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Abstract

Introduction Medication organizations across the USA have adopted electronic health records, and one of the most antici-
pated benefits of these was improved medication safety, but alert fatigue has been a major issue.

Objective We compared the appropriateness of medication-related clinical decision support alerts triggered by two com-
mercial applications: EPIC and Seegnal’s platform.

Methods This was a retrospective comparison of two commercial applications. We provided Seegnal with deidentified inpa-
tient, outpatient, and inpatient genetic electronic medical record (EMR)-extracted datasets for 657, 2731, and 413 patients,
respectively. Seegnal then provided the alerts that would have triggered, which we compared with those triggered by EPIC
in clinical care. A random sample of the alerts triggered were reviewed for appropriateness, and the positive predictive value
(PPV) and negative predictive value (NPV) were calculated. We also reviewed all the inpatient and outpatient charts for
patients within our cohort who were receiving ten or more concomitant medications with alerts we found to be appropriate
to assess whether any adverse events had occurred and whether Seegnal’s platform could have prevented them.

Results Results from EPIC and the Seegnal platform were compared based on alert load, PPV, NPV, and potential adverse
events. Overall, compared with EPIC, the Seegnal platform triggered fewer alerts in the inpatient (1697 vs. 27,540), outpa-
tient (2341 vs. 35,134), and inpatient genetic (1493 vs. 20,975) cohorts. The Seegnal platform had higher specificity in the
inpatient (99 vs. 0.3%; p < 0.0001), outpatient (99 vs. 0.3%; p < 0.0001), and inpatient genetic (97.9 vs. 1.2%; p < 0.0001)
groups and higher sensitivity in the inpatient (100 vs. 68.8%; p < 0.0001) and outpatient (88.6 vs.78.3%; p < 0.0001) groups
but not in the inpatient genetic cohort (81 vs. 78.5%; p = 0.11). We identified 16 adverse events that occurred in the inpatient
setting, 11 (69%) of which potentially could have been prevented with the Seegnal platform.

Conclusions Overall, the Seegnal platform triggered 94% fewer alerts than EPIC in the inpatient setting and 93% fewer in
the outpatient setting, with much higher sensitivity and specificity. This application could substantially reduce alert fatigue
and improve medication safety at the same time.

The Seegnal platform triggered fewer alerts in all set-
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1 Introduction

Adverse drug events (ADEs) represent a substantial patient
safety issue and occur in approximately 1.5 million inpa-
tients every year in the USA [1]. Some studies suggest
ADEs account for up to 5-17% of hospital admissions
[2-5]. Of the 1.5 million ADEs occurring in the USA
annually, approximately 400,000 are considered prevent-
able. Medical errors are among the top ten causes of death
in the USA, cause 6—10% of hospital admissions, and
result in costs estimated to be more than $US1000 per
patient per year [5]. ADEs are defined as untoward medical
occurrences associated with the use of drugs that may or
may not have been preventable, whereas medical errors are
defined as preventable adverse events. More than 20% of
patients treated with multiple medications (polypharmacy)
experience major drug-related problems such as adverse
side effects, lack of efficacy, and unnecessary hospitaliza-
tions [6]. One way to reduce the frequency of ADEs is to
utilize clinical decision support (CDS) systems.

Overall, CDS systems have been shown to reduce med-
ication errors by 81% in the inpatient setting, although
these data came from internally developed applications
with highly tuned decision support [6, 7]. Even though
nearly all electronic health records (EHRs) at most hospi-
tals include some form of CDS, nearly all this CDS is ven-
dor developed and often does not address patient-specific
factors. CDS represents an effective way to reduce errors
and ADEs [8-10]. However, this impact may be decreased
or even extinguished if too many clinically inappropriate
alerts are given [11-13]. One study reported that approxi-
mately 60% of overrides of alerts were appropriate and that
override rates varied based on type. For example, override
rates were 98% for duplicate medication alerts, 96.5% for
drug allergy alerts, 82.5% for nonformulary medication
alerts, 26.4% for age-based medication substitution alerts,
and just 2.2% for renal alerts [14]. Many other studies have
found even higher override rates [15, 16].

