not STAT5, Akt, and PLC-g) in prea-
dipocytes.43 Curiously, these results are the opposite
of our observations. Prolactin and oleic acid synergize
STAT5 activation, but not Erk1/2 activation. This
implies synergy between prolactin and oleic acid is
specific to certain signaling pathways. It is unclear to
what extent the increased EKR1/2 activation contrib-
utes to the synergy between prolactin and oleic acid.

Fatty acid metabolism

The requirement for the metabolism of oleic acid was
shown for synergy with prolactin. Inhibition of the
conversion of long-chain fatty acids to their metaboli-
cally active CoA esters reduced the increase in islet
cell proliferation. Notably, BrdU incorporation was
reduced with prolactin, oleic acid, and when in combi-
nation. This shows that oleoyl CoA and/or its metabo-
lites are required for some of the synergy with
prolactin. The target(s) of oleoyl CoA is unclear. Simi-
larly, palmitic acid-induced toxicity requires the for-
mation of oleoyl CoA and is unaffected by inhibition
of mitochondrial oxidation.44

Methyl oleic acid is an analog of oleic acid that can-
not be esterified to an active CoA ester. Because it is
metabolically inert, all the actions of methyl oleic acid
must occur through its interaction with critical bind-
ing site(s). Methyl palmitoleic acid also stimulates
b-proliferation.27 Methyl unsaturated fatty acids also
do not bind to FFA1.25 Yet, methyl oleic acid was syn-
ergistic with prolactin on BrdU incorporation. This
suggests the presence of molecules of oleic acid them-
selves (i.e., non-metabolized oleic acid) are responsible
for some of the synergy with prolactin.

Methyl/ethyl esters are reported to be capable of
binding to the peroxisome-proliferator-activated
receptor d (PPRAd).45 In b-cells, it is the most abun-
dant PPAR, the main transcriptional effector of unsat-
urated fatty acids, and a key regulator of fatty acid
metabolism.46 The combination of oleic acid and a ret-
inoid-X-receptor (RXR) agonist also results in the syn-
ergistic activation of target genes and mitochondrial
oxidation of fatty acids. However, b-cell proliferation
was not examined here. PPARd activation by both
oleic acid and alkylated monounsaturated fatty acids
protect b-cells against saturated fatty acid-induced
dysfunction.46-48 PPARd activation also increases
expression of the important b-cell transcription factor
MafA.47,48 MafA increases the transcription of the
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prolactin receptor and cyclin D2.49 STAT5 activation
is necessary for prolactin-induced b-cell proliferation
and cyclin D2 expression.35 A siRNA specific for
cyclin D2 markedly attenuates the effects of prolactin
on b-cell proliferation.34 This suggests prolactin-
induced STAT5 activation and oleic acid-induced acti-
vation of PPARd may increase cyclin D2 greater than
either alone. Similarly, MafA acts synergistically with
Pdx1 and Beta2 to activate the insulin gene promoter.50

Islet growth

Besides the effect of prolactin and oleic acid on islet
cell proliferation, we examined their effects on islet
growth. The increase in islet mass during pregnancy
in rodents involves both hyperplasia and hypertrophy
of b-cells.2 Islet growth was determined here using a
sensitive method whereby each islet was serially pho-
tographed at timed intervals. These results of the
timed sequences confirmed that synergy between pro-
lactin and oleic acid occurs in both b-cell proliferation
and islet mass. However, the synergy with islet cell
proliferation (15.6-fold) is much larger than with islet
mass (2.1-fold). This is not surprising since the pro-
portion of dividing b-cells within islets is quite low. In
neonates, the percentage of dividing b-cells in rat islets
is approximately 1.0 § 0.1%.51 The extent whereby an
increase in cell size contributes to these changes in
islet volume is unclear. Like many other growth fac-
tors, prolactin increases b-cell size by 30% in neonatal
rat islets (unpublished).

Because pregnancy occurs in adults, it was impor-
tant to examine the response of adult rat islets to pro-
lactin and oleic acid. The percentage of dividing
b-cells is only 0.12 § 0.10% in adult rat islets.51 As
expected, the changes in islet cell proliferation and
islet mass were lower than in neonates. However, pro-
lactin was still synergistic with oleic acid by both
measures. The combination of prolactin and oleic acid
increased islet mass by 60%. Although quite large, it is
still less than the 200% increase observed during preg-
nancy in rodents.52 This suggests that the culture con-
ditions are suboptimal or other factors may contribute
to the increase in islet mass during pregnancy.

Human islets

It remains unclear whether a similar interaction between
prolactin and oleic acid occurs during human pregnancy.
The serum levels of prolactin and placental lactogens

increase in both rodents1 and humans.8-10 Oleic acid may
stimulate b-cell proliferation in adult human islets.53 An
increase in islet mass is seen in both species. In rodents,
increased b-cell proliferation accounts for most of the
increase in islet mass (2-fold).52 In humans, the absence
of Ki67 expression in b-cells during pregnancy has been
interpreted that dividing b-cells do not contribute to this
increase in islet mass (1.4-fold).54 Instead, the neogenesis
of small islets was proposed. However, reports that adult
human b-cells do not replicate may be erroneous due to
a postmortem decline in replication markers such as
Ki67.55

The expression of the prolactin receptor has been
suggested to be lower in human islets compared with
rodent islets.56,57 In the transcriptomes of human and
mouse b-cells, it was found that the prolactin and
growth hormone receptors are expressed at much lower
levels in non-pregnant humans compared with mice.56

Similarly, it has been reported that prolactin receptors
are not expressed in adult human islets and cannot
induce STAT5 activation.57 However, both studies used
isolated, non-pregnant human islets. Expression of the
prolactin receptor in b-cells may be downregulated in
non-pregnant humans. In addition, the isolation proto-
col and/or culture conditions may reduce expression of
the prolactin receptor. For example, an absence of the
sex hormones, particularly estrogen and progesterone,
which are elevated during pregnancy may be involved.58

Estrogen is an important regulator of prolactin receptor
expression in b-cells.58 Prolactin and progesterone also
synergistically increase prolactin receptor expression.59

A reduction in b-cell differentiation during culture may
also reduce MafA expression which is a transcriptional
regulator of the prolactin receptor.49 Thus, it is unclear
whether b-cells express prolactin receptors during preg-
nancy in humans.

Summary

In summary, we report the novel observation that pro-
lactin and oleic acid synergistically stimulate b-cell
proliferation and islet growth in rat islets. Oleic acid
increases prolactin-induced STAT5 phosphorylation.
This synergy also requires non-metabolized oleic acid
and formation of oleoyl CoA and/or its metabolites.
Since oleic acid is the most abundant monounsatu-
rated fatty acid in serum that is elevated during preg-
nancy, it may contribute to the increased b-cell
proliferation observed during pregnancy.
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