Alert fatigue introduces the risk of missing critical
alerts that may compromise patient safety [17-20]. A
study performed at our institution using a legacy home-
grown EHR system found that inappropriately overrid-
den CDS alerts were associated with an increased risk of
ADEs [21]. Nearly all major US healthcare organizations
have now switched to commercial EHRs, with EPIC and
Cerner being the market leaders, and organizations gener-
ally contract for medication decision support with a third-
party company, with three companies controlling nearly
all of the market: FDB, Medispan, and Multum (which is
owned by Cerner). In such cases, the EHR imposes some
logic on top of the linked database, and the combined
capacities compose the CDS solution.

A\ Adis

In this study, we calculated the positive predictive value
(PPV), negative predictive value (NPV), sensitivity, and
specificity, and overall alert load generated by the Seegnal
platform compared with those generated by EPIC as imple-
mented within our healthcare system.

2 Methods
2.1 Technology Assessed

Seegnal (Tel Aviv, Israel) has developed an application
called the Seegnal platform. This platform is based on a
multitier mechanism that relies on proprietary, real-time
algorithm-derived alert personalization, Hansten & Horn’s
knowledge-based clinical drug interaction evaluations, the
University of Washington’s pharmacokinetic and pharma-
cogenetic databases, and FDB data. The Seegnal platform
assesses a wide scope of relevant drug-related problem
data including drug—drug interactions, drug allergy, drug
dosing, drugs in pregnancy/lactation, drugs and smoking,
drug—kidney/liver function interactions, pharmacokinetic
drug interactions, drug—food/herbals/vitamin interactions,
and pharmacogenetic interactions. The Seegnal platform
simultaneously assesses multiple patient-specific parameters
(e.g., drug dose/administration route, renal function, labora-
tory values, electrocardiogram, smoking), and medication-
specific parameters (e.g., potency, dose—response curves,
time to steady state, accumulative dosing, combined effects
of multiple [more than two] medications) in real time to
determine the need to trigger an alert or bypass the potential
alert for the specific patient. The Seegnal platform also has
an innovative user interface that enables the provider at the
point of care to detect, prioritize, and choose an appropri-
ate alternative. The Seegnal platform’s user interface was
not assessed in this evaluation. To date, one study has been
conducted using patient-specific parameters to alert on drug
interactions compared with a customized vendor-based CDS
database [22]. No study has directly evaluated the alert load
produced by the Seegnal platform compared with those of
other vendor-based CDS.

2.2 Study Site and Data

This study was performed at Brigham and Women’s Hos-
pital (BWH), Boston, MA, USA, a large urban academic
medical center that uses a leading vendor EHR system, EPIC
(Verona, WI, USA). BWH provided Seegnal with deidenti-
fied inpatient, outpatient, and inpatient genetic electronic
medical record-extracted datasets of 657, 2731, and 413
patients, respectively. The dataset contained 56 predefined
structured (coded) parameters that were potentially docu-
mented in the patients’ EHR during their hospitalization
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period and/or outpatient visits between 3 June 2018 and 9
June 2018. The dataset for inpatients with genetic data con-
tained all data files during any inpatient admission between 1
January 2017 and 31 December 2019 as only a small portion
of patients had genetic data available. The inpatient genetic
records were identified by Partners Healthcare Biobank.
The purpose of the Partners Biobank is to help research-
ers understand how health is affected by genes, lifestyle,
and environment. Patients who consent to participate in the
Partners Biobank contribute a DNA sample for genetic test-
ing, including pharmacogenomics testing. During our data
pull, we identified patients with mutations at cytochrome
P450 (CYP)-3AS5. Examples of parameters extracted were
patients’ medication list with start and end dates, dose, fre-
quency, route of administration, comments if any, active
problem list, smoking status, pregnancy status, and various
laboratory results such as potassium, creatinine, liver func-
tion tests, and so on. Specific patient modifiers/factors/data
elements extracted from the EHR are listed in the electronic
supplementary material.

Seegnal then ran the retrospective dataset against the
Seegnal platform. The output from the Seegnal platform pro-
vided the alerts that would have been triggered in only the
Seegnal platform, in both the Seegnal platform and EPIC,
and only in EPIC as utilized within BWH. The alerts were
then classified into predefined categories and reviewed for
appropriateness to the specific patients. Two pharmacists
independently reviewed a random sample of up to 100 alerts
per each of the predefined categories (977 inpatient alerts,
808 inpatient genetic alerts, and 938 outpatient alerts, for a
sum of 2723 alerts) but were blinded as to whether the alert
originated from only the Seegnal platform, both the Seegnal
platform and EPIC, or only EPIC.

The types of alerts reviewed included disease—drug
contraindication, dosing, drug—drug interaction, duplicate
therapy, geriatric, most probable side effects, renal dosing,
pregnancy, pharmacokinetic drug interactions, and phar-
macokinetic drug interactions with the patient parameter

of smoking. The pharmacists (SS, DS) then compared
their review; for any differences, two additional review-
ers (DB, a doctor with extensive experience in patient
safety, and JH, a pharmacist with extensive experience
with drug—drug interactions) made the final decision as to
whether or not the alert was appropriate.

2.3 Analysis

Once the random sample alerts were evaluated, we then
calculated the PPV (true positive/(true positive + false
positive)), NPV (true negative/(true negative + false neg-
ative)), specificity (true negative/(true negative + false
positive)), sensitivity (true positive/(true positive + false
negative)), and overall interruptive alert load generated by
the Seegnal platform compared with those of EPIC as it
functions at BWH. True positives were alerts considered
appropriate for the patient, false positives were alerts that
were not appropriate for the patient, true negatives were
alerts we agreed should not be triggered, and false nega-
tives were alerts that should have triggered but did not.
Examples of each are provided in Table 1. Analysis was
performed in SAS v. 9.4 (SAS Institute, Cary, NC, USA),
and significance was set using a two-sided p value of <
0.05.

We excluded evaluation of the appropriateness of the
genetic alerts returned from the Seegnal platform from
our final inpatient and genetic sample because we only
had data for one pharmacogenetic marker (CYP3AS5), so
very few alerts fired. We evaluated all the other alerts for
the inpatient genetic cohort. We also reviewed all the inpa-
tient/inpatient genetic (n = 69) and outpatient (n = 65)
charts for patients within our cohort who were receiving
ten or more concomitant medications with alerts we found
to be appropriate to assess whether any adverse events had
occurred and whether the Seegnal platform could have
prevented them.

Table 1 Examples of true positive, false positive, true negative, and false negative alerts

Example type Alert type

Interaction synopsis

True positive—agree with alert Drug—drug interactions

False positive—disagree with alert Renal

True negative—agree not to alert Drug disease

Ondansetron + ciprofloxacin + patient’s corrected QT interval is 550
Cephalexin 250 mg capsule every 6 h and creatinine clearance is 43

Acute kidney failure, unspecified on patient’s active problem list + acetami-

nophen 500 mg tablet but patient’s creatinine clearance is normal

False negative—disagree not to alert ~ Dosing

87-year-old patient ordered to start zolpidem 10 mg daily in the outpatient

setting

True Positive (TP) — agree with alert
False Positive (FP) — disagree with alert
True Negative (TN) — agree not to alert
False Negative (FN) — disagree not to alert
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3 Results
3.1 Patient Demographics

The inpatient cohort consisted of 657 patients with 665
admissions; eight patients had two admissions. The inpa-
tient genetic cohort consisted of 413 patients with 413 visits.
The outpatient cohort consisted of 2731 patients with 2749
visits; 18 patients had two visits during the study period.
Demographics of all patients can be found in Table 2.

3.1.1 Summary of Main Outcomes

In the inpatient setting, the Seegnal platform triggered 1697
alerts, which was 94% less than the EPIC platform, which
triggered 27,540 alerts (Table 3). Sensitivity was 100% for
the Seegnal platform and 68.8% for EPIC. In the inpatient
genetic group (Table 3), the Seegnal platform triggered 1493
inpatient alerts and EPIC triggered 20,975. The sensitivities
were similar: 81% for the Seegnal platform and 78.5% for
EPIC. In the outpatient setting (Table 3), the Seegnal plat-
form triggered 93% fewer alerts and sensitivity was 88.6%,
whereas sensitivity was 78.3% for EPIC.

3.2 Inpatient and Outpatient Chart Review

We identified 16 adverse events that occurred in the inpatient
setting. Of these, the Seegnal platform potentially would
have prevented 11 (68.8%). Examples included patients who

developed hypotension, bradycardia, QTc prolongation,
increased combined side effects, and renal dysfunction. One
adverse event involved a patient with a history of nausea and
vomiting from oral potassium chloride, which might have
been prevented if it had been documented in a structured
format under allergies/intolerances instead of being included
in the free-text chart notes. Overall, reviewers judged that
four (25.0%) adverse events were nonpreventable, so no
CDS could have prevented them, and one adverse event was
possibly preventable. Of the 11 preventable adverse events
that did occur, nine were judged serious and two were con-
sidered significant (Table 4). We found no adverse events in
the outpatient setting.

4 Discussion

We evaluated the alerting performance of the Seegnal plat-
form compared with that of the EPIC combination and
found that the Seegnal platform would have triggered nearly
twentyfold fewer alerts, with higher sensitivity and higher
specificity in both the inpatient and the outpatient setting. At
the same time, the Seegnal platform potentially could have
prevented a small number of adverse events associated with
issues for which EPIC did not alert.

The high alert burden was consistent with other recent
literature reporting very high override rates, mainly because
of the inappropriate triggering of alerts [15, 19-21]. Not
only did the Seegnal platform have a much lower alert load
but it also had higher specificity, higher sensitivity, better

Table 2 Patient demographics

Demographic Inpatient cohort Inpatient genetic Outpatient
Mean age, years 61 58 55
Sex
F 328 (49.9) 232 (56.2) 1831 (67.0)
M 329 (50.1) 181 (43.8) 900 (33.0)
Race
American Indian or Alaska Native 4(0.6) 0 2(0.1)
Asian 23 (3.5) 12 (2.9) 108 (4.0)
Black or African American 67 (10.2) 156 (37.8) 358 (13.1)
Declined 5(0.8) 8(1.9) 58 (2.1)
Hispanic or Latino 17 (2.6) 30 (7.3) 364 (13.3)
Native Hawaiian or other Pacific Islander 0 0 2(0.1)
Other 33(5.0) 23 (5.6) 210 (7.7)
Unavailable 6(0.9) 1(0.2) 40 (1.5)
White or Caucasian 502 (76.4) 183 (44.3) 1589 (58.2)
Ethnicity
Hispanic 51(7.8) 61 (14.8) 576 (21.0)
Non-Hispanic 594 (90.4) 344 (83.3) 1673 (61.3)
Unavailable 12 (1.8) 8(1.9) 482 (17.6)

Data are presented as N (%) unless otherwise indicated
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Table 3 Inpatient alerts, inpatient genetic alerts, and outpatient alerts

Cohort The Seegnal ~ EPIC (control p value
platform group)

Inpatient
Number of patients 657 657 NA
Number of admissions 665 665 NA
Interruptive alerts 1697 27,540 NA
Alert load 6% 100% NA
True positives 1422 979 NA
False positives 275 26,561 NA
True negatives 26,359 72 NA
False negatives 0 444 NA
PPV 83.81% 3.55% < 0.0001
NPV 100% 14.01% < 0.0001
Sensitivity 100% 68.8% < 0.0001
Specificity 99% 0.3% < 0.0001

Inpatient genetic
Number of patients 413 413 NA
Number of admissions 413 413 NA
Interruptive alerts 1493 20,975 NA
Alert load 7% 100% NA
True positives 1068 1034 NA
False positives 425 19,941 NA
True negatives 19,748 232 NA
False negatives 250 284 NA
PPV 71.51% 4.93% < 0.0001
NPV 99% 44.98% < 0.0001
Sensitivity 81% 78.5% 0.11
Specificity 97.9% 1.2% < 0.0001

Outpatient
Number of patients 2731 2731 NA
Number of admissions 2749 2749 NA
Interruptive alerts 2341 35,134 NA
Alert load 7% 100% NA
True positives 1924 1700 NA
False positives 407 33,424 NA
True negatives 33,134 117 NA
False negatives 248 472 NA
PPV 82.54% 4.84% < 0.0001
NPV 99% 19.84% < 0.0001
Sensitivity 88.6% 78.3% < 0.0001
Specificity 99% 0.3% < 0.0001

NA not applicable, NPV negative predictive value, PPV positive pre-
dictive value

PPV, and better NPV than EPIC in both the inpatient and
the outpatient setting. It achieved this by utilizing patient-
specific parameters that can reduce inappropriate alerting
and diminish alert fatigue.

EHRs linked with CDS have been demonstrated to prevent
many types of medication errors in an internally developed
application [23]. However, nearly all systems implemented

in the USA are now commercial, and other studies suggest
these are not yet as effective as some of the earlier implemen-
tations [21]. The potential benefit of CDS is diminished by
inappropriate alerting [11-13]. Studies have also shown that
CDS can have unintended consequences. One study found that
CDS contained incorrect or misleading CDS content or out-
of-date content [23]. Another study also found alert fatigue
and user unfriendly systems with limited ability to customize
databases or output to be major problems [24]. The frequency
of inappropriate alerts leads clinicians to ignore nearly all
alerts, even those that can lead to patient harm. The Seegnal
platform employs a CDS knowledge base that is patient spe-
cific and flexible and can be tailored to an institution’s specific
requirements. This reduces the inappropriate alert load and
alert fatigue. Overall, the Seegnal platform outperformed our
current CDS system.

Other countries have taken a different approach for medi-
cation-related decision support. Notably, the Dutch use a data-
base called G-Standaard, which is issued monthly by Z-Index,
an organization owned by the Royal Dutch Association for
the Advancement of Pharmacy [25]. This database has been
refined to reduce some of the false-positive alerts but is not
used outside the Netherlands [26].

Many studies have found that, when alerts are overridden
inappropriately, the chance of harm to a patient increases sig-
nificantly [17-21]. This study identified 16 adverse events that
occurred in the inpatient setting. A retrospective chart review
found that 11 of the 16 alerts would have potentially been pre-
vented by the Seegnal platform, whereas the current system
failed to catch these.

This study has several limitations. Because the design was
retrospective, many of the features of the Seegnal platform,
for example using electronic medication administration record
data to assess the number of medication doses a patient had
received, could not be assessed. The tool might perform bet-
ter in real time with access to these additional features. The
Seegnal platform has not been subjected to the customization/
configuration of a healthcare facility, which could also improve
or worsen performance. As the genetic information available
within our biobank was limited at the time of data extraction,
we were unable to fully evaluate the pharmacogenetic decision
support. We did not measure how clinicians would respond to
suggested alternatives to the identified drug-related problems;
that will need to be assessed prospectively. Specifically, the
platform should be tested in real time to assess the alert load
reduction, user interface, and performance characteristics.

5 Conclusion
We evaluated two commercial applications regarding their

performance around medication-related CDS and found that
the Seegnal platform substantially outperformed EPIC in
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alert load, specificity, sensitivity, PPV, and NPV in both the
inpatient and the outpatient setting. It would reduce the alert
load by nearly twentyfold. The performance of the Seeg-
nal platform is attributed mostly to its ability to personalize
alerting because of its real-time consideration of up to hun-
dreds of patient-specific and medication-specific factors. It
could also help notify physicians of a small number of new
potential ADEs, and—based on the chart review—69% of
these potentially could be prevented. This application should
be further evaluated in real time, and further evaluation of
pharmacogenetic alerts would also be beneficial.

Supplementary Information The online version of this article (https://
doi.org/10.1007/s40264-021-01048-0) contains supplementary mate-
rial, which is available to authorized users.
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